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ANALYTICALLY VARYING EIGENVECTORS
AND THE
STABILITY OF VISCOUS SHOCK WAVES

Leon Q. Brin * Kevin Zumbrun ' ®

Abstract

Given a matrix A(-) and a simple eigenvalue a(-), both depending
analytically on a complex parameter A within a simply connected domain
A, we present a simple algorithm, based on a classical result of Kato, for
finding an associated eigenvector V(-) that likewise varies analytically
with respect to A. This is useful for numerical approximation of the Evans
function/numerical determination of stability of traveling waves, as we
demonstrate by an application to stability of viscous shock waves. Indeed,
it extends to general traveling waves/systems of equations an efficient
and robust ‘shooting” method developed by Brin for the determination
of shock stability in special cases where the relevant eigenvector V(-) is
explicitly available.

1 The Evans Function and Numerical Investi-
gation of Spectrum

Consider a single variable, N-component eigenvalue equation of the form
W'(z;0) = A(m; )W (x;0), WeCr, (1)
A € A C C simply connected, for which the matrix A has the properties

1. lim A(z;A) = AL(N), with convergence at a sufficiently high (e.g., inte-

T—Eo00

grable) rate.

2. The two matrices A (\) have no center subspace and have stable/unstable
subspaces of common dimensions k, N — k.
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Under these hypotheses, equation (1) has a k-dimensional stable and N —
k-dimensional unstable manifold at both positive and negative spatial infin-
ity; moreover, the stable manifold ST at +oo and the unstable manifold 4/~
at —oo may be spanned by locally analytic (in \) bases Wi,...,W* and
W, ..., WY respectively (see, e.g. [1, 4, 8]).

As discussed in [1, 4], such equations arise naturally in the study of stability
of traveling wave solutions of general nonlinear evolution equations u; = F(u),
where (1) is the eigenvalue equation (L — A)w = 0 for the linearized operator
L := DF|y about an asymptotically constant traveling wave solution u = 4(x)
(in coordinates so that its speed is zero), and A is typically the unstable open
complex halfplane Ct := {\: Re A > 0} or some portion of its closure; indeed,
the boundary of the set on which assumption 2 holds is contained in the essential
spectrum of L, hence encroachment of this boundary into the unstable open
halfplane already implies a form of instability. The question of interest, then,
is to determine the set of “eigenvalues” A € A for which (1) possesses one or
more bounded solutions (generalized eigenfunctions), i.e., those A for which
St and U~ have nontrivial intersection. Since solutions either decay or grow
exponentially as x — F00, these A in applications to stability indeed correspond
to eigenvalues of the operator L, and existence of such in the unstable half-plane
corresponds to linearized exponential instability. Likewise, nonexistence on the
closed, deleted unstable half-plane {\ : ReX > 0} \ {0} typically corresponds
to linearized and nonlinear orbital stability [1]; in particular, this is true in the
case of viscous shock waves, as shown in [8].

For the purpose of determining existence/nonexistence of eigenvalues in A,
a useful tool is the Evans function

D()) := det (W}r(o;)\), L WER ), W05 ), .. WY RO )\)) )

a Wronskian measuring the (solid) angle between S and U ~; evidently, eigen-
values A of (1) correspond to zeroes of D(-). The Evans function D(-) as defined
in (2) is clearly locally analytic; with more care it can in fact be defined in glob-
ally analytic fashion on all of A; see, e.g., the discussion of Section 2, [4]. This
suggests calculation of the winding number of D(-) around A or some appro-
priate subset as an efficient method for determining existence/nonexistence of
eigenvalues. Such a method was recently carried out by Brin for a rather stiff
class of systems in [2] using an efficient shooting method to numerically ap-
proximate the values of D(-). However, as specifically implemented in [2], this
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method made use of the additional property

3. A+(A) has a full set of eigenvalue—eigenvector pairs o’ (\), VL()), with
o/, (+) and VZ(-) analytic on all of A, where A is as defined in hypotheses 1-2.
This additional hypothesis holds for viscous shock waves in the test case of ‘arti-
ficial,” or scalar viscosity considered in [2], but not in general. For more realistic
viscosities, or more general equations/traveling waves, it is overly restrictive.

The purpose of the present note is to describe an efficient and easily coded
linear-algebraic subroutine augmenting the basic algorithm of Brin, with which
the method extends to general equations/traveling waves, without need for any
additional hypotheses beyond assumptions 1-2.

2 The Basic Algorithm of Brin

We now describe the basic algorithm of [2], as implemented under the additional
hypothesis 3. Define the sets

E,()) := {eigenpairs (o, V}) of Ay(\):Re o/, < 0,i=1,...,k}
E_()) := {eigenpairs (o', V') of A_(A):Rea’ >0,i=1,...,N —k}.

Then, taking M > 0 sufficiently large, bounded solutions of (1) may be ap-
proximated for x > M to any desired relative error by a linear combination of
‘constant—coefficient’ modes

Wi(z;A) i= e Vi i=1,...,k, 3)

and similarly for z < —M; see, e.g., [1, 4, 8]. From the definition of D, it might
seem, therefore, that the Evans function may be evaluated simply by solving
(1) numerically once for each mode on the interval z = £M to 0, initializing as

WL(£M;)) := eFeMVE (4)

for M > 0 sufficiently large, and computing the determinant (2).

However, in practice, the fastest growing mode dominates the numerical
solution of the slower growing modes, and therefore the slower modes can not
in practice be resolved directly [2]. Instead, the eigenvalue equation is lifted
into wedge space, paralleling the analytic framework introduced in [1]. The
wedge operator, A, is defined [3, 4] on the standard basis vectors of C™ by the
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properties

e N (ej +zey) =e; ANej + ze; Aey

(€i +zej) Nex = e Nep + e Aey (bilinearity)

and
e Nej=—ejNe; (antisymmetry).

This definition extends to an operation

A-clT) xol7) — c(8) (5)
by writing each vector as a linear combination of its basis vectors. A vector

m
v E C(7) in this context is referred to as an i-form.
Given this definition, the Evans function can be reformulated as

D(A) =Wy (0;2) AW_(0; ), (6)

where
Wy =WEAWEA--- AWE
and
W =WEAWEIA--- AWNE

Moreover, W, satisfy the lifted (linear) ordinary differential equations

(53 0)] = Au )W (5 ) (M)

for matrices A+ which can be determined by direct computation. It is a stan-
dard fact [1, 4, 2, 3] that the eigenvectors of A are given by all possible distinct
wedge products formed from (possibly generalized) eigenvectors of AL, with as-
sociated eigenvalues given by the sum of the eigenvalues of their factors.

Now, to evaluate the Evans function is just a matter of solving the two
equations (7) numerically, initializing as

L (£M; ) = eEEMYL )

where V. := VEA - AVE V_ :=VIA- . AVNF 4, :=al +---+ 0ok, and
y_:=al +---+a* for M > 0 sufficiently large, By the discussion above, V.
and V_ are the eigenvectors of A,/ A_ with smallest (resp. largest) eigenvalue.
Thus, only the fastest growing modes in (7) are needed in the computation
of the Evans function, and so it can be resolved very accurately by numerical
methods.
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3 Global Eigenvectors: Extension to the Gen-
eral Case

In the lifted framework (7), what is actually required to implement the algo-
rithm of the previous section is not assumption 3, but only that the eigenvalues
v+ and v_ of A,/ A_ of smallest (resp. largest) real part be analytic on A, with
associated analytic eigenvectors V. /V_. From simplicity of v, a consequence
of assumption 2, it follows immediately that v.(-) are analytic functions of A,
with uniquely determined associated analytic eigenprojections P, and P_, each
of which may readily be found numerically by standard algorithms. Evidently,
then, the extension of Brin’s algorithm to general systems reduces to the prob-
lem of finding globally analytic eigenvectors (on A) V. associated with known
analytic eigenvalues/eigenprojections.

This is easily done locally, but nonuniqueness of eigenvectors makes the
global construction nontrivial. Nonetheless, the following beautiful result of
Kato [7] yields existence in all cases. For reference below, we repeat the proof
here.

Proposition 1 (Kato) Let P(z) be a projection acting on a finite dimensional
vector space, analytic on a simply connected domain ). Then there exists an
invertible operator U(z), analytic on Q, so that

P(z) = U(2)P(O)U1(2).

Proof. By assumption, P(z) is an analytic projection matrix, i.e., P2 = P and
P is analytic. It follows that

PP+ PP =P 9)
Right multiplying (9) by P gives
PP'P =0. (10)

Let @ be the commutator
Q:=PP-PP. (11)

Combining (10) and (11) we find that

PQ =—PP and QP = P'P, (12)
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hence
P =QP — PQ. (13)

Define the operators U, V to be solutions of the respective ODE
U' =QU; U(0) =1, (14)
and
V' =-VQ; V(0)=1. (15)

(Local existence follows by Picard iteration, global existence by unique continu-
ation/simple connectivity of ). Then, direct computation yields that VU = I,
i.e. U is invertible. But, also, PU and UP(0), by (13), evidently satisfy the
same analytic ODE Y’ = QY with the same initial value Y (0) = P(0), hence
are equal by uniqueness of solutions. O

Remark. The result of Proposition 1 holds also for projections on infinite-
dimensional Banach spaces, as can be seen by the observation that UV and the
identity operator I satisfy the same analytic ODE Y’ = QY —Y @ with the same
initial data Y'(0) = I, hence UV = I by uniqueness. (Finite-dimensionality was
used only to conclude this from VU =1I).

This leads us to the following proposition regarding global eigenvectors.
Proposition 2 For z in a simply connected domain 2, let
(i) M(2) be an analytic matriz with simple eigenvalue p(z).

(it) r(2) and l(2) be right (column) and left (row) eigenvectors of M(z) cor-
responding to p(z).

(iii) P(z) = (rl/lr)(z).

(i) the matriz Q(z) be defined as in (11) and the vector R(z) (similarly as in
(14)) be defined to satisfy

R' = QR; R(0) = 7(0). (16)

Then R(z) is an analytically varying right eigenvector of M (z) for all z € Q.
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By simplicity of u, both u and the associated eigenprojection P vary analyti-
cially. As in the proof of the previous proposition, we thus find that both R and
PR satisfy the same analytic ODE Y’ = QY, with initial value Y (0) = r(0),
and are therefore analytic, equal, and nonvanishing on their mutual domain of
existence, which by simple connectivity is all of Q. But, PR = R # 0 implies
that R is an eigenvector of M, as a nontrivial element of the one-dimensional
eigenspace Range(M). O

Note that the proof of existence of R is constructive. It gives a method
for computing the analytically varying right eigenvectors as the solution of the
ordinary differential equation R' = QR, R(0) = r(0), which can readily be
solved numerically on the contour along which a winding number calculation is
to be carried out. A simple A-stepping procedure for ensuring the accuracy of
the winding number calculation is discussed in [2, 3]. As for solving R’ = QR,
the top (resp. bottom) eigenvalue p and associated eigenvectors [, r are readily
calculated using the standard general complex matrix routine in EISPACK'.
From these quantities, P and thereby () may then be approximated (the latter
by means of a difference quotient between the current value of P and the value
of P one tenth the distance to the projected next step along the contour—this
practice should probably be replaced by an adaptive step sizer in more general
applications). The ODE R' = QR is then stepped by an adaptive Runge-Kutta
method. Note that the accuracy required in this computation is not high,
essentially only the Rouché bound relative error < 1. Therefore, quick (yet
sufficiently accurate) calculations can be made using a relatively large tolerance
in the Runge-Kutta solver.

Remark. Though we did not implement this, accuracy might be improved
by a final corrector step projecting R — PR, to guarantee that R remains an
eigenvector. Analytically, there is no difference between R and PR.

4 The Gap Lemma: Extension Into the Essen-
tial Spectrum

The modified algorithm described up to this point already suffices to treat
most applications in stability of traveling waves, specifically, those for which

! Available at http://www.netlib.org/eispack
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the linearized operator L about the traveling wave (see Section 1) has a spectral
gap between its essential spectrum and the closed unstable complex halfplane
C+ = {A: ReX\ > 0}. By the discussion in Section 1, assumptions 1-2 are
then valid on the closure of A := C* U B(0,r) for r > 0 sufficiently small, al-
lowing accurate numerical approximation of the winding number of D(-) about
OA. This is always at least one, due to the presence of an eigenvalue at A = 0
corresponding to translation invariance of the underlying PDE (also the reason
we do not simply calculate winding number on dC'). If no other eigenvalues
are detected, either on the boundary of A or its interior, then one may gener-
ally (in particular, for sectorial operator L) conclude linearized and nonlinear
orbital stability: otherwise, linearized and (an appropriately defined version of)
nonlinear instability.

However, in the application of our main interest, that of viscous shock
waves, the spectral gap assumption typically fails, necessitating further dis-
cussion/elaboration of the method. Following [4], we divide into two cases.
The first, simpler case is that of totally compressive shock waves in which all
characteristics enter the shock: this includes both the scalar case and the 2 x 2
overcompressive case to be considered here. For our present purposes, the rele-
vant property of this case is that, even though assumption 2 may fail at some
point on the imaginary axis (namely, A = 0 in the case of shock waves), i.e. some
eigenvalue of A4 (\) becomes purely imaginary, a spectral gap is still maintained
between the top k and the bottom N — k eigenvalues (ordered by real part) of
A+ (N). In this case, the eigenvalues v+ of Ay remain simple up to (and be-
yond) the offending point, and we may carry out the algorithm as described
previously, with no further modification.

The second, and more physically relevant case, as described in [4, 8] is the one
for which at least one characteristic leaves the shock: from the present, abstract
point of view, the case for which at least one of the eigenvalues v+ collides with
another eigenvalue of Ay as A approaches some point of the imaginary axis
(A = 0, in the case of viscous shock waves). Nonetheless, it was shown in
[4] using the “Gap Lemma” together with a bifurcation analysis of coalescing
eigenvalues of A () that, for viscous shock waves, both 4 and their associated
(lifted) eigenvectors V. may be extended analytically through such points to
determine an analytically extended Evans function. And, as shown in [§], it is
this, extended function that is relevant to orbital stability of the wave.

Thus, this case too should be easily treatable in the same way, this time via
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analytic extrapolation of v+, Vi using values already calculated in the interior
of A (resolvent set of L). The numerical approximation of D given vy, Vi is
numerically well posed, by the same estimate used to prove the Gap Lemma;
see [2, 3]. However, a simpler approach, and one which appears to give good
results, is to instead compute the winding number around C* of the “deflated”
Evans function D(\) := D())/A, for which the zero at the origin has been
removed (taking care to avoid the origin). It is this, second method that we
have used in practice for the general case. For the 2 x 2 overcompressive case
discussed in the following section, we have carried out computations both ways,
obtaining consistent results. For comparison with [2, 3], we present here the
“undeflated” calculation, computed around the boundary of A := C* U B(0,r)
(r small).

5 Viscous Shock Wave Calculation

In this section, we summarize the main results of [1, 2, 3, 4, 6, 8] necessary for
the numerical determination of the stability of viscous shock waves. Careful
details are only given in the case of the energy estimate involved since this is a
necessary extension of previous calculations [2].

The associated linearized operator of the general viscous conservation law

s+ f(u)y = (Bu)ug)e u,fER (17)
is
Lw = —(A(z)w) + (B(z)w')' (18)
for a certain matrix A(z) [4] which depends on f and B. As a first order system,
the eigenvalue equation Lw = Aw is given by

W!'(z; \) = A(z; YW (x5 A) (19)

for another matrix A(z; ) [4] which depends on A and B. The Evans function
associated with (19) is well-defined [1].

In [8], it is shown that viscous shock wave solutions, i.e., traveling wave
solutions with limg_, 4o u(€) = ug, of (17) are LP orbitally stable if and only
if the Evans function associated with (19) has precisely k zeroes in {Re\ > 0}
where k is the dimension of the stationary manifold of viscous shock wave
solutions.
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In order to make use of this result, an energy estimate is used to find a
bounded region, Q2 C {Re\ > 0}, where the eigenvalues with nonnegative real
part must lie. Then, the number of zeroes of the Evans function in €2 is found
by applying the argument principle numerically, and is then compared to k.
There are certain surmountable technical difficulties involved in this program
[3], but generally the numerical determination of viscous shock wave stability
is dependable.

In [2], an energy estimate for the case of identity viscosity (i.e., B = I) is
shown. Extending this result, let B(u) be a nonidentity (possibly nonconstant)
matrix. In keeping with [4], let B(u) be positive definite, i.e. B(u) = (P'P)(u).
Then rewrite the eigenvalue equation as —(Bw')’ + A\w = —(Aw)’, multiply on
the left by w* and integrate over R:

[wuyar fwrw=- [ty
JwyBw Al = [y au
Juy )+ Muls = [ au

1P + Ml = [ () 4w.

Taking real parts on both sides and the magnitude on the right gives

1P| + Re(V) wli2: < ' / <w*)’Aw’

< [ 1wyaul
< [1lal@ ! ju)

<Al ze - w'llz2 - [Jwllz2.

Therefore,
Re(N)||wllZ> < [I(|Ale)llze - llw'llz2 - lwllze = [ Pw'||Z.. (20)

Taking imaginary parts and magnitude on both sides plus multiplying by ¢ > 0
(similarly) gives

elIm(N)| - [lwllzz < cll(|Ale)llze - [w'llz2 - lwllze- (21)
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Viscous Shock U
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Figure 1: Viscous shock wave for the modified cubic model.

Winding Plot
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Figure 2: D(09) normalized to show the winding number.

Adding (20) and (21) gives

29
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Re()\) +c|Im()\)\ & (1 +C)||(|A|22)||L°° ) ||wl||L2 ) ”w”LZ _ ”PUJI”%;

llwllz. llwllZ.
Sl (Al (dllw'llze + gllwliz.) — [[Pw|iZ.
- [[wllZ lwllZ-

for any value d > 0. For the specific choices ¢ = 0 and

2| Pw'llz.

d= ,
1 Ale) oo 2017

we have

ey < (WADe= 0P lelem)* -

And for the specific choices ¢ = 1 and

DO 17
(1Al )| oo [l 117
we have
. 2
Re(X) + [ImA)| < ([I(Ale) e I(1P7 e )llzoe)” - (23)

Inequalities (22) and (23) place the zeroes (with nonnegative real part) in a
truncated wedge [3]. For simplicity, though, we take  to be a rectangle in the
right half plane, the left side of which lies on the imaginary axis and passes
through the origin. However, the Evans function has a zero at the origin with
order equal to the dimension of the viscous shock wave manifold, £ [4]. So one
can not apply the argument principle to D()) over this domain. To circumvent
this issue, we include a neighborhood of the origin in {2, a move that brings up
technical difficulties overcome in [4, 6].
As a sample calculation, take the modified cubic model

1 0.05
Uy + (‘U|2U)m = (0.1 1 ) Ugz (24)
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for which figure 1 shows a particular viscous shock wave. Note that only 1 of
every 30 points in the discretization of the viscous shock wave are shown in
the figure making it look nondifferentiable when of course it is smooth. Figure
2 shows the image D(02) normalized to highlight the winding number. From
the figure, it is clear that the winding number is 2. Since the dimension & of
the viscous shock wave manifold for this model is also 2, this particular viscous
shock wave is stable. These calculations were done using the Riemann Problem
Package [5].

The results, and calculations may be compared with those carried out in
[2, 3] for the same model with artificial viscosity:

s + ([ul*u)y = tgg. (25)

As expected, all computed values remain quite close, despite the difference in
the underlying algorithms.
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