n Matemdtica Contemporanea, Vol. 22, 1-17
" S B M http://doi.org/10.21711 /231766362002 /rmc221

K1/
(©2002, Sociedade Brasileira de Matemética

HELICOID OF RIEMANN SOLUTIONS:
A NEW MECHANISM FOR
MULTIPLICITY OF SOLUTIONS

Arthur Azevedo *

Abstract

Quasi-Riemann solutions are modifications of Riemann initial-value
problems for conservation laws augmented by a small parabolic term
and with continuous initial data which is constant except for a finite
number of intervals. In this paper we present a class of examples for which
Riemann problems do not contain the complete information required to
understand the generic topological behavior of Riemann solutions, while
quasi-Riemann problems do. Of course, this fact reflects non standard
behavior of the Riemann solutions. In particular, the quasi-Riemann
solutions cannot be identified with the solutions of a Riemann problem.

This behavior is best illustrated by examining the set of solutions of
quasi-Riemann problems as a manifold. We describe part of this manifold
for a particular model of 2 x 2 system of conservation laws of mixed
elliptic-hyperbolic type.

We show this part is foliated by surfaces resembling helicoids. Mul-
tiple solutions for Riemann problems associated to these surfaces are
obtained by lifting a point representing a constant state to each leaf of
the helicoid.

1 Introduction

Nonlinear conservation laws have solutions with shocks, or weak solutions. In
the absence of restricting criteria, such weak solutions are not uniquely deter-
mined by the initial data. Since Courant, Friedrichs [7] and Gel’fand [10], each
individual shock wave has been considered admissible if it is the small viscosity
limit of a traveling wave solution of an equation with parabolic terms dictated
by the physics.
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However, waves of systems for conservation laws come in sequences, rather
than individually. In this paper we investigate an example of a Riemann prob-

lem,

Ui+ FU), =0,
R for x <0 (1)
U(=,0) = { U, forz >0
(U, and U, are constant states), where such sequences are small viscosity

limits of solutions of an associated parabolic Cauchy problem

Ui+ F(U)y = a[B(U)Uy],,

Ql for z < —¢, @)
U(z,0) =< U(z/e) for —e<z <e¢,

U, for = >,

where U; and U, are the constant states, € is a small positive number, and
U :[-1,1] = R?is a C? function which is constant except in certain intervals,
centered at z;. Here —1 =29 < 21 < -++ < Ty < Tg1 = 1 (m is a positive
integer). Also, a is a small positive number such that a << inf;— (x4 —
z;)/2. We assume that U(z) is constant except in the intervals [z; — a, z; + a)
(j = 1,...,m) and satisfies U(—1) = U; and U(1) = U,. We call (2) a quasi-
Riemann problem. We would expect that when a and ¢ tend to zero at the same
rate, we recover a Riemann problem.

Inspired by the theory of systems of conservation laws, we expect solutions
of (2) to comprise sequences of approximate rarefaction waves and approximate
traveling waves with non-decreasing speeds from left to right. Contrary to
sequences of waves in Riemann solution, we allow adjacent waves to have the
same speed and we regard such waves as distinct.

Approximate traveling waves should tend to shock waves in the limit as
a — 07. More precisely, admissible shocks are limits of traveling wave solutions
for conservation laws that are associated to orbits of families of system of or-
dinary differential equations. Since in this paper we assume that (1) and (2)
are two-component systems, in addition to Lax shock waves of families 1 and 2,
for which the traveling wave orbits connect saddle points and nodes, there exist
shock waves with saddle-saddle connecting orbits. Although there exist het-
eroclinic saddle-saddle connections and homoclinic saddle-saddle connections,

in this paper we consider only the first type of connection, named transitional
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waves, for which the left state U_ is a saddle point, the right state U, # U_
is also a saddle point, and they are connected by an orbit. The existence of
traveling waves associated to heteroclinic orbits allows adjacent shock waves to
have the same speed. (The classical Lax characteristic criterion precludes this
possibility.) Thus there are new wave patterns: sequences of transitional waves
with the same speed separated by constant states.

Such sequences cause multiplicity of solutions of Riemann problems for in-
viscid conservation laws [1, 2]. The occurrence of multiple solutions causes
ill-posedness in the following problem: given only the states U; and U,, find the
time-asymptotic solution of the quasi-Riemann problem. Of course, a solution
for the parabolic system is uniquely determined at any finite time by its initial
data; even when the solution is not determined solely by U; and U,, it is de-
termined by specifying extra information, namely how U interpolates between
U, and U,. On the other hand, in the limit as a — 0% and ¢ — 07, differ-
ent choices of U can lead to convergence to different solutions of the inviscid
Riemann problem.

Although Riemann solutions are obtained composing rarefactions and shocks,
in this paper we consider only sequences of a 1-Lax shocks (denoted by S;), tran-
sitional (denoted by T') shocks and a 2-Lax shocks (denoted by S7) to construct
part of the solution manifold of a quasi-Riemann problem. This manifold helps
in understanding the behavior of multiple Riemann solutions. This part of the
manifold arises from 3-cycles and looks like a foliation of helicoids. This heli-
coidal foliation is interesting since it represents non standard behavior in the
context of conservation laws.

To describe this part of the manifold, after setting up the notation in Section
2, we introduce in Section 3 an example satisfying certain conditions. These
conditions are shown to give rise to the helicoid. Classes of solutions playing
a role in this paper are discussed in Section 4, and mechanisms responsible for
the boundaries between classes are presented in Section 5.

We finish this paper describing the helicoid obtained for a certain set of Uj.

We believe that the information contained in this paper is important for
the understanding of existence of oscillatory waves in Riemann problems. It
should be interesting to connect it with the structural stability of solutions in
the context of [16].
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2 Preliminaries

In this paper, we consider problems with compact elliptic region, i.e., we assume
that the eigenvalues \;(U) (i = 1,2) of F'(U) are real and distinct except in a
compact region.

Systems of conservation laws with compact elliptic regions illustrate some
features of Stone’s model [4, 8], which describes the permeability of immisci-
ble three-phase flow in porous media commonly used in Petroleum Reservoir
Engineering (the three phases are oil, water and gas with compressibility ne-
glected). The existence of an elliptic region in Stone’s model is discussed in
[5, 14, 15, 13, 17].

A traveling wave U(§) is a solution of the system of ordinary differential

equations

U=BU) " {-s[U-U]+FU)-FU.)} (3)

satisfying lime 100 U(§) = Uy. Here £ = = — st — z,, where s is the
propagation speed of the traveling wave. We remark that (3) is a system of
ordinary differential equations depending on parameters U_ and s.

Equilibria U_ and U, of (3) must satisfy the Rankine—Hugoniot equation

H(U-,s,Us) = F(Uy) - F(U_) - s(Uy — U_) = 0; 4)

for each U_, the set of U, satisfying (4) forms the Rankine—Hugoniot curve
associated to U_.

Strictly speaking, the equilibria U_ and U, are “attained” only in the limits
lime, 10, U(€) = Ux. However, as the rate of approach is exponentially fast,
approximate solutions of the parabolic system can be obtained by juxtaposing
traveling waves, as long as the propagation speeds are in nondecreasing order.
In this situation, the equilibria serve as constant states appearing in the wave
sequence. If the speeds are strictly increasing, we may expect such solutions
to be time asymptotically stable. Otherwise, they should be stable only for
exponentially long time.

We recall that admissible Lax shock waves of family 1 (S;) are associated
to an orbit leading from a repeller node (or spiral) U_ to a saddle point U.,
whereas admissible Lax shocks of family 2 (S,) are associated to an orbit from
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a saddle U_ to an attracting node (or spiral) U,. The U, states of each of these
shocks is associated to parts of the Rankine-Hugoniot curve: the 1-Lax shock
curves or 1-shock curves and the 2-Lax shock curves or 2-shock curves from U_.

Transitional shocks are associated to saddle-saddle connections. Let v be
the orbit connecting the two saddles, we represent the o-limit saddle of v by
a(7) and the w-limit saddle of v by w(7). As in case of 1-shock and 2-shocks,
the U, states of the transitional shocks are associated to parts of the Rankine—
Hugoniot curve: the transitional shock curves.

We remark that a concatenated sequence of three transitional shocks with
the same speed gives rise to 3-cycles.

We adopt the same notation L %5 R to indicate that the state L is con-
nected to the state R by a shock S (S may be a 1-shock (5;), a 2-shock (S2),
or a transitional shock (7). To indicate a sequence of waves a, b and ¢, we use

the notation a : b : ¢. We represent the shock speed from a state « to a state

B by s, B).

3 The Model

In this paper we consider an example which defines the flux function F(U)
(where U = (u,v)") introduced in [11] with viscosity matrix equal to the iden-
tity. For U(z), € and a introduced in the Section 1, we consider the family of

quasi-Riemann problems

v+ (vu — pu)y = a gy,
U forz < —e (5)
U(z,0) = { Uz/e)for—e <z <,
U, for x > e.

{ ug + (3% — u?) + pv)e = @ U,

The Riemann problem associated to (5), first studied in [11],

{ u + (3(v? — u?) + pv), =0,
v+ (vu — pu)y =0, (6)
U, for x <0,

U(z,0) = { U, for z > 0.

has elliptic behavior inside the circle E = {(u,v) : u? + v*> < p?} and hy-
perbolic behavior outside E. Thus (6) has elliptic-hyperbolic type, i.e., the
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matrix dF(U) has eigenvalues \g(U) = (=1)¥/u2 +v2 — p? (k = 1,2) which
are complex conjugate for U inside E, and real and distinct for U outside E.

For this example, a traveling wave is a solution of the system of differential
equations

1 1
=—-s(u—u_)+ 5(1)2 —u?) 4 pv — 5(1}3 —u?) + pu_

v=—s(v—v_)+vu—pu—v_u_ —pu_

(M)

depending on the three parameters v_, v_ and s.

For some values of these parameters, the systems (7) have three invariant
lines which are the secondary bifurcations [12] and form an equilateral triangle
[11]. For s = 0 and appropriate values of u_ and v_ ((u_,v_) lying on the
corners of the equilateral triangle or on the center of the elliptic region), the
systems (7) have also a 3-cycle. These parameters are important later for (C6).

N/

(a) The elliptic region (b) 3-cycle
and the invariant lines

Figure 1: Features of (6) and (7).

Figure 1(a) illustrates the elliptic region and the three invariant lines, while
Figure 1(b) shows the 3-cycles, which are sequences of three transitional shocks
with the same speed (s = 0), occurring in this example.

The parts of Rankine-Hugoniot curve associated to 1-shock curves and 2-
shock curves for (6) from different states are illustrated in Figures 2.

Figure 2(a) shows the 1-shock curves from U,, U, and from U, while Fig-
ure 2(b) shows the 2-shock curves from states Uy, Us, Us, Uy, Us, Us and Us.
These shock curves will be helpful to understand the behavior of the solutions
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in next sections. More details about rarefaction and shock curves for (6) can
be found in [11].

(a) 1-shock curves (b) 2-shock curves

Figure 2: Wave curves of (6) and (7).

Other shock curves from different states are easily obtained, because the

Riemann problem (6) satisfies the following symmetry property (see [11]):

Proposition 1 If U = U(z,t) solves (6) with initial value Uy = U(x,0), then
also OLU will solve (6) with O+Uy = U(z,0), where O+ denotes a rotation by
+27

3 7

The Riemann problem (6) and the systems (7) satisfy certain conditions
which are associated to non standard behavior of Riemann solutions. We de-
scribe below part of the conditions which are relevant in this paper. The com-

plete list of conditions will appear in [3].

(C1) The Riemann problem, in the state space, has a compact elliptic region E
with C* closed boundary, i.e., the matrix dF(U) has complex conjugate
eigenvalues \;(U) (i = 1,2) if U lies inside E; outside E dF'(U) has real

and distinct eigenvalues.

(C2) The Riemann solutions contain only 1-Lax shocks, 2-Lax shocks and tran-
sitional shocks.



(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

(C9)
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Each member of the family of systems of ordinary differential equations
(7) has at most four singularities; when the system has four singularities,

they must be three saddles and one non-saddle.

There exist two types of orbits connecting two saddles of the family of
ordinary differential equations (7): straight lines and curves. We adopt
the notation T for transitional shocks associated with straight line orbits
and T, for transitional shocks associated with curved orbits.

The phase portraits of certain members of the family of systems of ordi-
nary differential equations (7) has three invariant straight lines L; (i =
1,2,3), forming a triangle A, such that whenever two saddles lie on L;
and are connected by orbits, then at least one orbit v lies on L;. Each
line is tangent to the border of the elliptic region at exactly one point and
there is no other intersection. Each line L; is composed by two parts: the
a—limit saddle of each « lies in the first part L;, and the w—limit saddle
of each + lies in the second part L;,. The tangent point of L; and E is

the boundary between L;, and L;,. Figure 1(a) illustrates this condition.

For s = 0 and appropriate values of the parameter U_, the system of
differential equations (7) has 3-cycles. The 3-cycle is formed by straight
line orbits and its corners coincide with the corners of A (so A “coincides”
with the 3-cycle). Moreover, shocks connecting corners of a 3-cycle have
zero speed. (Actually, one can consider s constant instead s = 0, by

adding sU to F in (2); we adopt s = 0 for simplicity.)

From appropriate states, the 1-Lax shock curves intersect transversely
the part L;, of the invariant line L; and the 2-Lax shock curves intersect

transversely the part L;, of the invariant line L; (see Figures 2).

Let S;*(Ly,) be the set of all U; such that the 1-shock curve from U
intersects L;, and let Sy(L;,) be the set of all U, such that the backward
2-wave curve passing through U, (S, '(U,)) intersects L;_ . These two sets

are not empty.

In a sequence of more than two transitional shocks, all such shocks have
the same speed s, except possibly for the first and the last shocks. Again,
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we adopt s = 0 for simplicity.

(C10) Fix a state in each L;, (i = 1,2,3) that is a saddle. By varying s, there
is an interval I; contained in L;, such that every saddle in I; is connected

to the saddle in L;, by a straight line connection.

(C11) Except in bifurcation cases, the length of the orbit connecting two states

U_ and U, depends continuously on U_ and U,.

(C12) A straight line or curved connection from a first saddle to a second saddle
can disappear through the non-saddle equilibrium collapsing with first
saddle, or through the non-saddle equilibrium collapsing with the sec-
ond saddle. In the context of conservation laws, these collapses occur
on the boundary between branches of the Rankine-Hugoniot curve. The
first case corresponds to the boundary between a transitional part and a
1-Lax shock part in a Rankine-Hugoniot curve, while the second case cor-
responds to the boundary between a transitional part and a 1-Lax shock

part in a Rankine-Hugoniot curve.

The condition (C10) is not generic and, of course, the values of the parameter
s (in (3)) are not the same for different saddle-saddle connections. In example
(5), condition (C10) is valid because the viscous matrix B(U) is equal to the
identity.

As consequence of condition (C6), the corners of the 3-cycle (and the corners

of the triangle formed by the lines L;) lie on each interval I; mentioned in (C10).

4 Classes of Solutions

In this section we introduce the concept of classes of solutions to group solutions.
This concept is useful to describe the structural behavior of Riemann and quasi-
Riemann solutions.

A Class corresponds to a superset of structurally stable solutions as defined
in [16].

In the example described in this paper, two classes differ through the number
or type of transitional shocks present.
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For simplicity, we present only classes containing shocks and that are rele-
vant to constructing the part of solution manifold described in this paper. (This
is the cause of the gap in the notation of the classes. The whole set of classes
for this example is presented in [3].)

As consequence of (C2), all classes presented in this paper are composed
by solutions containing a 1-shock and a 2-shock or by a 1-shock, transitional
shocks, and a 2-shock. The shocks are separated by constant states and the
classes may contain degenerate cases where the 1-shock or the 2-shock vanish.

Class | Description of the quasi-Riemann solution classes
A% Sy 8Ty o T, o Ty 2 .50
VI o vy vy 2Ty % ©.5s.

XX, |S51:3C,:Ts:5,.

XXI, [ S81:3C, :T,:Ts:S,.

XXIL, | §1:3C, :Ts:Ts : T : So.
XXIIIL, | S; : Ty :3C, : Ty : Ss.
XXIV, | 81 :T5:3C, : Ts : Ty : So.
XXV, | 81:Ts:3C, : T, : Ty : T : So.

Table 1: Classes of solutions.

We summarize these classes in Table 1, where 3C,, denotes n 3-cycle loops
(m=1,2, .0n):

The classes presented in Table 1 are quasi-Riemann solutions but some of
them do not survive when @ — 0" and € — 0" in (2). Classes between I and IX
are associated to Riemann solutions (Riemann solution classes) while the other

classes are quasi-Riemann solution classes but not Riemann solution classes.

5 Boundaries Between Classes of Solutions

Classes are associated to parts of the solution manifold. This association pro-
duces the idea of boundary between classes. The boundaries are submanifolds
with higher codimension. They occur through certain mechanisms that fol-
low from the results presented in previous sections. For classes containing se-
quences of transitional shocks, a typical mechanism responsible for appearance
of boundaries is the vanishing of the first or the last shock speed, or of both
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speeds. Submanifolds associated to these cases have higher codimension. More-
over, submanifolds associated to the latter case have higher codimension than
those associated to the other two cases.

Although classes and boundaries are manifolds, we emphasize the role of
some boundaries adopting a notation different from that used to classes. More-
over, we use B(A,TI") to denote the boundary between classes A and I'.

An example of such boundaries occurs between Class V and Class VI. This
boundary is a manifold associated to solutions formed by Sy : Ty : T : Ty : So
such that the last T has zero speed. This boundary is a codimension 1 manifold
and denoted by B(V, VI).

Another interesting boundary occurs between Class VI and Class XXIII;.
This manifold is associated to sequences S; : Ty : Ty : T : Ty : Sy such that only
the first T has non zero speed. Since three zero-speed T originate a 3-cycle,
this boundary is associated to solutions formed by S; : Ty : 3C; : Sy. This
boundary is also a codimension 1 manifold and we denote it B(VI, XXIIL).

An example of a codimension 2 manifold is associated to solutions formed
by S : 3Cy : S . In this case, all T have zero speed.

Boundary Description of the quasi-Riemann solution boundary
B, (V,VI) S1: Ts(with s =0) : Ty : Ty : Sa.
By(V,VI) S1:Ts: Ty : Ty(with s = 0) : Sa.

B(VI, XXIII) S1:Ts: Ty : Ty : Ts(with s = 0) : Sa.
B(XX,,XXI,) | 81 :3C, : Ty(with s = 0) : Sa.

B(XXI,, XXIIL,) S1:3C, : Ty : Tg(with s = 0) : Ss.
B(XXIIL,, XXIV,) | S1: T :3C, : Ts(with s = 0) : S,.
B(XXIV,,,XXV,) | S1:Ts:3C, : T, : Ty(with s = 0) : Sy.

B(XXV, XX, 41) | S1:Ts:3C, : Ts : T : Ts(with s =0) : Ss.

Table 2: Boundaries between classes of solutions.

Table 2 describes some boundaries between classes. The focus in this de-
scription is the boundaries used in this paper.

In this section we also describe how classes and boundaries used in this paper
are connected.

We begin the description with a Riemann solution lying in a certain class; by
changing U; and U, the solution can change into another class due to a mecha-
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nism allowed by conditions (C1)—(C12). These classes differ in the number and
type of transitional shocks (3-cycle loops are sequences of transitional shocks).
So, appearance (or disappearance) of transitional shocks and change of type of
transitional shocks in a sequence of waves are the mechanisms responsible for
the existence of boundaries between classes.

The two mechanisms playing a role in this paper are described below. A
complete list of the mechanisms in the model considered here will appear in [3].

In the description below, reverse changes are also possible.

(M1) A sequence of waves formed by a 1-shock followed by a transitional shock
i.e., S1: T (or U .58 Ui s Uns,), changes into a sequence with only
a 1-shock Sy (or U] T U,,)- The change occurs when the intermediate
state Up,, crosses the boundary between the branch of transitional shocks

and the branch of 1-Lax shocks in a Rankine-Hugoniot curve from U, .

We adopt the notation (M1—) to represent the case when a T disappears
and the notation (M1+) to represent the case when a T, appears. This
mechanism follows from (C12).

(M2) A sequence of waves described by a transitional shock followed by a 2-
shock, i.e., T : Sy (or Up, .t Un, L} U,), changes into a sequence with
only a 2-shock Sy (or Uy, g U)). The change occurs when the interme-
diate state Uy, crosses the boundary between the branch of transitional
shocks and the branch of 2-Lax shocks in the Rankine-Hugoniot curve
from U,,,. This change can occur, for example in a Riemann solution for
(6), when U, crosses the horizontal part of the 2-shock curve from Us.
This mechanism follows from (C12). As in (M1), we use (M2—) to repre-
sent the case in which a Ty disappears and (M2+) to represent the case

which a T appears.

The boundaries between classes occur through one or more mechanisms.
Generically, two or more mechanisms appear when one changes U; and U, si-
multaneously. In this paper we consider boundaries originating from only one
mechanism. In Table 3 we introduce the boundaries that play a role in this
paper and specify the mechanism responsible for the connection.
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Class | Boundary Connected Mechanisms
v By (V,VI) (M1+)
By (V,VI) (M2+)
B, (V,VI) (M1-)
VI | By(V,VI) (M2-)
B(VI, XXIII,) (M2+)
XX B(XX,,XXI,) (M2+)
" B(XX,, XXIII,) (M1+)
XXI B(XX,,XXI,) (M2-)
" | B(XXI,, XXII,) (M2+)
B(XXI,, XXII,) (M2-)
AL, B(XXII,, XXIII,) (M2+)
B(VI, XXIIL), (n = 1) (M2-)
XXIIL, | B(XXIIL,, XXIV,) (M2+)
B(XXIIL,, XXV, _1),(n > 1) (M2-)
B(XXIIL,, XXIV,) (M2+)
B B(XXIV,,XXV,) (M2+)
XXV B(XXIV,, XXV,) (M2-)
" | B(XXV,, XXIIL,.;) (M2+)

Table 3: Connections of classes of solutions and their boundaries.

6 The Helicoid and the Multiplicity of Solu-
tions

In this section we describe parts of the quasi-Riemann solution manifold problem
for system (7), which looks like helicoids. These helicoids are based on quasi-
Riemann solutions containing 3-cycles. Each leaf corresponds to a U;. So, to
describe one of these helicoids, we fix U; and let U, vary.

We begin considering U; and U, inside the triangle A formed by the invariant
lines L; (i = 1,2, 3) such that the 1-shock curve S;(U;) and the 2-shock curve
Sy ' (U,) which reaches U, cross at a state U* (Figures 2 illustrate such case, for
U, equal U,, U* equal Uy lying on S1(U,), and U, any state lying on Sy(Ur) and
inside A) and, besides this case, we take U, and U, far away from the center
of E. We introduce the latter requirement because we have numerical evidence
indicating that for U; or U, close to the center the solution of the Cauchy
problem has asymptotically unstable behavior. This instability is probably
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uml
B Uy
| v
Uy
U,
(a) Class V solution in wuw- (b) Class V solution in zu-
plane plane

Figure 3: Class V solutions.
related to oscillations studied in [6, 9].

For the initial data mentioned above, because of condition (C7), the shock
curves cross the invariant lines so that one can construct a solution lying in
Class V, namely U, Sy Un, N Uss, oy Un, =y Un, ok U,. Because of
condition (C9), the second Ty has zero speed. Fig. 3(a) shows the solution in
uv-plane while Fig. 3(b) shows the solution in zu-plane.

Now we move U, inside A in the clockwise direction, keeping far away from
the center. In this case the intermediate state U, moves to the upper right cor-
ner of the triangle and the solutions lie in Class V until U,,, reaches the corner.
In this case, the solution leaves Class V and enters in By(V, VI). Figure 2(b)
illustrates it moving Uy to Uy or Us to U, or Us to Us. After that, moving U,
the solution enters in Class VI.

Keeping U, moving, still because of (M2+), the solution leaves Class VI and
enters a Class given by Sy : Ty : Ty : Ty : Ty : Ty : Ss. By (C6) and (C9), this
is a Class XXIII; solution. Of course, between Class VI and Class XXIII;, the
solution crosses B(VI, XXIIL).

Moving U,the solution changes to Class XXIVy, then to Class XXV, then
to Class XXIII,, and so on crossing the appropriated boundaries.

To represent geometrically the topological behavior of the solution, we in-
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XXVy —
XXIII; —

XXVl i

XXIII; —

(a) The helicoid in u,v,-plane (b) The helicoid in u,v,n-plane

Figure 4: The helicoid for a fixed U;.

troduce a parameter 1. In state space, it is given by the sum of arc length of the
1-shock curve from U; to the first intermediate state, the length of the orbits
connecting the saddles of the transitional shocks, and the length of the 2-shock
curve from the last intermediate state to U,. The (u,, v, n)-space turns out to
be extremely useful to describe parts of the solution manifold.

Figure 4 sketches the helicoid described above, for U; given previously. In
Figure 4(a) we show the projection of the helicoid in u,v,-plane while in Fig-
ure 4(b) we illustrate it in u,, v, n-space.

Of course, the helicoid are associated with multiple Riemann solutions and

we believe they are related to oscillatory waves introduced in [9].
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