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ON THE INFINITE RADICAL OF A MODULE
CATEGORY OVER A TILTED ALGEBRA

Flavio Ulhoa Coelho*®

Abstract

For an algebra A, denote by rad®(modA) the intersection of all pow-
ers rad’(modA), i > 1, of rad(modA). We discuss here the tilted algebras
such that rad®(modA) are nilpotent.

Resumo

Para uma dlgebra A, denotemos por rad®(modA) a interseccdo de
todas as poténcias rad’(modA), com i > 1, de rad(modA). Discutimos
aqui as dlgebras tilted tais que rad®(modA) seja nilpotente.

Let A be finite dimensional algebra over an algebraically closed field k& and
let mod A denote the category of finitely generated right A-modules. Denote by
rad(modA) the Jacobson radical of modA, that is, the ideal in modA generated
by all non-invertible morphisms between indecomposable modules in modA.
The infinite radical rad®(modA) of modA is defined to be the intersection of
all powers rad’(modA), i > 1, of rad(modA).

The study of rad*(modA), together with the description of the Auslander-
Reiten quiver associated to modA, gives important informations on the com-
plexity of this module category. In particular, it is important to know when
rad®(modA) is nilpotent, that is, when there exists an index m such that
(rad®(modA))™ = 0. If this is the case, we say that the minimum such an
index is the nilpotency indez of rad®(modA) and we indicate it by n4. In case

rad®(modA) is not nilpotent, we shall write n4 = oo.
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It has been shown, for instance, in [5] that an algebra A is representation-
finite if and only if (rad®(modA))? = 0, that is, 4 < 2. Recall that an algebra
is representation-finite provided there exists only finitely many indecompos-
able objects in modA, up to isomorphism. Otherwise, the algebra is said to
be representation-infinite. Also, in [6, 7], we have studied the representation-
infinite algebras A such that (rad*®(modA))® = 0. Observe that there exist
algebras with abitrary nilpotency index [12]. We refer the reader to [10, 12] for
more informations on this question.

Here, we are mainly interested in discussing the question of the nilpotency of
rad™(modA) for a class of algebras called tilted algebras, introduced by Happel
and Ringel in [8] (see also [1]). See below for definitions. Our main result can

be stated as follows.

Theorem. Let A be a representation-infinite tilted algebra such that rad™(modA)
is nilpotent of index na. Then 3 < na < 5. Moreover, if one of the left or the
right types of A is empty, then na = 3.

The notions of left and right types of tilted algebras were introduced in [2]
in order to give a better insight of how these algebras were built up. We shall
recall their definitions in Section 2 below. The proof of our main result will be
given in Section 3. We finish this paper by exhibiting examples showing that
all possible values given by the above result (74 = 3,4,5 or co) can occur for a

representation-infinite tilted algebra.

1. Preliminaries

1.1. Let k be an algebraically closed field. By algebra is meant a basic and
finite dimensional k-algebra. For a given algebra A, we shall denote by modA
the category of all finitely generated right A-modules, and by indA the full
subcategory of modA with one representative of each isomorphism class of in-
decomposable A-modules. We shall also keep the notations established in the

introduction.
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1.2. We shall denote by I'(mod A) the Auslander-Reiten quiver of A (AR-quiver,
for short), and by 74 the Auslander-Reiten translation in I'(modA). We shall
now agree to identify the vertices of I'(mod A) with the corresponding A-modules
in indA. By a component of I'(modA) we mean a connected component of
['(modA). Observe that if f: X — Y is a nonzero morphism with X and YV
lying in different components of I'(modA), then f € rad*®(modA). We will use
this fact along this paper.
We say that a path

(*) XOL)Xlﬁ)"'ft—_l)Xt_lﬁXt
lies in I'(modA) if X; is indecomposable for each ¢ = 0,---,¢ and f; is an
irreducible morphism for each 7 = 1,---,¢. Also, we say that such a path (*) is

sectional provided 74 X; # X;_o, for each 2 < i < t.

Let I" be a component of I'(modA). Then, I' is said to be regular if it
contains neither a projective module nor an injective module, and semi-reqular
if it does not contain both a projective and an injective module. Further, I'
is postprojective (respectively, preinjective) if I' contains no oriented cycles and
each module in I" belongs to the 74-orbit of a projective module (respectively,
of an injective module). Moreover, the component I is said to be generalized
standard if rad®(X,Y) = 0 for all modules X and Y in I' . Observe that a
postprojective (respectively, a preinjective) component I' is generalized standard
because rad™(—, X') = 0 (respectively, rad®(X,—) = 0) for all X e T.

For more details on Auslander-Reiten theory we refer to [4, 11].

2. The types of a tilted algebra

2.1. Let A be a finite quiver without oriented cycles and consider the path
algebra H = kA. An H-module T is called tilting provided: (i) Ext},(T,T) = 0;
and (ii) there exists a short exact sequence 0 — H — T3 — Tp — 0, where
T, and T, belong to the additive subcategory addT generated by T. A tilted

algebra is the endomorphism ring of a tilting module over a path algebra as
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above. The type of such tilted algebra A is defined to be the underlined graph
A of the quiver A. It follows from the description of the AR-quiver of a tilted
algebra of type A that I'(modA) has a component, called connecting, which
contains a section of type A, called complete slice. This component can be
postprojective, preinjective or a directing generalized standard component. In
fact, there are at most two of such components and in case there are two, they
are, respectively, a postprojective and a preinjective component. In this case
the algebra is also called concealed. For more details on tilted algebra we refer

the reader to [1].

2.2. In [2], in a joint work with Assem, we have introduced the notions of left
and right types of a tilted algebra A in order to have some hints of how A is built
up. Specifically, we were interested in the study of the homological properties
of the indecomposable A-modules in terms of their position in I'(modA). We
shall use here these types to study those tilted algebras A with rad®(modA)

nilpotent.

We define the left type of A as follows. If I'(modA) has a complete slice
in a postprojective component, the left type of A is defined to be the empty
graph. Otherwise, I'(mod A) has a unique connecting component I' which is not
postprojective. If I' contains no projective module (so that every module in T’
is left stable under the translation 74), we define the left type of A to be the
type of the tilted algebra A, as defined above. Suppose I' contains a projective
module. Let ¥ be the subsection of I' consisting of the left stable modules M
in I' such that there exists a path in I' of length at least one from M to some
projective, and any such path is sectional. Observe that ¥ is not necessarily
connected. Then ¥ will be called the left extremal subsection of A, and its

underlying graph ¥ will be called the left type of A.

Dually, we define the right type of A. For details, we refer to [2].

2.3. Let A be a tilted algebra of type A. Suppose its left type A; is non-
empty. Then A; has no connected subgraphs of Dynkin type. Indeed, if A,
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contains a subgraph A’ of Dynkin type, then the connecting component I" would
contain a left stable full subquiver of type —NNA’. Observe then that the length
function restrict to such a subgraph would be an additive function, which is a
contradiction. Similarly, there is no connected subgraph of Dynkin type in the
right type A, of A.

Clearly, if A; is the empty graph, then I'(mod A) has a postprojective compo-
nent containing all projective modules and then, according to [3], rad®(—, A4) =

0. Dually, if A, is the empty graph, then rad®(D(4A4),—) = 0.

2.4. Observe that the notions of left and right types have a close relation with
the left and right end algebras, as defined by Kerner [9]. We recall the following

lemma from [2].

Lemma. Let A be a representation-infinite algebra which is tilted but not con-

cealed.

(a) Each connected component of the left extremal subsection is a complete
slice in the connecting component without projective modules of the
Auslander-Reiten quiver of a connected component of the left end alge-
bra A. In particular, the left type of A equals the type of A as a tilted

algebra.

(b) Each connected component of the right extremal subsection is a com-
plete slice in the connecting component without injective modules of the
Auslander-Reiten quiver of a connected component of the right end algebra
Ay. In particular, the right type of A equals the type of Ay as a tilted

algebra.

It follows from [9] that A is tame if and only if A, and A are both tame.

For further details on the above notions, we refer the reader to [2, 3, 9].

2.5. The next result follows from [9, 11] (see also [10]).
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Proposition. A tilted algebra A is tame if and only if rad®(modA) is nilpo-

tent.

2.6. We shall now give a necessary condition on the left and the right types
for an algebra A to be tame. Recall that a graph is of wild type if it is neither

Dynkin nor Euclidean.

Proposition. Let A be a tilted algebra of type A. If A is tame, then neither
A, nor Ay has connected subgraphs of wild type.

Proof: Without loss of generality, let us suppose that A; has a connected
subgraph of wild type. Therefore, by [9](4.1), the left end algebra A has a
summand A’ which is a tilted algebra of wild type, given by a tilting module
without preinjective direct summands. By [13](7.6), A’ is then of wild type, a

contradiction with the fact that A is tame.

The next result is a direct consequence of the above considerations.
Corollary. Let A be a tilted algebra. Then rad>(modA) is nilpotent if and only

if neither A; nor A, has connected subgraphs of wild type.

3. The main result

3.1. It follows from the above considerations that the left and the right types
of a representation-infinite tilted algebra A are both empty if and only if A is

concealed. We then have the following result.

Proposition. The following are equivalent for a representation-infinite con-

cealed algebra A:
(a) A is tame;
(b) (rad®(modA))? = 0;

(¢c) rad>(modA) is nilpotent.
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Proof: By (2.5), (a) and (c) are equivalent.

(a) = (b) It follows from the description of tame concealed algebra that
(rad*®(modA))? = 0.

(b) = (a) Now, if A is of wild type, then I'(modA) has a component of type
ZA,, (see [11]). Therefore, by [6](2.1), (rad*®(modA))? # 0, which contradicts

(b)-

3.2. We shall now prove our main result.

Theorem. Let A be a representation-infinite tilted algebra such that rad™(modA)
is nilpotent of index na. Then 3 < na < 5. Moreover, if one of the left or the
right types of A is empty, then na = 3.

Proof: Since A is representation-infinite, we infer by [5] that
(rad*(modA))? # 0. Therefore 74 > 3. If both the left and the right types
of A are empty, then A is concealed and, by the above lemma, we have that
na = 3.

Suppose now that the left type of A is empty but the right type is not. By
the above considerations, the right type should be a disjoint union of Euclidean
graphs. In particular, A is not concealed and the unique connecting component
of I'(modA) is a postprojective component I'. If I has no injective modules
then, by definition, the right type of A equals its type. Since A is connected,
we infer that the type of A is an Euclidean graph. Therefore, by [7](2.1),
(rad®®(modA))? = 0.

Suppose now that I' do have injective modules and let ¥ = ¥; U---UX; be
the right extremal subsection of A, where for each 1 < i < ¢, 3; is connected.
Let also Ay, = A; X --- x A; be the right end algebra, ordered in such a way
that, for each i, 3; is the type of the connected algebra A;. By hypothesis,
each ¥; is an Euclidean graph and each A; is a tilted algebra with complete
slice in its postprojective component. Therefore, (rad*®(modA4;))* = 0, for each
i =1,---,t (by [7](2.1)). Observe also that ind(A) is cofinite in indA and
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that all the indecomposable A-modules which are not A.-modules belong to
the postprojective component T'.

If now (rad*(modA))® # 0, then there exist X, Y, Z and W in indA and
morphisms f, g, h in rad®(modA),

such that hgf # 0.

Observe first that W ¢ T' because h € rad*(modA) and I' is postprojec-
tive. Hence, W € indA;, for some i. Since hg is a nonzero morphism in
(rad*> (modA))?, by the description of the Auslander-Reiten quiver of such tilted
algebra (see [9]), we infer that Z is a regular A;-module and Y is either a post-
projective A;-module or a module in indA\indA. In both cases, Y € I' and
hence rad®(—,Y) = 0. This, however, contradicts our hypothesis that 0 # f €
rad®(X,Y"). Therefore, in this case, 74 = 3. Similarly, if the left type of A is a
disjoint union of Euclidean graphs and the right type is empty, then n4 = 3.
It remains to consider the case when both the left and the right types of A are
disjoint unions of Euclidean graphs. Clearly, I'(modA) has a (unique) connect-
ing component which is neither postprojective nor preinjective.

Write the left end algebra A as By X --- X By, where foreach i =1,---,¢t, B;
is a connected tilted algebra with complete slice in the preinjective component,
and the right end algebra A as Cy x - -- x Cy, where for each j = 1,---,s, Cj is
a connected tilted algebra with complete slice in the postprojective component.
Therefore, by [7](2.1), we have

(rad®(modB;))* = 0 = (rad®(modC}))*

for all ¢ = 1,---,t and j = 1,---,s. It follows fom this description that
Hom,(X,Y) =0, in the following cases:

(i) X € indB;\T and Y € indB; \ T, with i # j.
(") X € indC;\T and Y € indC; \ T, with ¢ # j.

(ii) X € indC; and Y € indB; \ T, for all ¢ and j.
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(iI’) X € indC; \T' and Y € indB;, for all ¢ and j.
(ili) X €T and Y € indB; \ T, for all j.
(iii") X € indC; \T and Y €T, for all 5.

We refer the reader to [3, 9] for details.
Suppose now that (rad*®(modA))® # 0. Then there exists a sequence of mor-
phisms

T Ly 36, L5 T, B 30, S 3 By 2

with X; € indA, for each i = 1,---,6, f; € rad®(modA), for j =1,---,5, and
fs++fi # 0. It is not difficult to see that if X; € indB; \ T', then j < 2 and
if X; € indC; \ T, then j > 5. Therefore, X5 and X, belong to I', which is a
contradiction, because I' is generalized standard. Therefore, n4 < 5 and the

result is proven.

4. Examples

4.1. We shall exhibit examples to show that there exist tilted algebras A with
rad®(modA) nilpotent of index 3, 4 and 5. Observe also that the examples
below show that each of these indexes can occur for tilted algebras with both
left and right types being nonempty. On the other hand, any tilted algebra of
wild type gives an example of na = oo (by (2.5)).

Examples. (a) Let A be the path algebra given by the quiver A:

. o« o Wltha,BZO
3

The Auslander-Reiten quiver of A consists of: (i) a postprojective component
P corresponding to the Kronecker algebra given by the full subquiver of A
containing only the vertices 1 and 2; (ii) a family of pairwise orthogonal gen-

eralized standard tubes all but one being homogeneous, the exception being
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a semi-regular tube containing the projective module associated to the vertex
3; (iii) a preinjective component Z containing all the injective modules and
a complete slice of type As. Observe that: (a) each of the components of
I'(modA) is generalized standard; (b) the family of tubes is orthogonal; and (c)
rad®(—, X) = 0 for each X € P and rad®(Y, —) = 0 for each Y € Z. Therefore,
(rad®(modA))® = 0. Since A is representation-infinite, then 74 = 3. Observe
also that the left type of A is empty and the right type equals the type of A,
that is, the graph As.

(b) Let A be the path algebra given by the quiver A:

with af = v = v = 0. Consider A; (and A,) the k-algebra given by the
full subquiver of A containing only the vertices 1,2, 3 (3,4, 5, respectively) with
aff = 0 (yd = 0, respectively). Clearly, A; is the algebra of the example (a)
above and A, its opposite algebra. The categories indA; and indA, are natu-
rally embedded into indA and, in fact, indA is the union of indA; and ind A,
(the only module which belongs to both indA; and ind A, is the simple module
S; associated to the vertex 3). The description of the AR-quiver of A, is given
above and the AR-quiver of A, is the opposite of the AR-quiver of A;. They
glue together at the commom vertex S3 to form the AR-quiver of A. Observe,
however, that any nonzero morphism f: X — Y with X € indA\ indA, and
Y € indA\ indA,; factors through S; and, therefore, X cannot belong to the
postprojective component of I'(modA;) and ¥ cannot belong to the preinjective
component of I'(modAs) . Therefore, 74 = 3. The left and the right types of A
are both equal to As;.

(c) Let A be the path algebra given by the quiver A:

aﬁ’y
1 2 3 § 4
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with aff = By = 6 = 0. Consider A; the k-algebra given by the full subquiver
of A containing only the vertices 1,2,3 with af = 0, and A, the Kronecker
algebra given by the full subquiver of A containing only the vertices 3 and 4.
The AR-quiver of A is the glueing of the AR~quivers of A; and A, by the simple
module S3 at the vertex 3. Using the same sort of arguments as used in (b)

above, it is not difficult to see that n4 = 4.

(d) Let A be the path algebra given by the quiver

ay B . o
i Yomm— with 0;8; =0, V 4,5 =1,2.
1 a2 B, 3

The AR-quiver of A is the glueing of the two copies of the AR-quivers of Kro-
necker algebras at the simple module associated to the vertex 2, which belongs
to the postprojective component of the Kronecker algebra given by vertices 2

and 3 and the preinjective component of the Kronecker algebra given by vertices

1 and 2. It is not difficult to see that, in this case, n4 = 5.
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