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VERBAL GENERALIZATIONS OF THE
RESTRICTED BURNSIDE PROBLEM

Pavel Shumyatsky ®

1. Introduction

It is now more than ten years since Zel’'manov solved the Restricted Burnside
Problem (RBP for short) [28, 29]. The solution had a profound impact on
further development of group theory; an extensive research around the RBP has
been carried out by many people in different places. It was discovered that the
methods involved in the solution of the RBP can be very effective in treatment
of other problems. In the present paper we discuss certain generalizations of the
RBP. These are helpful in understanding the nature of questions that can be
handled in the spirit of the RBP. To illustrate the techniques used in the proof
of practically all main results presented here we prove in Section 6 Theorems
2.2, 3.5 and 3.6 (see the next sections). Most of the other results are given
without proofs.

It has been known for some time that the following assertions are equivalent.

1.1 Let m and n be positive integers. Then the order of any m-generated finite

group of exponent n is {m,n}-bounded.
1.2 The class of locally finite groups of exponent n is a variety.
1.3 Any residually finite group of exponent n is locally finite.

The Restricted Burnside Problem is exactly the question whether the first
of the above assertions is true. In 1956 Hall and Higman reduced the problem

to the case of prime-power exponent [9]. Basically, their results show that each
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of the assertions 1.1-1.3 is equivalent to that obtained by replacing the term
“finite” with the term “nilpotent”. Thus, the solution of the RBP is equivalent

to each of the following statements.

1.4 Let m and n be positive integers. Then the order of any m-generated

nilpotent group of exponent n is {m,n}-bounded.
1.5 The class of locally nilpotent groups of exponent n is a variety.
1.6 Any residually nilpotent group of exponent n is locally nilpotent.

All the statements 1.1 —1.6 are important for understanding the connexion
between the RBP and other issues addressed here.

The following question is perhaps the best motivation for the results and
problems discussed in this paper. It was posed by Mazurov in [12, question
13.34].

1.7 Let G be a group satisfying the identity [z,y]" = 1. Does it follow that G'

is periodic?

The answer to the above question is now known to be negative: Deryabina
and Kozhevnikov showed that for sufficiently big odd integers n there exist
counter-examples [3]. Their methods are based on Ol’shanskii’s techniques [16].
On the other hand, G’ is periodic if n = 2 [14] or n = 3 [7, 15] (in the for-
mer case G’ has exponent 4). In sharp contrast with the results of Deryabina
and Kozhevnikov in the case that G is residually finite we have the following

theorem.

Theorem 1.8 Let q = p® be a prime-power, G a residually finite group such
that [z,y]? =1 for all xz,y € G. Then G’ is locally finite.

Note that in general a periodic residually finite group need not be locally
finite. The corresponding examples have been constructed in [1, 5, 6, 8, 23].

Theorem 1.8 was proved in [19] using the techniques developed by Zel'manov in
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his solution of the RBP. It is natural to look for a viewpoint from which both —
the solution of the RBP and Theorem 1.8 — are seen as results of similar nature.
Thus, this paper is an attempt to explain the relationship between Theorem 1.8
and the RBP.

2. Verbal subgroups in residually finite groups

If w is a word in variables z1,...,x; we think of it primarily as a function
of ¢ variables defined on any given group G. We denote by w(G) the verbal
subgroup of G generated by the values of w. The word w is commutator if the
sum of the exponents of any variable involved in w is zero. Otherwise we say

that w is a non-commutator word. Let us consider the following problem.

Problem 2.1 Let n be a positive integer and w a word. Assume that G is a
residually finite group such that any w-value in G has order dividing n. Does it

follow that the verbal subgroup w(G) is locally finite?

Of course the RBP is precisely Problem 2.1 with w = z. In fact it is
easy to see that the answer to Problem 2.1 is positive whenever w is any non-
commutator word. Indeed, suppose w(zy,...,z;) is such a word and that the
sum of the exponents of z; is 7 # 0. Now, given a residually finite group G,
substitute the unit for all the variables except z; and an arbitrary element g € G
for z;. We see that ¢" is a w-value for all ¢ € G. Hence G satisfies the identity
2™ =1 and therefore is locally finite by the result of Zel’'manov.

Hence, Problem 2.1 is essentially about commutator words. Theorem 1.8
shows that if n is a prime-power and w = [z,y], the answer is positive. In
this paper we will work with multilinear commutators. A word w is called a
multilinear commutator of weight ¢ if it has form of a multilinear Lie mono-
mial in precisely ¢ independent variables. Particular examples of multilinear

commutators are the derived words, defined by the equations:
do(x) =z,

Op(@1, -y Tor) = [Op—1(T1, - ., Toe-1), Op—1(Tor—147 - - ., Tox)],
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and the lower central words:
T (.T) =,
Ve1(Z1, -+ Thr1) = [ Y@L, - - 5 Ta)s Tea]-

The next result was obtained in [21].

Theorem 2.2 Let ¢ = p® be a prime-power and w a multilinear commutator.
Assume that G is a residually finite group such that any w-value in G has order

dividing q. Then the verbal subgroup w(G) is locally finite.

The lack of an analogue of the Hall-Higman theory corresponding to Problem
2.1 is here partially compensated by the hypothesis that ¢ is a prime-power.
However even in this case the reduction to residually nilpotent groups involves
certain rather complicated tools, Thompson’s classification of minimal non-
soluble finite groups among others [24]. A proof of Theorem 2.2 will be given

in Section 6.

3. Varieties of groups
There is another way to link the solution of the RBP and Theorem 1.8.

Problem 3.1 Letn > 1 and w a group-word. Consider the class of all groups
G satisfying the identity w™ = 1 and having w(G) locally finite. Is that a

variety?

Problem 3.2 Let n > 1 and w a group-word. Consider the class of all groups
G satisfying the identity w™ = 1 and having w(G) locally nilpotent. Is that a

variety?

In the case w = z both Problem 3.1 and Problem 3.2 are equivalent to the
RBP. Furthermore, similarly to the situation with Problem 2.1 both Problem
3.1 and Problem 3.2 have positive solutions whenever w is a non-commutator
word. Clearly, a positive solution of Problem 3.1 would have implied that of

both Problem 2.1 and Problem 3.2. In particular Theorem 1.8 could be deduced
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from the corresponding case of Problem 3.1. On the other hand, we have no
reason to immediately expect a positive solution of Problem 3.1. What we can
do now is to deduce Theorem 1.8 from the next theorem [22], which provides a

positive result related to Problem 3.2.

Theorem 3.3 Given positive integers k and n, let X = X(k,n) be the class of
all groups G such that vx(G) is locally nilpotent and [x1, T2, ..., xx|" = 1 for

any 1,%s,...,Tx € G. Then X is a variety.

To deduce Theorem 1.8 from Theorem 3.3 one notices that if ) is any finite
quotient of a group G satisfying the hypothesis of Theorem 1.8 then @' is a
p-group. It follows that G’ is residually nilpotent. Hence, G residually belongs
to the variety ¥(2,¢), which of course implies G € X(2,¢). Thus, G’ is locally
nilpotent and locally finite.

The free group of countable rank of the variety X(2, q) seems to be a good

candidate for a solution of the following problem.

Problem 3.4 (Kovécs, [12, question 8.21]) Suppose the group G is free in some

variety. Can G’ be periodic of infinite exponent?

It can be extracted from the proof of Theorem 3.3 that if G is a finitely
generated group in ¥(k,n) then the exponent of v,(G) is finite and bounded
in terms of &k, n and the number of generators of G. We conjecture that if G is
infinitely generated then the exponent of 7, (G) can be infinite. More precisely,
let X = X(2,q) be a free group of infinite rank of the variety X(2,¢q). We
know that X' is locally finite. We conjecture that the exponent of X’ is infinite
whenever g # 2.

Problem 3.2 also has a positive solution for the derived words dy.

Theorem 3.5 Given positive integers k and n, the class of all groups G in
which every 8;-value has order dividing n and G%) is locally nilpotent is a va-

riety.
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One can show (and this is not obvious at all) that if n is a prime-power then
the assumption that G*) is locally nilpotent can be replaced in the hypothesis
of Theorem 3.5 by the weaker assumption that G*) is locally finite. This gives

us the following theorem.

Theorem 3.6 Given a positive integer k and a prime-power n, the class of all
groups G in which every Sy-value has order dividing n and G is locally finite

1S a variety.

Theorem 3.5 and Theorem 3.6 will be proved in Section 6.

4. The Engel condition

Let n be a positive integer. If z, y are elements of a group G, we define

[y7 0.77] =Y [ya nx] = [[y,n-le .77]

An element z is called a (left) n-Engel element if [g,,z] = 1 for any g € G. A
group G is called n-Engel if all elements of G are n-Engel. It is a long-standing
problem whether any n-Engel group is locally nilpotent. In [26] Wilson proved
that this is true if G is residually finite. In fact the Engel condition in residually
finite groups can be treated using, by and large, the same techniques as those
developed in the solution of the RBP. In particular, we have the following

analogues of Theorem 2.2 and Theorem 3.3.

Theorem 4.1 Let n be a positive integer and w a multilinear commutator.
Assume that G is a residually finite group such that any w-value in G is n-

Engel. Then the verbal subgroup w(QG) is locally nilpotent.

Theorem 4.2 Given positive integers k and n, consider the class of all groups
G such that v(G) is locally nilpotent and [r1,%s, ..., 2] is n-Engel for any

X1, %o, ..., Tk € G. This class is a variety.
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5. Associated Lie algebras

In this section we briefly describe some Lie-theoretic machinery necessary for
the proofs of most of the discussed results. Zel’'manov’s Theorem 5.4 can be
accurately characterized as a quintessence of the Lie-theoretic part of the solu-
tion of the RBP. Moreover, it has provided a clue for solving a number of other
group-theoretic problems (see for example [20]).

Let G be residually a finite p-group. The terms of the lower central series of
G will be denoted by 7;(G). Write D; = D;(G) = jplli ~;(G)?*. The subgroups
D; form a central series of G known as the Zassenhaus-Jennings-Lazard series
(see [10, Chapter 8]). Set L(G) = @D;/D;+1. Then L(G) can naturally be
viewed as a Lie algebra over the field F, with p elements. In fact L(G) even
has the structure of a restricted Lie algebra (Lie p-algebra) but we shall treat
it as just a Lie algebra. Let us denote by L,(G) the subalgebra of L(G) gener-
ated by D;/D,. Fix a positive number ¢, and assume that G is generated by
G1,0Q2, ..., 0. Let p1,p2, ..., ps be the list of all commutators in ay, az, ..., an
of weight at most c. Here s obviously is {¢, m}-bounded. The following lemma

is implicit in Zel’'manov [30, p. 71].

Lemma 5.1 If L,(G) is nilpotent of class ¢ then for any i > 1 the group
G can be written as a product G = {p1){(p2) ... {ps)Di+1 of cyclic subgroups

generated by the p;’s and D;y1. In particular, if every p; has finite order then
G = (p1){p2)---{ps)-

Proof. For any positive integer ¢ the subgroup D; is generated by D;.; and
elements of the form [by, ..., b;]”", where jp* > i and by,...,b; € {ay, ..., an}-
This can be shown using for example the Collection Formula [10, p. 240].

The lemma will be proved by induction on #, the case i = 0 being trivial.

Assume that ¢ > 1 and
G = (p1){p2) - - - {ps)D;.
Then any element z € G can be written in the form

(e3pNeD )

T = pi ey ... p5°Y, (*)
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where y € D;. Without any loss of generality we can assume that D;,; = 1.

By the remark made in the beginning of the proof we can write

ky | B1 ko | B2 ke Bt
y=(") (65") ... (7)), (3¢)
where each oy, is of the form [by, . .., b;], with jpf» > iand by,...,b; € {a1,...,am}
Let @, denote a;Dy € Ly(G); | = 1,...,m. By the hypothesis L,(G) is
nilpotent of class ¢, that is [51, e, I~)c+1] =0 for any by,...,b.11 € {a1,...,an}

This implies that [by,...,be41] € Deyo for any by,..., 0.1 € {ai,...,a,} and
Yet1 < Deto. Then it follows from the Collection Formula that for any d > ¢+1
we have 74 < Dgy.

Now, if o, is of the form [by,...,b;] with j > ¢+ 1 then
't P < D < Dy <Dy=1
In Vi =i S Yirpte S Hita :

Hence we can assume that each oy, is of the form [by, ..., b;] with j < ¢, in which
case o, belongs to the list p1, po, ..., Ps-
It remains to remark that o2 € Z(G). Comparing now (*¥) and (¥*) we

obtain that
z € (p1){p2) - - - (Ps)>

as required.
O
Let x € G, and let ¢ = i(x) be the largest integer such that x € D;. We
denote by Z the element xD;,; € L(G).

Lemma 5.2 (Lazard, [13, p. 131]) For any z € G we have (ad 2)? = ad (z?).

In particular, if ™ =1 then T is ad-nilpotent of index at most n.

Any group law that holds in G implies certain polynomial identity in the
algebra L,(G). Wilson and Zel’'manov describe in [27, Theorem 1] an effective
algorithm allowing to write explicitly the polynomial identity when the group
law is given (in fact they describe an algorithm that works in a more general

situation but we shall not require this). Thus, we have
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Lemma 5.3 Let G be a group satisfying an identity w = 1. Then there exists
a non-zero Lie polynomial f over F, depending only on p and w such that the

algebra L,(G) satisfies the identity f = 0.

In view of Lemma 5.1, it is extremely important to have criteria for a Lie
algebra to be nilpotent of bounded class. The following result was proved in [11,

Corollary of Theorem 4] using a profound theorem of Zel’'manov [30, I11(0.4)].

Theorem 5.4 Let L be a Lie algebra over F, generated by ay,as, ..., an. As-
sume that L satisfies the identity f = 0 and that each monomial in the gener-
ators ay, g, . . ., Gy 1S ad-nilpotent of index at most n. Then L is nilpotent of

{k, m,n}-bounded class.

6. Some proofs

In this section we illustrate the use of Zel’'manov’s techniques. In particular,
Theorem 2.2, Theorem 3.5 and Theorem 3.6 will be proved. The proof of

Theorem 3.5 is based on the next proposition.

Proposition 6.1 Given positive integers k and n, let G be a group such that
G® is locally nilpotent and every Oj-value has order dividing n.  Let
ay, g, ...,0, € G be dg-values. Then the order of H = {ay,as,...,an) i
{k, m,n}-bounded.

Proof. Since G® is locally nilpotent, it is clear that H is finite and any prime
divisor of |H]| is a divisor of n. Hence, it is sufficient to bound the order of the
Sylow p-subgroup of H for any prime p. Since Oy (G®) is normal in G, and we
can pass to the quotient G/O, (G®)). Thus, we assume from now on that H is
a p-group and n is a p-power. Let L = L,(H). We know that the the identity
0;" = 1 holds in H so it follows by Lemma, 5.3 that there exists a non-zero Lie
polynomial f over I, depending only on p, k and n such that the algebra L,(G)
satisfies the identity f = 0.

Consider an arbitrary Lie monomial o in the generators ai, ds, ..., d; of

L,(H) and let p be the group commutator in a;,as, ..., @, having the same
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bracketage as 0. The definition of L,(H) yields that either 0 = 0 or 0 = 4.
Since p™ = 1, Lemma 5.2 implies that o is ad-nilpotent of index at most n.
Theorem 5.4 now says that L,(H) is nilpotent of class depending only on k, m, n.
Combining this with Lemma 5.1 we conclude that there exists a {k, m,n}-
bounded number s such that H can be written as a product of at most s cyclic
subgroups each of order at most n. Therefore H is of order at most n®, as

required.

We are now in a position to prove Theorem 3.5.
Proof of Theorem 3.5

Let 9) be the class of all groups G in which every d;-value has order dividing
n and G is locally nilpotent. We want to show that the class ) is a variety.
Clearly, the class g) is closed with respect to taking quotients and subgroups of
its members. Hence, we only need to show that if D is a cartesian product of
groups from ) then D € 9. Of course, the the identity 6, = 1 holds in D so it
remains only to show that D®) is locally nilpotent. Let T be any finite subset
of D®)_ Clearly, there exist finitely many dg-values hi, ..., hn € D such that
T < (hy,...,hn). Thus, it is sufficient to show that the group H = (hy, ..., hn)
is nilpotent. Note that D®) is residually locally nilpotent. If Q is any locally
nilpotent quotient of D®), by Proposition 6.1, the order of the image of H in
Q is finite and {k, m,n}-bounded. So it follows that actually the order of the
image of H in @ does not depend on ). We conclude that H is finite. Since H

is residually locally nilpotent, it is nilpotent. The proof is complete.
Deduction of Theorem 3.6 from Theorem 3.5

We shall have to deal with finite groups in which all d;-values are p-elements
(for a fixed positive integer k). Recall that in 1951 Ore conjectured that if G is
any non-abelian finite simple group then each element = of G is a commutator,
that is = [a, b] for suitably chosen a,b € G [17]. This conjecture has been

confirmed for many finite simple groups (see [4] and references therein). We shall
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say that a group G has Ore’s property if any element of G is a commutator.

Obviously, if G has Ore’s property then any element of G is a §;-value.

Proposition 6.2 Let p be a prime, G a finite group in which all dx-values are

p-elements. Then G® is a p-group.

Proof. Assume that the result is false and let G be a counter-example of
minimal possible order. Suppose G has a proper normal subgroup N. Then by
the induction hypothesis both G/N and N are soluble and so is G. Therefore
G' # G and again by induction we conclude that the kth derived group of G’ (of
course this is exactly G*+Y) is a p-subgroup. Passing to the quotient G /G®*+1)
we can assume that G*) is abelian, in which case the claim is immediate since
G® is generated by p-elements.

Hence it is sufficient to deal with case that G is simple. Since every proper
subgroup of G is soluble, G belongs to the list of minimal simple groups deter-
mined by Thompson [24]. In particular it follows that G is isomorphic to either
PSL,(q) or the simple group of Suzuki type Sz(q) over a finite field. In either
case G has Ore’s property. For the groups PSL,(q) this was established in R.C.
Thompson [25] while for the Suzuki groups this follows from the proof of Theo-
rem(4.1) in Arad, Chillag and Moran [2]. Hence any element of G is a di-value.
We see that G consists of p-elements and so is a p-group, a contradiction.

O

Theorem 3.6 follows readily from Theorem 3.5 and the above proposition.
Deduction of Theorem 2.2 from Theorem 3.6

Recall that Theorem 2.2 says that if ¢ = p® is a prime-power and w is a
multilinear commutator then, for any residually finite group G satisfying the
identity w? = 1, the corresponding verbal subgroup w(G) is locally finite. This

will be deduced from Theorem 3.6 using the following lemmas.

Lemma 6.3 Let G be a group, w a multilinear commutator of weight t. Then

every 0;-value in G is a w-value.
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Proof. The case t = 1 is quite obvious so we assume that t > 2 and use
induction on ¢. Write w = [wy, ws], where w; and ws are multilinear commuta-
tors of weight ¢; and ¢, respectively, t; + t2 = ¢, and the variables involved in
one of the words wy,ws do not occur in the other. Let ¢; be the maximum of
t1,t2. By the induction hypothesis any d;-value in G is a w;-value as well as
a wp-value. Since w = [wy, wy, it follows that the set of w-values contains the
set of elements of the form [z,y], where z,y range independently through the
set of d;-values. Hence any commutator of d;-values represents a w-value. It
remains to remark that t; + 1 < t so the lemma follows.
O
Let w be a multilinear commutator of weight ¢. In the next lemma we
shall require the concept of a subcommutator of weight s < ¢ of w. This
can be defined by backward induction on s in the following way. The only
subcommutator of weight ¢ of w is w itself. If s < t—1 a multilinear commutator
v of weight s is a subcommutator of w if and only if there exists a subcommutator
u of weight > s of w and a multilinear commutator v; such that either u = [v, v1]
or u = [v,v]. It is quite obvious that if v is a subcommutator of w then

w(G) < v(G) for any group G.

Lemma 6.4 Let w be a multilinear commutator, G a soluble group in which

all w-values have finite order. Then the verbal subgroup w(G) is locally finite.

Proof. Let G be a counter-example whose derived length is as small as possible,
and let T be the last non-trivial term of the derived series of G. Passing to the
quotient over the subgroup generated by all normal locally finite subgroups of G
we can assume that G has no non-trivial normal locally finite subgroups. Since
T is abelian, it follows that no w-value lies in 7\ {1}. Let s = s(w, G) be the
smallest number such that any subcommutator of weight s of w has no values
in T\ {1}. Obviously, s > 2 since T # 1. We can choose a subcommutator
v = [v1, v9] of weight > s of w such that both v; and vy are subcommutators of
weight < s, at least one of which having non-trivial values in T\ {1}. Let H; be
the subgroup of T generated by the v;-values contained in 7'; ¢ = 1,2. By the
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choice of v at least one of these subgroups is non-trivial. Since v has no values
in T\ {1}, it follows that H; < Cg(v2(G)) and Hy < Cg(v1(G)). Taking into
account that w(G) < u(G) for any subcommutator v of w we conclude that H;
and H, centralize the verbal subgroup w(G). Hence both subcommutators v;
and vy have no non-trivial value in the image of T' in G/Cq(w(G)). This shows
that s(w, G/Cq(w(G))) < s — 1. The induction on s(w, @) now shows that
w(@)/Z(w(Q)), the image of w(G) in G/Cq(w(G)), is locally finite. Then, by
Schur’s Theorem, the derived group of w(G) is locally finite [18, Part 1, Corol-
lary to Theorem 4.12]. But then w(G), being a group generated by elements of
finite order, must be locally finite.
O
Theorem 2.2 can now be proved as follows. By Lemma 6.3 there exists & > 1
such that any Jg-value in G is a w-value. Hence any dg-value in G has order
dividing ¢. It follows that G belongs to the variety of all groups satisfying the
identity 6;x? = 1 and having the kth derived group locally finite (this is a variety
by Theorem 3.6). Thus G*) is locally finite. It is straightforward from Lemma
6.4 that w(G)/G™®) is likewise locally finite and the theorem follows.

References

[1] Aleshin, S. V., Finite automata and the Burnside problem for periodic
groups, Math. Notes 11 (1972), 199-203.

[2] Arad, Z.; Chillag, D.; Morgan, G., Groups with a small covering number,
in “Products of Conjugacy Classes in Groups” (Z. Arad and M. Herzog,
eds.), Lecture Notes in Mathematics 1112, Springer Verlag, Berlin, 1985.

[3] Deryabina, G. S.; Kozhevnikov, P. A., The derived subgroup of a group
with commutators of bounded order can be non-periodic, Comm. Algebra,
27(9) (1999), 4525-4530.

[4] Ellers, E. W.; Gordeev, N., On the conjectures of J. Thompson and O. Ore,
Trans. Amer. Math. Soc. 350 (1998), 3657-3671.



252 P. SHUMYATSKY

[5] Golod, E. S., On nil-algebras and residually finite groups, Izvestia Akad.
Nauk SSSR, Ser Mat., 28 (1964), 273-276.

[6] Grigorchuk, R. I., On the Burnside problem for periodic groups, Funct.
Anal. Appl., 14 (1980), 53-54

[7] Gupta, N. D., Periodicity of the commutator subgroup of a certain group,
Notices AMS, 14 (1967), 703.

[8] Gupta, N.; Sidki, S., On the Burnside problem for periodic groups, Math.
Z., 182 (1983), 385-386.

[9] Hall, P.; Higman, G., The p-length of a p-soluble group and reduction theo-
rems for Burnside’s problem, Proc. London. Math. Soc. (3) 6 (1956), 1-42.

[10] Huppert, B.; Blackburn, N., “Finite Groups II”, Springer Verlag, Berlin,
1982.

[11] Khukhro, E. I.; Shumyatsky, P., Bounding the ezponent of a finite group
with automorphisms, J. Algebra, 212 (1999), 363-374.

[12] Kourovka Notebook, 13th Edition (E. I. Khukhro, V. D. Mazurov, eds),
Novosibirsk, 1994.

[13] Lazard, M., Sur les groupes nilpotents et les anneauz de Lie, Ann. Sci.
Ecole Norm. Supr. 71 (1954), 101-190.

[14] MacDonald, I. D., On certain varieties of groups, Math. Z., 76 (1961),
270-282.

[15] Mendelsohn, N. S., Some examples of man-machine interaction in the so-
lution of mathematical problems, in “Computational problems in abstract
algebra (Proc. Conf., Oxford, 1967)”, Pergamon, Oxford, 1970, 217-222.

[16] Olshanskii, A. Yu., Geometry of defining relations in groups, Math. Appl.
(Soviet Ser.) 70(1991).



VERBAL GENERALIZATIONS OF THE RESTRICTED BURNSIDE 253

[17] Ore, O., Some remarks on commutators, Proc. Amer. Math. Soc. 272

(1951), 307-314.

[18] Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups,
Springer Verlag, Berlin, 1972.

[19] Shumyatsky, P., Groups with commutators of bounded order, Proc. Amer.
Math. Soc. 127 (1999), 2583-2586.

[20] Shumyatsky, P., Applications of Lie ring methods to group theory, in:
“Nonassociative Algebra and Its Applications” (R. Costa, A. Grishkov, H.
Guzzo Jr and L.A. Peresi, eds), Marcel Dekker, New York, 2000, 373-395.

[21] Shumyatsky, P., Verbal subgroups in residually finite groups, Quart. J.
Math., 2000.

[22] Shumyatsky, P., A (locally nilpotent)-by-nilpotent variety of groups, Math.
Proc. Cambridge Phil. Soc., to appear.

[23] Sushchansky, V. L., Periodic p-elements of permutations and the general
Burnside problem, Dokl. Akad. Nauk SSSR, 247 (1979), 447-461.

[24] Thompson, J., Nonsolvable finite groups all of whose local subgroups are
solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.

[25] Thompson, R. C., Commutators in the special and general linear groups,

Trans. Amer. Math. Soc. 101 (1961), 16-33.

[26] Wilson, J. S., Two-generator conditions for residually finite groups, Bull.
London Math. Soc., 23 (1991), 239-248.

[27] Wilson, J. S.; Zelmanov, E., Identities for Lie algebras of pro-p groups, J.
Pure Appl. Algebra, 81 (1992), 103-109.

[28] Zel'manov, E., The solution of the restricted Burnside problem for groups
of odd exponent, Math. USSR Izv. 36 (1991), 41-60.



254 P. SHUMYATSKY

[29] Zel’'manov, E., The solution of the restricted Burnside problem for 2-groups,
Math. Sb. 182 (1991), 568-592.

[30] Zel’'manov, E., Nil Rings and Periodic Groups, The Korean Math. Soc.
Lecture Notes in Math., Seoul, 1992.

Department of Mathematics
University of Brasilia
70910-900 Brasilia-DF
Brazil

E-mail: pavel@mat.unb.br



