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SOME APPLICATIONS OF
CODE DUALITY IN CRYPTOGRAPHY

James L. Massey

1. Introduction

Our purpose in this paper is to illustrate how the algebraic notion of a dual
code has found applications in the rapidly developing field of cryptography.
To make this presentation self-contained, we begin by providing in Section 2
a brief review of algebraic coding theory with emphasis on dual codes and on
maximum distance separable (MDS) codes. We include a full derivation of the
MacWilliam identities, which relate certain properties of a code to those of its
dual, because these may be of special interest to algebraists and because the
technique used in the derivation might be of use within statistical group theory.
For a thorough treatment of algebraic coding theory, we refer the reader to any
of the excellent textbooks [1]-[4]. For an unusual recent application of coding
theory to algebra, we refer the reader to [5].

In Sections 3 and 4, we describe some applications of code duality in cryp-
tography. Section 3 treats two applications within the area of cipher design,
namely the construction of “perfect local randomizers” and of “resilient func-
tions”. These applications exploit the connection betweeen orthogonal arrays
and linear codes and we include a brief treatment of this connection. Section
4 treats two applications of code duality in the area of secret sharing, namely
to “threshold schemes” and to “tailored-access schemes”. We wish to stress
that these four examples are not exhaustive of applications of code duality in
cryptography, but were chosen merely to illustrate the rich field for applications

of algebraic concepts and techniques that is offered by modern cryptography.


http://doi.org/10.21711/231766362001/rmc2111

188 J. L. MASSEY

2. Algebraic Coding Theory—A Synopsis

2.1 Linear Codes

The primary subject matter of “algebraic coding theory” is the theory of “linear
codes”. A g-ary linear (n, k) codeis a k-dimensional subspace of the vector space
GF(q)". In a very real sense, algebraic coding theory is the study of the basis-
dependent properties of such vector spaces. As is traditionally done in coding

theory, we will take the elements of GF(¢)™ to be “n-tuples” (row vectors).

Example 1: V = {[000],{101],[01 1],[1 1 0]} is a 2-dimensional subspace
of GF(2)? and hence is a binary linear (3, 2) code.

Linear codes are so ubiquitous in algebraic coding theory that one usually does
not bother to write “linear”. One simply says, for instance, that the code
in Example 1 is a “binary (3, 2) code” and we will follow this abbreviated

nomenclature.

2.2 Dual Codes

The vectors u and v in GF(g)™ are said to be orthogonal if their scalar product
vanishes, i.e., if uv? = 0. If V is a g-ary linear (n, k) code, then the dual code

V' is the set of all n-tuples u that are orthogonal to every n-tuple v in V.

Example 1 (continued): V = {[0 0 0],[1 0 1],[0 1 1],[1 1 0]} implies that
V+={[000],[111]}. Note that V* is a binary (3, 1) code.

In GF(q)", a non-zero vector can be orthogonal to itself. For instance, in
GF(2)2, u=[11] = uu? = 1 +1 = 0. This fact caused the mathematician J.
H. van Lint, in his thoughtful textbook on coding theory [1], to warn the reader
to “be careful not to think of V1 as an orthogonal complement in the sense of
vector spaces . In the case of a finite field, the subspaces V and V' can have

an intersection larger than {0} and in fact they can even be equal”.

Example 2: In GF(2)?, V = {[0 0], [1 1]} implies that V+ =V = {[0 0], [1 1]}
so that V is a self-dual code.
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Although the subspaces V and V* can have an intersection larger than {0},
most of the usual relations of linear algebra still hold in GF(g)"™. In particular,
if V is a g-ary linear (n, k) code, then (V)X =V and dim(V) + dim(V*) = n.

Thus, for a self-dual code, one must have n = 2k.

2.3 Generator Matrices

A generator matriz for the g-ary (n, k) code V is any matrix G whose rows are

a basis for V.
Example 3: The six matrices

101 1 01 011 011 110 110

011 110 110 101 101 011
are all of the different generator matrices for the binary (3, 2) code V =
{[000],[101],[011],[110]} of Example 1.

Engineers like to think of a generator matrix as an “encoding matrix” for the

code. This interpretation results from writing v = uG to indicate the manner

in which the “information vector” u, which is a g-ary k-tuple, is encoded into

the codeword v, which is a g-ary n-tuple.

Example 4: If the first of the six generator matrices in Example 3 is used for

encoding, the encoding equation with v = [v1 v, v3] and u = [u; us] becomes

ool =l | § )
V1 U2 V3| = |U1 U2 01 1
or, equivalently, v; = uy, v = ug and v = uy + us.
The rate R of a g-ary linear (n, k) code is the ratio R = k/n, which measures
the number of “information symbols” per “code symbol”. Note that a self-dual

code must have rate R = 1/2.

2.4 Parity-Check Matrices

A parity-check matriz for the g-ary (n, k) code V is any matrix H whose rows

span V1. The parity-check matrix H is reduced if its rows are a basis for V1,
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i.e., if H is a generator matrix for the code V+.

Example 5: The matrix H = [ 111 ] is the unique reduced parity-check
matrix for the binary (3, 2) code V.= {[000],[101],[01 1],[1 1 0]} of Example
1 for which V+ = {[000],[111]}.

Proposition 1. (Test for Code Membership) If H is a parity-check matriz
for the q-ary (n, k) code V', then the q-ary n-tuple v is a codeword if and only
if

vH' =0. (1)

This proposition follows from the fact that (1) is satisfied if and only if v is
orthogonal to every row of H and hence to every linear combination of these

rows, i.e., to every vector in V.

Example 6: The 3-tuple [v; v2 v3] is a codeword in the binary (3, 2) code with
T
parity check matrix H = [ 1 1 1 ]ifand onlyif [v; v2vs][1 1 1] =0,

i.e., if and only if v; + vy +v3 = 0.

Each such linear constraint is called a “parity check” of the linear code. Each
of the ¢"* vectors in the dual code determines such a parity check, including

the codeword O that determines the trivial parity check 0 = 0.

2.5 Hamming Weight and Distance

The Hamming weight wy(.) of an n-tuple is the number of its non-zero compo-
nents. The Hamming distance dy (., .) between two g-ary n-tuples is the number

of components in which they differ, i.e., the Hamming weight of their difference.

Ezample 7: dg([110],[011]) =wg([110]-[011]) =wg([101]) =2.

The minimum distance, dyin, of a code is the smallest Hamming distance
between pairs of distinct codewords in the code.

If a g-ary codeword v is transmitted through some channel and the g¢-ary

n-tuple r is received, one says that a pattern of dy(r,v) errors has occurred,
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namely the error pattern e =r — v.

Proposition 2. (Properties of Minimum Distance)

i) The minimum distance, dmin, of @ q-ary (n,k) code equals the minimum
weight, Wmin, of its non-zero codewords.

it) A code can detect all patterns of t or fewer errors in every codeword if and
only if dmin > t.

iii) A code can correct all patterns of t or fewer errors in every codeword if and

only if dypin > 2t.

The first assertion is a consequence of the fact that the set of differences V —V
is just V itself. The second assertion is trivial, and the third follows from the
fact that Hamming distance is a metric on the space GF(g)" so that decoding
to the nearest codeword corrects all errors of Hamming weight ¢ or less when

and only when dpy;, > 2t.

The following proposition often provides the simplest and most insightful

way to determine the minimum distance of a g-ary (n, k) code.

Proposition 3. (Determination of Minimum Distance) The minimum
distance of a q-ary (n,k) code with parity-check matriz H equals the smallest

number of columns of H that form a linearly dependent set.

This proposition follows from the fact that, according to (1), a codeword v of
Hamming weight w > 0 specifies a set of w columns of H that are linearly

dependent.

Proposition 4. (Singleton’s Bound) For every g-ary (n,k) code, dmin <
n—k+1.

This bound follows from the fact that a parity-check matrix has rank n — &k and

thus every set of n — k + 1 of its columns must be linearly dependent.
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2.6 Maximum Distance Separable Codes

A g-ary (n, k) code is said to be mazimum distance separable (MDS) if dpin =
n—k+ 1. A subset of {1,2,...,n} containing k coordinates is an information
set for a g-ary (n,k) code if no pair of distinct codewords coincide in these &
coordinates. This terminology arises from the fact that the codeword symbols
in the coordinates of an information set may be taken as the “information

symbols” since they completely determine the entire codeword.

Proposition 5. (Properties of MDS Codes)

i) The g-ary (n,k) code V with parity-check matriz H is MDS if and only
if the columns of H in every choice of n — k columnar positions are linearly
independent.

i1) Every subset of {1,2,...,n} containing k coordinates is an information set
for a g-ary (n, k) code if and only if it is an MDS code.

ii3) If V is an MDS code, then so is its dual code V1.

The first assertion of this proposition is an immediate consequence of Proposi-
tion 3. The second assertion follows from the fact that if and only if dyi, < n—k,
then there would be two different codewords that agreed in k£ (or more) coor-
dinates and hence (any choice of k of) these coordinates would not form an
information set. If G is a generator matrix for a g-ary (n, k) code, then a set of
k coordinates is an information set if and only if the corresponding columns of
G are linearly independent, which, because G is a parity-check matrix for V',

establishes the third assertion.

The celebrated Reed-Solomon codes are MDS codes. There is a g-ary (n, k)
Reed-Solomon code for every 1 < k£ < n < ¢. The binary (3, 2) code V of
Example 1 and its (3, 1) dual code V* are both MDS, but neither is a Reed-

Solomon code.
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2.7 MacWilliams Identities

One of the contributions of coding theory to algebra was the demonstration by
MacWilliams that the Hamming weights of the codewords in V' uniquely deter-
mine the Hamming weights of the codewords in the dual code V. We now give
a derivation of these “MacWilliams identities”, which is a slight modification of
that given by Chang and Wolf [6]. For simplicity, we consider the binary case
only, but the derivation generalizes easily.
Let X = [X; X ... X,] be a random vector in GF(2)" such that X7, X,
. X, are independent random variables with P[X; = 1] = ¢ alli. If visa
binary n-tuple of Hamming weight 4 then, for every 0 < e <1,
PX=v] =¢€(1-¢"", and (2)
PXVT =1] =31~ (1-24)], 3)
where the right side of (3) is just the probability of an odd number of 1’s in the
1 components of X selected by the non-zero components of v. Let V' be a binary
(n, k) code with weight enumerator (Ao, A1, ... A,), i.e., 4; is the number of
codewords in V with Hamming weight . We calculate the probability that X

is a codeword in V in two different ways.

Let vi, Va, ... , Vo be the 2* codewords in V. Then

PXeV] = PX=vi UX=vy U ... U X=vy
= PX=wv|+PX=vo]+... + P[X = vy]

because the events in the union are mutually exclusive. Thus (2) gives

PX eV]=>Y Al —e¢" " 4)
i=0
Now let V+ with weight enumerator (By, By, ... B,) be the binary (n,n—k)
dual code of V and let v1, Vs, ... , Von—r be the 2" % codewords in V*. Then
PXeV]=1-PXvi =1 U Xvi U ... UXvgs =1] (5)

because X will be a codeword if and only if it satisfies all 2" % parity checks.

To proceed further, we need the following:
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Lemma 1. (Generalization of Mutually Exclusive Events [6]) If E;, Es,
. Ey are events such that when any of these events occur exactly L of these

events occur, then P[E; U E; U ... U Ey| = £(P[E1] 4+ P[Ey] + + P[En]).

This somewhat surprising result is a simple consequence of the fact that each
sample point in the union event lies in exactly L of the individual events. But
if any of the events Xvl =1, Xvl =1, ... , Xvi.—« = 1 occur, then exactly
half of these 2"* events occur because the vectors in V = {vy,va, ... ,Von-k}
giving value 1 are the only coset of those that give the value 0. Applying the

lemma in (5) gives

PXeV]=1- ——(P[Xv] =1]+P[Xv; =1]+...+ PXvj.x = 1]).

2n k—1
Using (3) gives
PXeV]=1- Y Bin-(@-2]
gn—k—1 &2 iy
But By + B, + ... + B, = 2"* 50 we have finally
P[X € V] = ﬁgaa — %)L, (6)

Equating expressions (4) and (6) for P[X € V] now gives:

Proposition 6. (MacWilliams’ Identities) For every 0 < € < 1, the weight
enumerator (Ao, A1, ... An) of a binary (n, k) code V and the weight enumer-

ator (By, By, ... By) of its dual V* satisfy

e IZB(l—Qe)’ X;)Ae’(l—e)” J
which is equivalent to the identities
2 2 (i J <n - z)
— | Bi = A; 7
2k Z:; (;) g‘) j ()

forn>7>0.
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Example 8: Consider the (n, k) = (3,2) binary code of Example 1 with weight
enumerator (Ag, A;, As, A3) = (1, 0, 3, 0). From (7), we find

j=3) 4By=A¢— A +A,—A3=4 =By=1.

2) 2(By+3Bs)=340—24;+A4;,=6 = B, =0.
) B1+2By+3B3=34—A1 =3 =B =0.
j=0) 1(Bo+Bi+B+B;)=A4A;=1 =By=1

3. Applications of Code Duality to Cipher Design

3.1 Orthogonal Arrays and Dual Codes

Because both applications of code duality to cipher design that we will treat rely
on the relationship between orthogonal arrays and dual codes, we first present
a brief treatment of this relationship.

An orthogonal array OA,(t,n,q) of power t is a rectangular array of g-ary
symbols with n columns such that in every choice of ¢ (¢ > 1) columns, each of
the ¢' possible g-ary t-tuples occurs in exactly A rows. Orthogonal arrays with

distinct rows are called simple.

Example 9: The binary array

000O0O0OGOO
1001110
0100111
0011101
1101001
1010011
0111010
1110100

is a simple OAy(t,n = 7,q = 2) of power ¢ = 2. In every pair of columns, each
of the four binary 2-tuples occurs in exactly 2 rows. Note that this array is not
an OA;(t,n =7,q = 2) of power ¢t = 3, as one sees from columns 1, 3 and 4.

The following lemma will prove useful.
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Lemma 2. If the matriz G is the generator matriz of a q-ary linear (n, k) code
V, then the minimum distance d* of the dual code V- is the smallest number t

of columns of G that form a k X t matriz with rank less than t.

This lemma follows immediately from Proposition 3 and the fact that G is a
parity-check matrix for the dual code.

Because ¢ columns of a matrix are linearly dependent if and only if they
form a submatrix of rank less than ¢, Lemma 2 implies the following result that

will be the key to our applications.

Proposition 7. (Orthogonal Array Power and Dual Code Distance)
The mazimum t for which the rectangular array, whose rows are the codewords
of a g-ary linear (n, k) code V with k < n and d* > 1, is an orthogonal array
OAy(t,n,q) [necessarily simple] of power t ist = d*+ — 1.

Example 10: The binary array of Example 9 has as its rows the codewords of

the binary (7, 3) code with generator matrix

1001110
0100111
0011101
The dual code is a binary (7, 4) code with dmi, = 3, which is the famous

Hamming single-error-correcting code of this length.

3.2 Perfect Local Randomizers

We now consider functions that can be used within ciphers to “stretch ran-
domness”, i.e., to transform k truly random bits into a larger number n of bits
in the manner that all subsets of the transformed bits that are not too large
remain completely random. An injective (or ”one-to-one”) function f from k
g-ary digits to n g¢-ary digits (n > k) is a perfect local randomizer (PLR) of
order ¢ if choosing the k input digits uniformly at random guarantees that the
output digits in every choice of ¢ components (not necessarily consecutive) of

the output n-tuple are also uniformly random [7]. Fig. 1 emphasizes that a
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Perfect |. k
n ) Local - [inputs
outputs Randomizer| .

Fig. 1: Illustration of a Perfect Local Randomizer (PLR)

PLR must be a function with more output variables than input variables. One
cryptographic application of such functions is in expanding a relatively short
randomly-selected secret key into the many “subkeys” that are typically re-
quired within a cipher. If a PLR of order at least the length of the subkeys is

used for the expansion, then each subkey will still be completely random.

We next need a characterization of PLR’s in terms of orthogonal arrays.
This is easily obtained upon observing that the digits in ¢ chosen columns of
a g-ary rectangular array will be uniformly random when a row of the array
is chosen uniformly at random if and only if every possible ¢-tuple of values in

these columns occurs in precisely the same number of rows.

Proposition 8. (PLR’s and Orthogonal Arrays)
An injective function f from k q-ary digits to n g-ary digits (n > k) is a perfect
local randomizer of order t if and only if the rectangular array having as its rows

the range of f is an orthogonal array OA,(t,n,q).

Example 11: An encoder for the binary (7, 3) code of Example 10 is a perfect
local randomizer of order 2. It “stretches” a 3-bit random input to a 7-bit

output, every pair of whose bits are completely random.

Propositions 7 and 8 give immediately a fundamental connection between

perfect local randomizers and linear codes.
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Proposition 9. (PLR’s and Dual Codes)
An injective function from k q-ary digits to n g-ary digits is a perfect local
randomizer of mazimum order t (t > 1) if it is the encoder for a g-ary (n, k)

code with dual distance d*- =1t + 1.

Note that it is not necessary that the encoder in Proposition 9 be a linear
encoder, i.e., a realization of some generator matrix for the code, as follows
from the fact that orthogonal array properties do not depend on the order of
the rows within the array. It is apparent from Proposition 9 that linear codes
provide a rich source of perfect local randomizers and that it is the dual distance

of these codes rather than their minimum distance that is of importance.

3.3 Resilient Functions

We now consider functions that can be used within ciphers to defeat “divide-
and-conquer” attacks in which the attacker tries to gain information about the
cipher by studying its behavior when a small number of input digits are fixed.
A function f from n g-ary digits to n — k g-ary digits (1 < k < n) is said
to be t-resilient if, for every choice of ¢ of the input digits, when the values
of these t digits are fixed and the values of the other n — ¢ input digits are
chosen uniformly at random, all n — k output digits are uniformly random [8].
Fig. 2 emphasizes that a resilient function must be a function with more input

variables than output variables.

Example 12: The function y; = f(z1,29,73) from GF(2)? to GF(2) with

function table

8
—
8
)
8
w

O O FOFO
HEFOOHFFEOO
OoORH OO FHO



SOME APPLICATIONS OF CODE DUALITY IN CRYPTOGRAPHY 199

nk ) i
gt - Resilient

- | function | * /innurs

Fig. 2: Illustration of a Resilient Function

is 2-resilient. When any two inputs are fixed, say ; = 0 and 3 = 1 (which we
see corresponds to rows 3 and 6 of the function table), the remaining variable
(in this case z2) takes on the values 0 and 1 equally often (in this case once).
Thus, when the rows are equiprobable, the output y; will takes on the values 0

and 1 each with probability 3.

The argument given within this example directly implies the following charac-

terization of resilient functions.

Lemma 3. The function f(z1,Zo,...%n) = [Y1,Y2; - - - Yn—k] from n g-ary digits
to n — k g-ary digits is t-resilient if and only if 1) f is balanced, i.e., the sets
F Y1, 90, - - - Yu_r) have the same cardinality [which must be ¢*] for all ¢"*
choices of Y1, Yo, - - -Yn_k, and 2) for each of the ¢"~* choices of Y1, Yo, - - - Yn_k»
the array whose rows are the ¢* n-tuples [x1, Ty, ... 2,] in f (Y1, Y2, - - - Yn—s) 8

an orthogonal array of power t.

A collection of orthogonal arrays, all of the same size and all having power ¢,
that partition the set of all g-ary n-tuples is what Stinson has called a large set of
orthogonal arrays of powert [9]. Lemma 3 states simply that f(z1,z2,...2,) =
[Y1,Y2, - - - Yn_k] is t-resilient if and only if the sets f~1(y1, o, - .- yn_g) for all

g™ * choices of y1,¥s, ... yn—i form a large set of orthogonal arrays of power t.

Example 13: Note for the function in Example 12 that the arguments that
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give the value y; = 1, namely

O = O
= -0 O
O = = O

are just the codewords in the binary (3, 2) code V with d* = 3 of Example
1, Thus Proposition 7 ensures that this is an orthogonal array of power ¢t = 2.

Note also that the arguments that give the value y; = 0, namely

O = O
[l i e )
O = = O

are the 3-tuples in the only proper coset of the code V. A simple check shows
that this is also an orthogonal array of power ¢t = 2. Thus these two arrays do
indeed form a a large set of orthogonal arrays of power ¢ = 2.

Adding a fixed g-ary n-tuple to every row of an orthogonal array with entries
in GF(q) quite obviously gives another orthogonal array with the same power.
Hence a coset of an (n,k) code V with dual distance d* is also an orthogonal
array with maximum power d* — 1 and of course has the same cardinality as V.
It follows that V" and all its proper cosets form a large set of orthogonal arrays

of power t = d*+ — 1, which establishes the following proposition.

Proposition 10. (Resilient Functions and Dual Codes)

If f(@1,%2, ... Tn) = [Y1,Y2s - - - Yn—k] 1S G function from n g-ary digits ton — k
g-ary digits (1 < k < n) such that, for each of the "% choices of Y1, Y2, - - - Yn—k,
the set f~'(y1,Y2,---Yn_r) is a different coset of a linear (n,k) g-ary code
with dual distance d* > 2, then the mazimum t for which f(x1,%,...2,) is

t-resilient is t = d+ — 1.

We note that there is no requirement in Proposition 10 that the function
f be linear. The ¢"* values of the function can be assigned to the different
cosets of V' quite arbitrarily. We see also from this proposition that (n, k) codes

provide a rich source of resilient functions.
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3.4 Nonlinear Codes and Orthogonal Arrays

In this subsection and only here, we briefly consider nonlinear codes. By a ¢-
ary nonlinear (n, k) code, we mean a subset of cardinality ¢* of the n-tuples in
GF(g)". Delsarte [10],[11] has shown that one can define a “dual distance” for
such a code by applying the MacWilliams’ identities to the nonlinear code as if
it had a true dual, cf. also [12], and that this “dual distance” determines the
power of the orthogonal array formed by the codewords in precisely the manner
stated in Proposition 7. Stinson and the author [12] showed that one can also
create a large family of orthogonal arrays from a g-ary nonlinear (n, k) code
when the code is systematic, i.e., when there is a set of k£ coordinates such that
no pair of distinct codewords coincide in these coordinates. The set of ¢"*
subsets of GF(q)" obtained by adding to the ¢*¥ codewords a fixed n-tuple that
is all-zero in these k coordinates forms a large family of orthogonal arrays that
is analogous to the set of all cosets of a linear (n, k) code. It was shown in [12]
that resilient functions strictly superior to those obtained from linear codes can

be obtained from nonlinear codes in this manner.

4. Applications of Code Duality to Secret Sharing

4.1 Perfect Secrecy

Before treating “secret sharing” itself, we must say a few words about Shannon’s
notion of “perfect secrecy”. In what may well be called the first scientific paper
on cryptography [13], Shannon offered the model of a “general secrecy system”
shown in Fig. 3. As this figure makes clear, Shannon assumed that the attacker
or “enemy cryptanalyst” has access only to the cryptogram E but not to the
key K shared by the sender and receiver who attempt to convey the message
M secretly. Shannon said that such a system provides perfect secrecy, the
mathematical analog of an “unbreakable” cipher, if the cryptogram E and the
message M are statistically independent.

Shannon proved that the cipher introduced by Vernam in 1926 and di-

agrammed in Fig. 4 provides perfect secrecy. [Vernam indeed asserted in
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ENEMY
CRYPTANALYST
E
MESSAGE |MESSAGE | ENcTPHERER | CRYPTOGRAM DECIPHERER |MESSAGE
SOURCE W T € € T m
KEY KEY
K K

KEY
K

KEY
SOURCE

Fig. 3: Shannon’s Model of a “General Secrecy System

his paper [14] that his cipher was “unbreakable”, but gave no mathematical
justification—many people over many centuries had mistakenly made a similar
claim.] In Vernam’s cipher, the key K is a binary coin-tossing sequence of the
same length as the binary message M. [The binary symmetric source (BSS)
in Fig. 4 is simply a device that produces such a completely random binary
sequence.] The key K is added bit-by-bit modulo-two to the message M to
produce the cryptogram E. Regardless of the value m of M, the cryptogram E
is equally likely to take on every possible value, i.e., the cryptogram E' is sta-
tistically independent of M and hence perfect secrecy is obtained. No amount
of effort by the attacker can produce any information about M from E. It is
of course essential that the key be used only once, for which reason Vernam’s

cipher is often referred to today as the “one-time pad”.

4.2 Threshold Schemes for Secret Sharing

“Secret sharing” refers to any scheme in which some secret (which we will take
to be a g-ary digit) is distributed among two or more parties in a manner such
that only certain specified coalitions of the parties can recover the entire secret.

The “classical” scheme for secret sharing is illustrated in Fig. 5, which shows
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ENEMY

CRYPTANALYST
E
Binary | M E E M
Plaintext D Destination
Source K K
KEY K

Fig. 4: Vernam’s Cipher (“Perfect Secrecy”)

how two criminals might share the combination of a safe in which they have
placed their ill-gotten gains. There are 2'° = 1024 different possibilities for the
10-bit combination, which we consider to be an element of GF(2!?). Because
the share of each criminal is 5 bits of the combination, neither can easily open
the safe alone. However, the secret has “leaked” into the shares because, given
one 5-bit share, there are only 2° = 32 possibilities for the remaining share
needed to determine the secret. A cheating criminal need only try out these 32
combinations to find the one that opens the safe.

The “no-leakage” secret-sharing scheme illustrated in Fig. 6 ensures that
neither criminal alone has any advantage in opening the safe over someone who
owns no share of the secret combination. The share of the first criminal is a
completely random 10-bit string that is obviously of no use by itself in opening
the safe. But the share of the second criminal is the cryptogram E in Vernam’s
cipher when the message M is the secret and the first share is the key K—hence
the second share alone likewise gives no information about the secret.

A secret-sharing scheme is said to be perfect if no coalition of shareholders
can obtain any information about the secret except for those coalitions that are

specified as authorized to obtain the secret. An (N, T") threshold secret sharing
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Fig. 5: Classical Secret Sharing

scheme is one in which the authorized coalitions are all coalitions of 7" or more
of the IV shareholders.

The secret-sharing scheme in Fig. 6 is a perfect (N = 2,7 = 1) threshold
secret-sharing scheme. We will now see that this scheme is in fact derived from
the (3, 2) linear code over GF(2!%) with generator matrix and parity-check
matrix

G:[(l) (1) ”andﬂzp 11],

respectively. Here “0” and “1” denote the neutral elements of the additive and
multiplicative groups, respectively, of GF(2!°) and would be represented as the
10 x 10 all-zero matrix and the 10 x 10 identity matrix, respectively, at the
bit level. This code specifies the above (N = 2,T = 1) threshold secret-sharing
scheme in the following manner: Letting [v; v, v3] be the codeword in GF (210)3,
the first digit v; is taken to be the 10-bit secret; the second digit v, is chosen
uniformly at random in GF(2'°), and the third digit v3 is computed so that
[v1 vy v3]H+ = 0 or, equivalently, such that v3 = v; + vo. Finally, v, and v3 are
selected to be the two shares of the secret.

While the coding scheme just described is obviously identical to the perfect
(N = 2,T = 1) threshold secret-sharing scheme described previously, it is

worthwile to seek more insight into why the coding construction succeeds. We
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Fig. 6: “No-Leakage” Secret Sharing

note first that the (3, 2) code used has dyw = n — k+ 1 = 2 and hence is
an MDS code. Proposition 5 assures us then that every pair of digit positions
forms an information set. Because the first position together with any other
position forms an information set, it follows that for each choice of the first digit
[i.e., the secret], every possible value of the digit in the other position occurs
in exactly one codeword. Thus specifying this other digit gives no information
about the secret. This argument generalizes to every MDS code and establishes

the following result.

Proposition 11. (Perfect Threshold Schemes and MDS Codes)

If the q-ary secret is taken to be the first digit of the q-ary n-tuple [vy va ... vy],
if the next k — 1 digits are chosen uniformly at random, and if the final n — k
digits are computed so that [vy ve ... v,] is a codeword in an (n, k) q-ary MDS
linear code, then vy, vs, ..., v, are the shares of a perfect (N =n—1,T =k)

threshold secret-sharing scheme.

Secret sharing was introduced by Shamir [15] who gave an interpolation
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construction for perfect threshold schemes that is equivalent to the use of
Reed-Solomon codes in the scheme of Proposition 11. The connection to Reed-

Solomon codes was pointed out by McEliece and Sarwate [16].

4.3 Tailored-Access Schemes

We now consider, following [17], perfect secret-sharing schemes with an access
structure not limited to a threshold on the number of users in an authorized
coalition. We say that a set of shares in a perfect secret-sharing system is a
minimal share set if this set of shares, but no proper subset thereof, determines
the secret. It follows that the authorized coalitions of shareholders are those
coalitions whose share set includes a minimal share set. In a perfect (N, T)
threshold secret-sharing scheme, the minimal share sets are just the sets con-
taining exactly T shares. We give now an example of a less regular access

structure.

Example 14: Consider the 2™-ary (5, 3) code with parity-check matrix

which implies that the necessary and sufficient condition for [v; v v3 v vs] to
be a codeword is that v; + vy +wv3 = 0 and v9 +v4 +v5 = 0, or equivalently that
v1 + v2 + v3 = 0 and vy + v3 + vy + vs = 0. It is easily checked that if v; is the
secret, if vy, v3, vy and v are the shares, and if vy and v, are chosen uniformly
at random [where we note that {1, 2, 4} is an information set], then {v,vs}
and {v3,v4,vs} are the only minimal share sets.

We now interpret minimal share sets in terms of code properties. A codeword
[v1 v2 ... v,] in a g-ary (n,k) code is minimal if it is non-zero, if its leftmost
non-zero component is a 1, and if the coordinates where its components are
non-zero do not include all the coordinates containing the non-zero components
of any other codeword whose leftmost non-zero component is a 1. In an (n, k)
MDS code, the minimal codewords are just the codewords with Hamming weight

Admin = n — k + 1 whose leftmost non-zero component is a 1. In Example 14,
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[11100],[01 01 1]and[1 0 1 1 1] areallthe minimal
codewords in the dual code. The minimal codewords in the dual code with first
component equal to 1 correspond to the minimal share sets in the manner that
their last n — 1 components [i.e., those components corresponding to shares of
the secret] are the incidence vectors for the minimal share sets. In Example
14, the minimal codewords [ 11100 ] and [ 10111 ] in the dual

code correspond to the minimal share sets {v2, v3} and {vs, v, vs}, respectively.

Proposition 12. (Access Structures and Minimal Codewords)

If the g-ary secret is taken to be the first digit of the g-ary n-tuple [v1 vo ... vy],
if the next k — 1 digits are chosen uniformly at random, and if the final n — k
digits are computed so that [v1 va ... v,] is a codeword in a q-ary (n, k) linear
code with dual distance d*+ whose first k components form an information set,
then the minimal share sets in the resulting secret-sharing scheme are those
share sets whose shares correspond to the remaining non-zero positions of a

mintmal codeword in the dual code whose first component is 1.

This proposition follows from the fact that in a linear code the only con-
straints among code digits are those given by the codewords of the dual code.
Thus, the secret v; is determined by some share set if and only if that share set
includes all the shares corresponding to the non-zero components beyond the
first of a codeword in the dual code whose first digit is 1. It follows that the
minimal share sets contain precisely the shares corresponding to the non-zero
components beyond the first of a minimal codeword in the dual code whose first

digit is 1.

We remark in closing that Proposition 12 suggests that it is more fundamen-
tally the fact that the dual code is also an MDS code, rather than the fact that
the code itself is MDS, that is the foundation for the perfect (N =n—1,T = k)

threshold secret-sharing scheme described in Proposition 11.
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