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TORIC IDEALS

Anna Bigatti® Lorenzo Robbiano *®

Introduction

Toric ideals are binomial ideals which represent the algebraic relations of finite
sets of power-products. Their importance comes from on the fact that they show
up in many problems arising from different branches of science, for instance
Integer Programming and Combinatorics.

Largely inspired by the fundamental book [St], we have recently addressed
the problem of computing toric ideals in the paper [BLR], and even more re-
cently we became aware of a new use of toric ideals in Statistics (see for instance
[Din] and [PRW]) after the pioneering work [DiSt].

The broadening scope of use of this beautiful piece of theory suggested the
need for the present paper, which is mainly expository, although it contains
some important remarks which we were unable to find in the literature (see for
instance Theorem 2.18).

Some essential background for reading this paper can be found for instance
in the book [KrRo]. The paper is subdivided into three sections. The first
one introduces toric ideals associated both to power products and to Laurent
power products. The first fundamental properties of toric ideals are proved (see
Theorems 1.6 and 1.13).

In the second section we introduce a different point of view, which turns out
to be of fundamental importance. Namely we think of toric ideals as related
to Diophantine matrices, which enable us to develop a nice piece of theory. Of

great importance, for instance in computation, is Theorem 2.10, which relates
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the toric ideal associated to a matrix .4 to the set of solutions of the Diophantine
system Az = 0. Then we show how to exploit suitable gradings associated to
A (see Definition 2.11), and prove the already mentioned Theorem 2.18.

The third and final section deals with the problem of navigating inside the
set of the solutions of a Diophantine system Az = b. We show how to use
Grobner bases to compute solutions (see Proposition 3.2 and Corollary 3.3). As

an example of “navigating” we discuss integer programming briefly.

1 Definitions and first Properties

In this section we give the basic definitions, and state the first properties of

toric ideals.

1.1 Toric Ideals and Power Products

Definition 1.1 Let K be a field, let yi,...,%, be indeterminates, and let
Ti,Ta,...,Tn be power products in ¥i,...,%,. Then let zy,...,z, be other
indeterminates and P = KJ[zi,...,2,]. The toric ideal associated to the
tuple (71,7,...,7,) is the ideal of all polynomials g € P which vanish at
T1y T2y -y Ty, 1. such that g(71,72,...,7) =0 in K[y, ..., Yn]. It is denoted
by Z(71,72,-..,Tn), Or simply by Z.

In other words, if we let ¢ : P — K[yi,...,yns] be the K-algebra homo-
morphism given by ¢(z1) = 71,. .., ¢(2n) = s, then Z = Ker(yp).

Example 1.2 For instance (y132)? — (¥2)(y3) = 0, hence x3 — 7173 = 0 is an
algebraic relation among 42, v132, y2. We may consider z2 — z,23 as a poly-
nomial in 25 with coefficients in K[x1,x3], and then express every polynomial

f(@1, 22, 23) € Kx1, 22, 23] as
f(x1, 20, 23) = a1, 23) - (x% — 2123) + b(x1, x3) - 22 + ¢(x1, 23)

The relation f(y2, 192, ¥2) = 0 implies b(y?,y2) - y1y2 + c(y?,92) = 0, hence
b(y?,y2) = c(y?,y3) = 0, hence b(z1,73) = c(x1,73) = 0. We conclude that
I(y?, yive, v3) = (2173 — 23) C K[z1, 72, 73]
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Unlike in the above example, it is generally difficult to compute Z. More

tools are needed.

Proposition 1.3 Let R be a ring, let R[z1,...,z,] be a polynomial ring over
R, let f1,...,fn € R, and let ¢ : R[x1,...,2,] —> R be the R-homomorphism
of substitution defined by ¥(x;) = fi fori=1,...,n
a) The kernel of ¢ is the ideal (x1 — fi,...,xn — fa) in Rlz1,...,2,].
b) For every g € R[z1,...,%,], there exist hi,...,hy € R[x1,...,2,] such
that

9= hi-(@i— fi)+9(f1,-., fa)
i=1

Proof. For a full proof see Proposition 3.6.1 in [KrRo.

Here we simply say that the formula g =>""  h; - (z; — f;) +r with r € R
works exactly like a division with remainder, and of course if we do have an
equality g = > hi - (z; — f;) +r, then » = g(f1,..., fn), as one checks by
using the substitution z; = f; for i =1,...,n.

O

Proposition 1.4 Let K be a field, let 71,7o,...,T, be power products in the
indeterminates yi,...,Ym, and let J be the ideal in K[T1,...,Tn, Y1, Ym)
generated by {x1 —T1, To — To,..., Tn — Tn}.

a) We have I(r,...,7) =JNP.

b) Let G be a Gréobner basis of J with respect to an elimination ordering for

{Y1,---+Ym}- Then T is generated by the elements in GN P.
Proof. To prove a) we consider the K-algebra homomorphism

14
K[$1:"'7xnay1a'"7ym]—>K[y1:"'7ym]

which is defined by ¥(y;) = y; for i« = 1,...,m, and ¢(z;) = 7 for i =
1,...,n. We consider P as a subring of K|[z1,...,2Zs,¥1,--.,Ym] and observe
that ¢ = v,. Proposition 1.3.a implies that J = Ker(¢), hence Z = Ker(¢) =
Ker(¢,) =JNP.
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Claim b) follows from Theorem 3.4.5 in [KrRo], where it is proved that GNP
is a Grobner basis, hence a set of generators, of JN P .
O

Definition 1.5 We call binomial a polynomial of the type t; —to, where %1, o

are power products. We say that a binomial ¢; — t» is pure if ged(¢1,t2) = 1.

Theorem 1.6 Let K be a field, let 71,7, ..., T, be power products in the inde-

terminates Y, ..., Ym- Let x1,...,x, be other indeterminates over K, and let
T be the toric ideal in P = K|x1,...,z,] associated to (71,...,7,). Consider
any grading on the polynomial ring K|[x1,...,Tn, Y1, .., Ym]|, where the degrees

of the y; are arbitrary integers and deg(z;) = deg(r;) for i=1,...,n. Then
a) The ideal T is prime.

b) The ideal T is generated by pure binomials. Actually
I=({ti —t2|p(t1) = ¢(t2), ged(ts,t2) = 1})
¢) The ideal T is homogeneous.

Proof. The ideal Z is prime since it is the kernel of a homomorphism from P
to the integral domain Klyi,...,¥ym]. To prove b) we use the equality Z = JNP
(see Proposition 1.4.a). Since J is generated by binomials, Grobner bases theory
implies that all the elements in any reduced Grobner basis of J are binomials.
Using Proposition 1.4, we see that Z is generated by binomials. Now, let t; —
be a binomial in Z. By definition, ¢(t; —t2) = 0, hence ¢(t1) = ¢(t2), which
shows that Z C ({t1 — ta | ¢(t1) = ¢(t2)}). On the other hand, we have just
seen that Z is prime, and clearly it does not contain any indeterminate, so that
t(t; —t2) € T implies t; —ty € Z. The other inclusion follows from the definition
of T.

To prove c) we observe that the ideal J is homogeneous, since it is generated
by homogeneous polynomials, and recall again that Z = J N P. Now, let f

be a polynomial in J N P. All its homogeneous components are in J, since
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J is homogeneous, and are clearly in P. Consequently, all its homogeneous
components are in Z, which shows that Z is homogeneous (see Proposition
1.7.10 in [KrRo]).

O

Example 1.7 We shall now compute an explicit example, namely a set of
generators of the toric ideal Z(yi1ya, ¥3y2, iy3, y3y2). According to what
we have seen, we have to compute the kernel of the K-algebra homomor-
phism ¢ : K[z, 29,23,24] —> Klyi,ys], which is given by the following
rules o(z1) = w2, (z2) = viys, olzs) = vy, e(za) = yiys. We
consider the ideal J in K[z, T3, %3, %4, Y1, Y] which is generated by the set
{z1 — nye, T2 — ¥3Y2, 3 — Y195, T4 — y5ys}. The solution of our problem
is T = JN K[x1,%9,73,24]. It can be computed with CoCoA by performing
Elim(y,J). The reduced Grébner basis from which we compute Elim(y,J)
is {23 — 212322, 233y — w3714, Tiy — 23, 2T — 2223, Youy — 23, Yox3Ty — 25,
Y1T3T4 — T1T2, Yo 1Tg — T2, Y1T0T3 — T3, Y173 — 2224, Y1172 — YoTa, YoT? — Y173,
V1T — Ty, Y1Y2 — T1, Yaka — T3Tz, Yiy — 43, YiTo — T4, YRT1 — T3}
Therefore the solution is T = (25—, 7322, 2319—2374, 2irs—23, 27—2273).
We have a relation x5 — 212322 = 2174(2329 — T324) — To(2ixs — 23), so that
x5 — 17322 is redundant, and it is possible to check that a minimal set of
generators of the ideal 7 is {23z, — 2374, 7izs — 33, x7 — 2223}. We observe

that the computed Grébner basis has 18 elements.

1.2 Toric Ideals and Laurent Power Products

Now we are going to examine the case of power products 7i,...,7, with both
positive and negative exponents.
Definition 1.8 Let K be a field. An expression > Clipim) Ui Y,

(il,...,im)EZm
where only finitely many elements cg,,..;,) € K are different from zero, is

called a Laurent polynomial in the indeterminates yi, ..., ¥, . Consequently,
en expression yi'ys? - - -y%m, where a; € Z for i = 1,...,m, is called a Laurent

term or a Laurent power product.
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Laurent polynomials are polynomial expressions in 41, ..., Ym, Y1 - -+, Um' -
Therefore the set of all Laurent polynomials is a finitely generated K -subalgebra
of the field K(yi,...,Ym), and is denoted by L = K[y1, ., Ym, Y1 s+ Ym']-

m

Henceforth, we denote by f the power product [] y;. It is a standard fact
i=1

in commutative algebra that L is isomorphic to the localization K[y, ..., ym]s-

In the next definition we extend the notion of a toric ideal to the case of

Laurent power products.

Definition 1.9 Let 74, ..., 7, be Laurent power products in the indeterminates
Y1y Ym, and let ¢ : P — K[y, ..., ym|s be the K-algebra homomorphism
defined by ¢(z1) = 71,...,9(x,) = 7. The toric ideal associated to the tuple
(11,72, ..., Ts) is the ideal Z(m,...,7,) = Ker(y).

Definition 1.10 Let 7 be a Laurent power product. Then there exists a min-

imum natural number p(7) and a power product called 7/ such that 7 = f},’—(',)

Proposition 1.11 Let K be a field, let yy,...,yn be indeterminates, and let

m
T1, T2, ..., Ty be Laurent power products in yi,...,Ym. Then let f =[]y and
i=1
consider the ideal J in K[z1,...,Zn,Y1,---,Ym] generated by the following set
{fP gy — 7, fPgy — b L PR, — 7).

a) We have I(ry,...,7) = (J: f®)NP.
b) Let u be a new indeterminate and let G be a Grobner basis of the ideal

J + (fu—1) with respect to an elimination ordering for {u,y1,...,Ym}-

Then Z(7,...,T,) is generated by the elements in G N P.

Proof. To prove a) we look at the following commutative diagram of K-

algebra homomorphisms
P:K[.Z'l,...,.’l,‘n] i> K[y17-~-,ym]f
s k
B
K[$17"'7mn7y17"'aym] — K[x17"'7xn7y17"'aym]f
where a and § are the canonical injective homomorphisms, and the K-algebra

homomorphism ¢ : K[%1,...,%n, Y1, Ymlf — K[y1,-..,Um]s is defined by
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Y(y;) =y for i = 1,...,m, and ¢(x;) = 7 for i = 1,...,n. Consequently
I(ti,...,m) = Ker(p) = a (87 (Ker(¥))). To get the conclusion we need
to prove that J : f* = B7!(Ker(s))). We consider the ideal J generated

by {z1 — 7, T2 — 72, ..., % — T} In K[Z1,...,Zn,Y1,---,Ym]s. Then J is

the extension of J to the ring K[z1,...,Zn, Y1, ..., Ym|s via the map S. This
ring is isomorphic to R[z1,...,%,], where R = K[y, ..., yn]s, and we deduce
from Proposition 1.3 that J = Ker (). Therefore 8~*(Ker(¢)) = 8~(J) =
B7H(B(J)), and the latter is J : f (see Proposition 3.5.11.b. in [KrRo]).

To prove b) we consider the sequence of K -algebra homomorphisms
P = K[xl,...,xn]—%K[zl,...,xn,yl,...7ym]—7—>K[a:17...,xmyl,...,ym,u]

where « and v are the canonical injective homomorphisms. Let us denote
by L the ideal J + (fu — 1). From Theorem 3.5.13.a in [KrRo] we deduce
that v~'(L) = J : f*°. We may identify P with its image v(a(P)), and use
a) to conclude that Z(ry,...,7,) = o }(J : f*) = a}(yY(L)) = LN P.
We conclude the proof by using the same argument invoked in the proof of
Proposition 1.4.b.

d

Example 1.12 Let us compute the toric ideal Z(yiy5 ", vi'vs, v1y3, viys2).
Let f = yiyp. We have yiyy ' = f7'97, vi'vd = f'us, viye® = 240
Therefore we consider the ideal J in K[z1, Zs, 3, T4, Y1, Y2] which is generated
by the set {fz, — v2, fro — v5, 23 — 193, f2z4 — y5}. Following the above
proposition, we take in account the ideal L = J + (fu — 1). Then we eliminate

[y1, 90, u], and get T(y1y5 ", yi'vs, nivs, viys?) = (z3 — 2323, 22 — z]y).

Theorem 1.13 Let K be a field, let 71,7, ..., T, be Laurent power products in
the indeterminates yi,...,Ym, let x1,...,2, be other indeterminates over K,
and let T be the toric ideal in P = K[x1,...,x,] associated to (11,Ta,...,Tn)-

Consider any grading on K[x1,...,Zn,Y1,--.,Ym] where the degrees of the y;
are arbitrary integers and deg(x;) = deg(r;) for i=1,...,n. Then

a) The ideal T is prime.
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b) The ideal T is generated by pure binomials. Actually
T=({ti—ta] p(t:1) = p(t2), ged(ts,t2) = 1})

¢) The ideal T is homogeneous.

Proof. The proof is obtained as a variation on the proof of Theorem 1.6.
O

Remark 1.14 Theorem 1.13 is an extension of Theorem 1.6. However there
is an important difference. Namely, in the case of Theorem 1.6 if we choose
positive degrees for the y;, we obtain positive degrees for the z;. Therefore the
toric ideal Z turns out to be homogeneous with respect to a positive grading
(see Definition 2.11). This conclusion cannot be drawn in general in the case
of Theorem 1.13. As a counterexample it suffices to take Z(y;, y;'). More on

this will be discussed in Subsection 2.2.

2 Toric Ideals and Diophantine Matrices

In this section we switch our point of view and consider toric ideals as algebraic
objects associated to Diophantine matrices.
Let 71,...,7, be Laurent power products in the indeterminates 1, ..., Ym-

aii, a2

We write 7, = y{"ys® ---y%m for ¢ = 1,...,n, and obtain the matrix A =

(aij) € Maty,n(Z) with m rows, n columns, and integer entries. Conversely,

given such a matrix, we may consider the n-tuple (m,...,7,), where 7; =
yriys? - -ylmi for 4 =1,...,n. In other words we see that tuples of Laurent

power products can be encoded by matrices with integer entries. This remark

suggests the following definition.

Definition 2.1 Let A = (a;;) € Maty,,(Z) and let 7, = yf*ys* -- - yomi for
1=1,...,n. We define the toric ideal associated to A to be the toric ideal
Z(71,...7a) C K[z1,...,2,]. It will be also denoted by Z(A).
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2.1 Toric Ideals and Kernels of Matrices

If we look at toric ideals in the way suggested by the above definition, we may
be led to explore a possible connection between generators of toric ideals and
Z-module generators of kernels of integer matrices.

Let A = (aij) € Maty,(Z). We consider the homogeneous system of Dio-

phantine equations associated to A.

a1121 + Q129 + -+ a1z, = 0
a9121 + 9229 Rl QAo Zn =
(121 + Gmaze + -+ Gz = 0

whose set of integer solutions is a Z-module (or integer lattice) called Ker(A).

We need some technical definitions.

Definition 2.2 Let a € Z. We define ¢ = max(a,0), ¢ = max(—aq,0).
Let u = (uy,...,u,) be a vector in Z". It can be written as u = u*™ —u™,
where vt = (uit,...,u,") and v~ = (u,...,u, ). For instance (3,2,—1) =
(3,2,0) — (0,0,1). Given a vector u € Z", we denote by x* the Laurent power

U1l U
product zi*---zp.

Definition 2.3 Let S C P. We denote by Bin(S) the set of binomials in S,
and by PBin(S) the set of pure binomials in S.
Let ¢ : Z" — P, and ¥ : Bin(P) — Z" be defined in the following way.

For u = (u1,...,u,) € Z", we let

+ + - -
= U1 ... un‘ _ U1 ... u"’
=1 Ty < T

o s,y ) =X —

For a = (a1,...,a,), 8= (B1,...,8,) € N*, and b = x* — x? € Bin(P), we
let

ﬁ/(b) = (0(1 _ﬁl:-“van _ﬁn)

Proposition 2.4 With the above definitions and assumptions, the following

conditions hold true.
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a) o' (Ker(A)) C PBin(Z(A)), ¢ (PBin(Z(A))) C Ker(A), hence there exist
two maps o : Ker(A) — PBin(Z(A)), 9 : PBin(Z(A4)) — Ker(A),
which are induced by o and V.

b) The maps o and 9 are inverse to each other.

Proof. First, we prove a). For u = (uy,...,u,) € Ker(A) we get

a11u1+ + (1,12U2+ S alnun+ = a1 Uy +apUus + -+ QGplUn
a21u1+ + a;22u2+ + o+ agpug’ = ao1U1 + AUy + -+ QoplUn,
iUl + Gmptis™ + -+ Gl = A1t + Aoty + - F Gl
ugt unt Uy~ U ugt Ut uy” U~
We get 7% -7 = 7 o7 Chence it -zl — gt oo gln € T(A),

and it is clearly pure.
Now we observe that b = 2% -..z% — g% ... 20" ¢ PBin(Z(A)) implies

7o ron = 7Pt B hence

a10q + a0 + -+ a0 = annBi+afet -+ anfb
G210 + Qa0 + -+ Gony, = G211+ afe + -+ a2nfy
10 + Q2+ + GO, = Q1 B + AaBa + -+ - + A B

We conclude that (a1 — B1,...,a, — B,) € Ker(A).

Finally we prove b). By definition ¥ 0 ¢ = idker(4). On the other hand, let
b= ...z —gP ... g8 € PBin(Z(A)). Then 9(b) = (a1 — B, - - ., n—Bn),
and the fact that b is a pure binomial implies that ((c;—81)", ..., (—Bn)")—
(e =B1) "y oy (an = Bn)") = (a1, cyan) — (Biy- -y Bn)-

It follows that oo v = idpgin(z(a))-

O

Definition 2.5 Let B = {vy,...,v,} be a subset of Z" and denote the ideal
(¢ (v1),...,0(vr)) by I(B). If B generates Ker(A) as a Z-module, the ideal
I(B) is called a lattice ideal associated to Ker(A).

Lemma 2.6 Let v € Z", B = {vy,...,v,} CZ*. If x*" —x¥ € I(B), there

exist ni,...,ny € Z such that v=">._, nw;.
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Proof. If we use Grébner basis theory to compute a representation of b as
a combination of the elements xv;; — xv’;’, we see that at every step of the
computation only operations involving integer coefficients are used. Therefore,
if B'=BU{-wvy,...,—v,}, and we allow possible repetitions of summands, we

get a representation
- o i
xv"’ XY - 2 x¥i . (X”zj _ XUzj) (1)

where each v;; is a vector in B'. Now it suffices to show that v = ZN_ Ui
and we shall proceed by 1nduct10n on N. If N =1 then (1) 1mphes V= Wy In
general the power product x" s equal to one of the terms x’”ﬂx i or xWix"i
appearing in the expansion of the right hand side of (1). By possibly changing
the position in the sum, we may assume that x*" = x’”‘x”’t, therefore v+ =
wy +vi . It follows that v—v;, = vT —v™ —vf +v; = wi+v} —v™ —v} +u; =
wy +v;, — v~ . Now, deleting the first summand in the right hand side of (1),
we get an expression for x¥!T¥i1~ —x¥" which has length N — 1. By induction,
V= =wtv;, T —vT = Z;VZQ v, . Therefore we conclude that v = o Vi -

|

=1

Remark 2.7 Suppose we have the equality ;‘(Z = :—: . ;‘; of Laurent power

products. Then X — 1= (X —1)- 5+ (X — 1) in P,, where 7 = H z;. Thus
z:l

we have the equality xxf(x? — x?) = x"x°(x¢ — x%) + x’x¢(x® — x/) in P.

Remark 2.8 Given a vector v € Z" and s € Ny, the binomial g(sv) is a

multiple of g(v). Namely x®" — x*" = (x*" —x¥") Ejzl(x(j‘l)”x(s‘j)”_).

Lemma 2.9 Let B = {v1,...,v,} be a subset of Z", and let v = Y;_, nv;.
Then there exists a power product t and polynomials f; € P for i = 1,...,r
such that .
t(x”+ —x") = Zf’ (Xv;f _ xu;)
i=1
Moreover f; = Z] 1t if ni >0 and f; = Z;:"{ tij if n; <0, and the t;;

are distinct power products.
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Proof. First we prove by induction on s that if v = Y_;_, w;, then there exist

power products t,t,...,t, € P such that t(x”+ —-x" )= Z?th (xv T X i ):
1 wi ws .
If v = wy 4+ wy, then :U—_ =%*L .X2 iy P Thus, from Remark 2.7, we have
x%1 x"2

in P the equality
waxw; (XU+ _ Xv*) — Xu* Xwg' (xwf' _ wa) S Xv’ xwf (Xw;' _ Xwg)

Let v = Y0 jw;. If s > 2 we write v = w; + w where w = ), , w;.

By induction we have that there exist #,#;,%, and #,t,,...,t. power prod-
ucts in P such that £ (x*" — x*7) = & (x¥ — x%1) + & (x*" — x*") and
#(xWT —x¥7) = Tp, (x4 —xT).

Now we multiply the first equality by # and substitute #'f(x*" —x“") using
the second. Then t =%t t, =4t and t; =#, ¢, for i =2,...,s and we get

8
Hx —x") = Zti (x* —x¥7)
i=1

So we have that a sum of s vectors w; corresponds to a sum of the s as-
sociated binomials g(w;) multiplied by a power product. But we may be more
precise. If v = ijl n;v;, we have just proved that then there exist power prod-
ucts t,t,,...,t, and t; € P such that ¢(x*" —x"") = S it (x"“’z‘+ — XM,
and by Remark 2.8 it follows that t(x*" —x"") = Y5 #;f; (x% — x" ) where
fi= Y pa a1 W xmi=) if n; > 0 and f; = — Y (b Wi x(mimiily i
n; < 0. In particular each ¢;f; has |n;| distinct monomials, all with coefficient
1 or all with coefficient —1.

|

The next result (see Lemma 12.2 in [St]) plays a fundamental role, since it
states the desired link between generators of toric ideals and Z-module gener-
ators of kernels of integer matrices. The link is obtained with the aid of lattice

ideals.

n

Theorem 2.10 Let B = {v1,...,v.} C Ker(A) and let 7 = [[ ;. The fol-
i=1

lowing conditions are equivalent
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a) I(B) : 7 =Z(A).
b) I(B) P, = I(A) P,.

¢) B is a set of generators of Ker(A), i.e. I(B) is a lattice ideal.

Proof. The implication a) = b) follows from I(B) P, = (I(B) : #*) P,, and
to prove this equality it suffices to show that (I(B) : 7°) P, C I(B) P;. Let
% € (I(B) : ) Pr. Then there exists s € N and an element b € I(B), such
that % = #, and the claim follows.

To prove b) = a) we recall the fact that I(B) : 7 = I(B) P, N P (see
Proposition 3.5.11.b in [KrRo]). Moreover, we know from Theorem 1.6.b that
Z(A) is a prime ideal and 7 ¢ Z(A), hence Z(A) : 7 = Z(A), which im-
plies that Z(A) = Z(A) P, N P. From the two equalities we get the desired
implication.

We show that a) = ¢). Let v € Ker(A). Then o(v) = x*" —x"" € Z(A),
which is equal to I(B) : 7 by assumption. It follows that there exists r such
that 7" (x*" —x¥") € I(B). We use Lemma 2.6 to see that o' (7" - (x*" —x¥")) =
?I(x*" —x*") = v is in the submodule of Ker(.A) generated by B.

Finally we prove that ¢) = a). We know from Theorem 1.13 that Z(A)
is generated by pure binomials. So let b be a pure binomial in Z(A) and let
v = 9(b). Then v € Ker(A), hence it is a linear combination of the vectors
in B with integral coefficients. It suffices to use Lemma 2.9 to get a relation
which implies b € I(B) : 7. The proof is now complete.

|

The last theorem has a noteworthy consequence in the computation. Namely,

a toric ideal Z(.A) can be computed by the two steps

a) computing a lattice basis B of Ker(.A), hence a lattice ideal I(B);

n
b) computing the saturation of I(B) with respect to 7 = [] z;.
i=1

A detailed discussion on this issue can be found in [BLR]. Here we content

ourselves to show the improvement in the computation of Example 1.7, where

we dealt with Z(y1ys, y3v2, v193, ¥1v3)-
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Example 1.7 (continued) Using the point of view discussed in the previ-

ous subsection, we can say that the problem is to compute Z(A), where
(133

It is easily seen that a basis of Ker(A) is B = {(-7,2,1,0),(4,-3,0,1)}.
Therefore we may consider I(B) = (x] — 2323, z}zs — 23) and compute its
saturation with respect to @ = 1222374 by eliminating u from the ideal J =
I(B) + (um — 1). We get the same result as in Example 1.7. However, the
number of elements in the reduced Grébner basis of J is 7. This is in contrast
with the number of elements in the Grobner basis computed in Example 1.7,
which is 18. We remark that in general this method produces Grobner bases
which are much smaller than the Grobner bases computed with the method

explained in Proposition 1.4.

2.2 Gradings on Toric Ideals

In the last subsection we saw how Theorem 2.10 can be used to improve the
computation of toric ideals. Now we are going to discuss another improve-
ment which depends on the fact that toric ideals are homogeneous. We saw in
Theorem 1.6 that we may give arbitrary integral degrees to the indeterminates
Y1, - .-, Ym and deduce that the toric ideal is homogeneous with respect to the

grading given by deg(z;) = deg(r;) for i =1,...,n.

Definition 2.11 Let A = (a;;) € Maty,,(Z). If an n-tuple of integers is
obtained as a Q-linear combination of the rows of A and is taken as the tuple
of degrees of the indeterminates, we obtain a grading on P which is called a
grading associated to A. If all the elements in the tuple are positive we say

that the grading is a positive grading.

Example 2.12 Let us consider the matrix A already introduced in Exam-
ple 1.7 (continued). A non-positive grading associated to A is obtained by the
tuple 3(1,3,1,5) — (1,2,3,2) = (2,7,0,13). We observe that the toric ideal
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T = (23xy — x324, 2imq — 23, 2] — 2223) is homogeneous with respect to the

grading defined by deg(z1) = 2, deg(zs) =7, deg(zs) =0, deg(z4) = 13.

The following result yields a better insight into this aspect of the theory.

Proposition 2.13 Let A = (a;;) € Maty, ,(Z) and let Z(A) be the toric ideal
in K[x1,...,%,] associated to A. Then Z(A) is homogeneous with respect to

every grading associated to A.

Proof. Following the proof of Theorem 1.6, we may consider the grading given
by putting deg(y;) = 0 for ¢ # k and deg(y;) = 1 for ¢ = k. Then the degrees of
T1,...,Z, are given by the k' row of A. Therefore Z(.A) is homogeneous with
respect to the tuples of degrees given by the rows of A, hence it is homogeneous
with respect to every grading associated to A.

O

In the theory of Grobner bases there is a lot of emphasis on improvements
in computation speed which can be achieved whenever one deals with ideals or
modules which are homogeneous with respect to a tuple of positive integers. Un-
fortunately, given A, it is not always true that such a linear combination exists,
as we have already seen in Example 1.14. The case treated there corresponds

to the matrix A = (1, —1). But there is a nice way around this problem.

Definition 2.14 Let A = (a;;) € Mat,, ,(Z) be a non-zero matrix. We put
m

sj= > ag for j=1,...,n,and d = d(A) = max;{s;}. When d > 0 we define
k=1

the homogenization of A to be the matrix

aip 12 1 A1p 0

ag1 922 ¢ (057 0

A= 0
Am1 Umo oo Qgm0

d—s d—8y ... d—s, d

Otherwise we define A to be —A.

With the aid of this definition we make an easy observation.
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Lemma 2.15 Let A = (a;;) € Maty,,(Z) be a non-zero matriz and consider
the map ¢ : Ker(A) — Ker(A) defined by the following rule (o, ..., a,) =
(0[1, ceey Oy — Z?:l ai) G

a) The map ¢ is a Z-linear isomorphism.

b) Assume that B = {vy,...,v.} is a Z-basis of Ker(A). Then the set
B={p),...,0(v,)} is a Z-basis of Ker(A).

Proof. Since Ker(A) = Ker(—.A), we may assume that d > 0. To prove
claim a) let (ov,...,0,) € Ker(A) and let anq1 = — >, ;. By definition

s101 + Soaip + -+ - + Spa, = 0, hence

(d—s1)aq+(d—s2)aa+- - -+ (d—s, ) +day, 1 = dog+dag+- - -+day,+da, 1 =0

We deduce that p(Ker(A)) C Ker(A). It is also clear that ¢ is an injec-
tive homomorphism. On the other way, if (ay, ..., ans1) € Ker(A), then
(a,...,0n) € Ker(A), and (d—s;)as+(d—s2)ag+- - -+ (d—sp)an+dan1 = 0,
hence day + dag + - - - + day, + da oy = 0, hence a0 = — Z?:l ;.

Claim b) is a direct consequence of a).

O

Now we should look for a relationship between Z(A) and Z(A). In the
following we are going to use some facts from the theory of homogenization
of ideals. A full account of that will be presented in [KrRo2]. The notation
Homog(f, z,.1), and Homog(Z, z,,1) will be used to indicate the homogeniza-
tion of the polynomial f and the ideal I with respect to z,,;. Given A, we
may assume that d(.A) > 0, because if this is not the case, we interchange A
with —A. As we have already observed, this operation does not change Ker(A).

After Proposition 2.4 we may say that if v € Ker(A) is a non-zero vector
then p(v) = x*" —x"". Likewise, if w € Ker(A) is a non-zero vector we denote

by o(w) the vector x** — x¥".
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Lemma 2.16 The following diagram
Ker(A) -2 PBin(Z(A))

] Homog
Ker(4) -%» PBin(Z(A))

s commutative.

Proof. Let v € Ker(A) be a non-zero vector. We need to show that g(¢(v)) =
Homog(o(v), Tnt1). Since o(¢(v)) and p(v) are pure binomials, which differ
only for the presence of z,41 in 9(¢(v)), it suffices to show that the sum of the
components of ¢(v) is 0, which is clearly true by the definition of ¢.

O

Lemma 2.17 Let f, f1,...,fr € K[z1,...,2,] and I = (f1,..., fr). The fol-
lowing equalities of ideals in K[x1,...,Tn,Tns1] hold true

a) Homog(I, znt1) = (Homog(fi, Tn+1), - . ., Homog(fr, Tn+1)) t 275+ -

b) Homog(I, znt1) : f* = Homog(I : f°,zp+1).

Proof. See [KrRo2].

Theorem 2.18 With the notation introduced above, consider the two ideals
T(A) € By senyllin]y EA) E KLty oom Braplpet] s
a) The ideal T(A) is homogeneous with respect to the standard grading, i.e.
the grading given by (1,1,...,1).

b) The ideal Z(A) is the homogenization of T(A) with respect to Ty, .

Proof. By Proposition 2.4 the ideal Z(A) is generated by the pure binomials
associated to Ker(A), and they are homogeneous by Lemma 2.16. This proves
a). To prove b) we let B = {vy,...,v,} be a Z-basis of Ker(A). Lemma 2.15
implies that p(B) = {p(v1),...,¢(v,)} is a Z-basis of Ker(A). Theorem 2.10

implies that Z(A) = I(p(B)) : (7 - T541)®. It is a standard fact and easy
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to check that the latter is equal to (I(¢(B)) : £95,) : 7, which is equal
to Homog(I(B),zy+1) : 7 by Lemma 2.17.a. Now we use Lemma 2.17.b
to see that Homog(I(B),xn+1) : 7° = Homog(I(B) : 7, Zn41), and we use
Theorem 2.10 again to conclude the proof.

]

Remark 2.19 The above theorem can be used to improve computations in the
following way. If we have to compute Z(A), we compute a basis B of Ker(A),
hence a basis ¢(B) of Ker(A). Then we compute a system of generators G
of the saturation of I(yp(B)) with respect to z1Zs - - - TnTpy1, taking advantage
of the fact that I(¢(B)) is homogeneous. Finally, we compute a system of

generators of Z(.A) by simply dehomogenizing G.

3 Toric Ideals and Diophantine Linear Systems

In this section we see how toric ideals are related to the solutions of Diophantine
linear systems, even in the case where they are not homogeneous with respect

to a positive grading.

3.1 Solving Systems with Elimination Orderings

Let A = (a;) € Maty,,(Z) be a matrix with m rows, n columns, and integer
entries. Furthermore, let (by,...,b,) € Z™ be a vector and let z1,...,2, be
indeterminates. We want to find the non-negative integer solutions (s, ..., o)

of the system S:

@121 + G129 + -+ Az = by
(o171 + Q2o + -+ Aoz, = by
An121 + 0m222 + - + Qpn2n = bm

The next proposition tells us that all the power products associated to so-

lutions have the same degree.

Proposition 3.1 Let S be a Diophantine system as above, let K be any field
and let P be graded with a grading associated to A, in particular let \; € Q
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fori=1,...,m be such that (deg(z1),...,deg(zs)) = >iv; Xi(ait, -, aim). If
(v, ...,0,) € N" is a solution of S, then deg(zf" ---2%") = 37", Aib;.

n

Proof. We check that deg(z{"---z3") = 377, o;deg(z;) which is equal to

n

oo (0 Neaig) = D00 M(TT aney) = 300 A
O

And now let us look for solutions using algebraic methods.

Proposition 3.2 Let S be as above, and assume that the elements b; as well

as the entries of A are non-negative integers. Let K be any field, let y1,. .., Ym

a1g

be indeterminates, let 7, =y ys”

Yo
let (a1,...,0n) EN'. Let f =11y and let J in K[z1,...,Tn,Y1,--->Ym] be
i=1

o gyl fori:l,...,n,T:yf‘---yf,;",and

=
the ideal generated by the set {x1 — 11, Ta — To,..., &y — Tn}. The following

conditions are equivalent.
a) The tuple (o, ..., o) is a solution of S.
b) There is an equality of power products T{* -+ -To" = g ylm

¢) The binomial 4% - --ybm — 2% - .. 28 js in J.

Proof. A tuple (a,...,a,) € N* is a solution of S if and only if

a11a1+a1202+-+a1n o - b1
Y1 o=y
a2101+022Q2+++a270n b2
Y2 " Yo
y?nm1a1+am2a2+"'+amnan - yfr;n

hence if and only if yf11a1+u12a2+---+u1nan s yg_bmlck1+am2a2+'"+amnan = yll’l ce yz;” ]
By reordering the exponents we get the desired equivalence between a) and b).

We use Proposition 1.3.b to show that yi’l conybm g gon € J if and only

if g% - gybm — 2% ... 2% vanishes under the following substitution ¢(z;) =71,
©(x2) = Tay ..., 0(2n) = Tn, hence if and only if 3% ... ybm — 701...700 = 0,

This is exactly condition c), and the proof is now complete.

O
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We are ready to explain a criterion to check whether S has solutions in N™.

Corollary 3.3 With the same assumptions as in the proposition, let o be an

elimination ordering for {yi,...,Ym}-
a) S has non-negative solutions if and only if NFy ;(y? ---ybm) € P.

b) If N]F‘(,’J(yllJl coeybm) =gt og2n then (au, ..., ) is a solution of S.

Proof. First, we prove a). Suppose that (as,...,q,) is a non-negative so-
lution of S. From Proposition 3.2.c we obtain y*---ybm — z¢ ... 2% € J.
This implies (see Proposition 2.4.10.a in [KrRo]) that NF, ;(y2 ---yim) =
NF, s(z$"* ---28%). But o is an elimination ordering for {yi,...,ym}, from
which it follows that NF, ;(z* ---z%») € P.

Conversely suppose that NF, J(yfl ---yPm) € P. We have already recalled
that a reduced Grébner basis of J is a set of binomials. This fact implies that
the normal form of a power product is a power product. So there exists a tuple
of non-negative integers (a,...,a,) such that NF, (32" ---ybm) = 29 ... g0,
This implies that 3" ---ybm — 2% ... 2% € J, and 2" --- 2% is a solution of
S by Proposition 3.2. This argument proves b) as well.

O

Remark 3.4 Of course it is possible to deduce an algorithm from the above
corollary, but such an algorithm turns out to be rather inefficient. On the other
hand, in many cases it is more important to navigate inside the set of solutions,
and this is possible with the aid of toric ideals, once a solution is known.

The next subsection describes an important case of that kind of navigation.

3.2 Integer Programming

In some cases finding some solution of a Diophantine system is easy, but in-
terest really lies in finding a “special” solution. In this section we see how the
theory of Grobner bases and toric ideals provides a method to deal with Integer
Programming, that is, given any “cost vector” ¢ € ", find a solution « for &

which minimizes the value of the linear functional v — ¢ - u.



TORIC IDEALS 21

Definition 3.5 Let .4 be a matrix with non-negative entries. Let K be any
field and let P = K[y, ...,z,] be graded with a positive grading associated to
A. Given a cost vector ¢ € ', a cost compatible ordering o, is a term

ordering with the property that ¢; >,, t implies c-log(t;) > ¢ - log(ts).

Remark 3.6 If there is a positive grading associated to A, then a cost com-
patible term ordering is obtained by a non-singular matrix whose first row is a
positive linear combination of the rows of A and second row equal to ¢. This
follows from the fact that, by Proposition 3.1, two power product associated to
solutions of & have the same degree. If there is no positive grading associated
to A, but each component of the cost vector is positive, then a cost compatible
term ordering is obtained by a matrix whose first row is ¢ (see [KrRo] 1.4 for

orderings represented by matrices).

Lemma 3.7 Let o € N* be a solution of the system S and let t be a power
product in P. Then for any cost compatible ordering o., the normal form

NF,, (t,Z(A)) is associated to a solution of minimum cost.

Proof. Let t = a{*---2%, ' = NF, (¢t,Z(A)) with ¢ = x'llll c..z%n . The
binomial ¢ — ¢ is in the toric ideal Z(A) so, by Proposition 2.4, the vector
(o — ..., — ) is in Ker(A). Therefore o = a — (@ — ¢) is a solution
of §. If " is another solution and ¢" is the associated power product, we
have that ¢t — t” € Z(A) and therefore, by a property of the normal forms,
NF,. (t",Z(A)) = NF,_(¢t,Z(A)) = t' from which " >, t'. By definition of cost
compatibility, this implies that c-log(¢") > c-log(¢'), and the proof is complete.

O

Theorem 3.8 Let A be an m X n-matriz, let b € N™ be a right hand side
vector, let ¢ € Q" be a cost vector, and let o, be a cost compatible term ordering.
Consider the following set of instructions.

TS1 Compute the toric ideal T associated to A.

TS2 Compute the Grobner basis G,, for T with respect to o, (sometimes G,
is called Test Set).
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TS3 Find a solution o of the system Az =b.

TS4 Compute the normal form x* of x* with respect to G,,. Return c.

This is an algorithm which returns a solution of the system Az = b which

minimizes the cost.

Proof. It follows from Lemma 3.7.
O

Remark 3.9 Step TS2 can be very fast, since it takes advantage of all the
properties of toric ideals that we have shown. So this method is computationally
much more efficient than what we described in Section 3.1. Notice that it
requires to find a solution (see Step T'S3). In most cases this can be done

efficiently too.

Now we see an example which illustrates how to compute a solution which

has minimum cost.

Example 3.10 Consider f = 4 factories Fi, Fy, F3, Fy which produce a re-
spective supply of 120,204, 92,55 units of an indivisible good. Consider also
s = 3 shops Si,52,S3 which have respective demands of 183,190,98 units.
There is a cost ¢;; associated with transporting one unit from factory F; to
shop S;. The possible transportation plans for shipping all 471 units from
the factories to the shops are the elements « such that A -« = b, where
b = (120,204, 92, 55;183,190,98) and A € Matys., fs(N). Here we see the as-
sociated system, where z;; represents the units of goods to be shipped from

factory F; to shop S;.

( 211 + 212 + 213 = 120
291 + 299 + Zo3 = 204

231 + 2392 + 233 = 92

241 + 240 + 243 = 55
211+ 291+ 231 +200 = 183
219+ 299+ 230+ 240 = 190
213t 203 + 233+ 243 = 98
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Here is an example of a cost function depending on the distance between

factories and shops.

051
oFl 0F3
oS2
Sy Sy S
. Fy . Fy B fdd 3
. S, B o211
F 11 2
F, 3 2 1

In this case it is particularly easy to find a solution of the above system.
For example, if (211, 212, 213, 201, 222, 223, 231, 232, 233, 241, 242, 243) 18 the vector of
all the indeterminates, o/ = (120, 0,0, 14,190,0, 0,0,92, 49,0, 6) is a solution,

and the cost of ¢ is
co =(1,1,3,2,1,1, 1,1,2, 3,2,1)-(120,0,0, 14,190,0, 0,0,92, 49,0,6) = 675

But of course here we want a solution which minimizes the total cost. So we
compute a Grobner basis with respect to a cost compatible ordering o.. The
vector (1,1,...,1) = ZZ:1 (a1, ..., ai) describes a positive grading associ-
ated to A and (1,1,3, 2,1,1, 1,1,2, 3,2,1) is the cost vector, so we may use

any term ordering represented by a non-singular matrix like

111 111 111 111
113 211 112 321

We compute NF,, (x(120:0:0, 14,1900, 00,92, 9.06) T(4)) and get
a = (120,0,0, 0,161,43, 63,29,0, 0,0,55)

which is a minimal solution and therefore the minimum cost is 471.
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