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FIVE LECTURES ON GENERALIZED PERMUTATION
REPRESENTATIONS

Thomas Miller

The lectures recorded below are concerned with the theory of generalized per-
mutation representations, which was conceived during my stay at the Mathe-
matical Sciences Research Institute, Berkeley, California, in 1996/97 and further
developed in 1997-98, with some work (related to the Poincaré-Klein problem)
still ongoing. This fascinating theory, which is characterized by a fruitful inter-
play between group theory, combinatorics, and analysis, apart from its intrinsic
interest, also has important applications in asymptotic group theory and the
theory of Quillen complexes. The purpose of my lectures, which were deliv-
ered during the XVI. Escola de Algebra (23 — 29 July 2000) at the University
of Brasilia (UnB), was to outline, in as elementary and untechnical a fashion
as possible, some of the major aspects of this theory, stressing motivation and

background.

The first lecture recalls a more or less well known combinatorial aspect of per-
mutation representations: given, say, a finitely generated group I', the problem
of enumerating the permutation representations of I' by degree, and that of
counting finite index subgroups in I' by index are related via a transformation,
which, on the level of appropriate generating functions, takes the form of the
logarithmic derivative (cf. Proposition 1). From a somewhat more philosophical
point of view the existence of such a transformation formula means that enumer-
ating permutation representations of a group I' yields decodable information on
structural invariants of I'. It is this important observation which provides a first
decisive hint towards our task. In dealing with possible generalizations of per-

mutation representations we will have to start from some class R of sequences
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Ro, Ry, ... of finite groups, which is a fairly natural and technically sufficiently
controlled ‘neighbourhood’ of the sequence {5, } of symmetric groups, and it is
far from clear from the outset where to look for such a class. However, we will
also have to exhibit a criterion, applicable to members {R,} € R, when such
a sequence is to be admitted as a proper generalization of permutation repre-
sentations. Building on the above idea the criterion we are going to propose is
that the generating function

> [Hom(T', R,)| 2" /n!

n>0
can be decomposed in terms of the representation sequence { R, } and invariants
of T for all finitely generated groups I'. The task of specifying an appropriate
class R of representation sequences which forms a natural and technically suffi-
ciently controlled environment for pursuing the problem of generalizing permu-
tation representations from this combinatorial point of view is taken up in the
second lecture. The class R we are going to use consists of all sequences of the

form

(H T,y = {(f,rr)eHan: I1/6) eN}, 5 210,

where H is a finite group, N < H is a normal subgroup with H/N abelian, and
{IL,} denotes the sequence {S,} of symmetric groups or the sequence {A,} of
alternating groups. As it turns out, such a sequence satisfies the above criterion
if and only if (H : N) < 2, and the main result of the second lecture, Theorem
A, establishes (a somewhat refined version of) our criterion in the latter case.
Lecture 111, after discussing some special cases of Theorem A, culminates in an
explicit formula (Theorem B) for computing the exterior function ®r, one of
the key ingredients in our description of the generating functions

> [Hom(T, (H 1 IL,) )| 2" /nl.

n>0
The last two lectures link the theory of generalized permutation representations
to other important topics in group theory. In Lecture IV we explain how ex-

plicit formulae for elementary abelian groups supplied by our theory together
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with certain analytic considerations may be used to produce an efficient and
extremely fast algorithm for computing the Euler characteristic of Quillen com-
plexes associated with members of one of the representation sequences intro-
duced above. The final lecture is concerned with explicit asymptotic estimates
for the function |Hom(G, H 1 S,)|, where G and H are finite groups, and the
connection of such estimates with the theory of subgroup growth. A famous
problem, originally raised in the 1880’s by Klein and Poincaré in connection
with the construction of modular forms, asks (roughly speaking) for the asymp-
totic distribution of the isomorphism types of subgroups in the modular group
and other free products. Lecture V concludes with some remarks concerning the
latter problem and describes the impact of the results explained in the earlier
parts of that lecture towards its solution.

It is my pleasure to thank Professor Said Sidki and the other members
of the Scientific Committee for inviting these lectures, and the Mathematics
Department of UnB for its warm hospitality. Thanks are also due to the Royal

Society for supporting my participation through a conference travel grant.

The First Lecture: Some combinatorial aspects of permu-
tation representations

The basic gauge objects of representation theory are the groups GL(n, k), k a
field, on the one hand, the symmetric groups S,, on the other, giving rise to linear
representations respectively permutation representations. What is it that makes
these groups important representation groups, and do there exist other ‘good’
representation sequences essentially different from these canonical choices? It
is one of the purposes of the theory to be outlined in these lectures to provide
a possible answer to these questions in the case of permutation representations.
From a technical point of view we are dealing with an enumerative theory
yielding both precise and asymptotic results on certain generalized Frobenius
numbers. These results are of interest in their own right, but also lead to a

number of important applications in other parts of group theory. In order to
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gain some feeling for the above questions as well as for the type of enumerative
formulae to be encountered in this context, it will be helpful to first turn to

permutation representations.

For a group I' denote by s,(I') the number of subgroups of index n in I'. If I is
finitely generated or of finite subgroup rank, then s,(I') is finite for all n > 1.
There is a (more or less) well-known connection between the enumeration of I'-
actions on finite sets (i.e. permutation representations of I') and the problem of
counting finite index subgroups in I'; manifesting itself in a variety of identities
scattered throughout the literature. One of the earliest results in this direction
is Marshall Hall’s recursion formula!

n—1

sa(F) = ()™ = 3 ((n—w)l)" su(F) (1)

p=1
for the number of index n subgroups in the free group of (finite) rank r. Here,
the connection with permutation representations becomes visible if we interpret
(nl)"=' and ((n—p)!) ! as values of the function |[Hom(F,, S,,)|/(m!). Formula
(1) was generalized by I.M.S. Dey to free products; cf. [11, Theorem 6.10].
Denote by ¢, (H) the number of solutions of the equation 2™ = 1 in a finite
group H;i.e., t,,(H) = |Hom(C,,, H)|, where C,, is the cyclic group of order m.
Chowla, Herstein, and Scott [10] obtain the exponential generating function of

the sequence {tm(5,)}22, as
ij: tm(Sn) 2" [n! :exp(zl: zd/d). (2)

Here, the subgroup numbers of €, appear as silent factors 1 in the sum com-

prising the exponent. This is apparent from the more general relation

i |Hom(G, S,)| 2" /n! = exp (Z s4(G) zd/d)7 m = |G|, (3)

n=0 d|lm

for an arbitrary finite group GG. The latter identity, which exhibits the exponen-

tial generating function of the sequence {|Hom(G, S,)|}5° as a particular type

LCf. [17, Theorem 5.2].
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of entire function, was a starting point for the asymptotic enumeration of finite

group actions.

Whereas (3) and its generalizations require a more elaborate algebraic proof
(to get some idea of the kind of approach working there compare the sketch of
proof of Theorem A in the next lecture), identity (2) is easily established by a

direct combinatorial argument.

Proof of (2). The number ¢,,(.S,) counts those permutations in S, whose cycle
lengths all divide m. Classify these permutations by the length d (a divisor
of m) of the cycle containing the letter 1. Now subdivide the heap of permu-
tations corresponding to the divisor d into subheaps according to the actual

d—cycle containing the letter 1. There are

(Z B 1) (d=1)! = (n = 1)us

ways of choosing d — 1 letters out of the set [n]\{1} and organizing the resulting
d-set into a d-cycle. Thus, the dth heap splits into (n — 1)4—; subheaps, each

containing ¢, (S,—q) permutations. This yields the equation

Yo (n = Dattm(Sn-a) = tm(Sn),  (n 21, tm(S0) = 1).

dlm

Multiply both sides of this recurrence relation by 2"~ /(n—1)!, sum over n > 1,

and put F(z) := 302 ,u(5,)2" /n!. Routine manipulations then give

F'(2)[F(z) = 3 2

dlm

with solution

F(z) = exp <c +3 zd/d>

d|m

for some constant ¢. Putting z = 0 in the latter equation then yields
ec = F(O) = Lm(S()) = 1,

i.e.,, ¢ = 0, whence (2). O
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The condition that GG should be a finite group can be relaxed considerably: If T
is a group such that |Hom(T', S,)| < oo for all n > 0, then we have the (formal)
relation

> |Hom(T, S,)| 2" /n! = exp (Z sn(T) z”/n) (4)

n>0 n>1
This is a variant of Dey’s formula essentially due to Wohlfahrt ; cf. [47]. How-
ever, the latter result is not the most general relationship known to hold between
these two enumerative aspects of a group. Let ' be a group, ¥ C I' a normal
subset of I' not containing the identity element 1, and let A C N be a set of
positive integers. For a set @ denote by Hom&(T', S(2)) the set of all [-actions
7 on ) such that

(i) 7 induces a fixed-point—free action of (the elements of) ¥ on 2,

(i) the lengths of the orbits into which § decomposes under 7 are contained
in the set A.

The elements of Homy(T,S(Q)) will be referred to as (,A)-admissible
I'-actions on Q. Call a triple (T', X, A) as above admissible, if [Homn(T, S,)| <
oo for all n > 0. If, for instance, I is finitely generated or of finite subgroup rank,
then the triple (T', £, A) is admissible for each normal subset ¥ C T'— {1} and
every set A of positive integers. A subgroup A of index n in I' induces a '-action
by right multiplication on the n—set A\T" of right cosets, which, after suitable
renaming, becomes a I'-action on [n] with the property that stab(1) = A. Thus,
an injective mapping from the set of all index n subgroups of I' into Hom(I', S,,),
and if n = (I': A) € A and A is such that ANY = (), then the image of A under
this map will be contained in the subset Hom%(T', S,). Hence, admissibility of

(I', X, A) implies that the numbers
P o : . — -
st(m):=[{A: A<T, (T:A)=n, AnT =0}, neA
are finite. For a set M C Ny of non—negative integers denote by

Homy™ (T, S(Q))
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the set of those (X, A)-admissible I'-actions on the set © whose number of orbits
is an element of the set M, and let

em(2) = Y 2*/nl.

neM

Proposition 1. Let (I', X, A) be an admissible triple, and let M C Ny be a set
of non-negative integers. Then

> [Hom&™ (T, 8,)| 2" /n! = enr ( > st(n) z"/n). (5)

n>0 neA

This is [13, Prop. 1]. Or course, putting ¥ = @, A = N, and M = Ny, we
immediately recover (4). However, introduction of the set ¥ allows us to also
count special types of subgroups, for instance normal or torsion—free ones, in
terms of the corresponding type of group action. As an example, take I' to be
a finitely generated virtually free group, A = N, M = Ny, and ¥ = tor(T')\{1}
as the set of non-trivial torsion elements. In this case sg(n) is the number
of free subgroups of index n in I'; and |Hom%‘M(F, Syn)| counts the torsion—free
I'-actions on an n—set, i.e., those I'-actions on [n] which are free when restricted
to finite subgroups.? Denoting by mr the least common multiple of the orders

of the finite subgroups in T
[Hom&™ (T, 5,)| = sE(n) =0, mr [n.

Letting ar(X) := |H0m§‘M(F, Smen)| and bp(A) := %(mp/\) we recover from (5)
the identity

A
Z )\ M br( ):mr)\a['()\), /\21
This relation has been a starting point for a detailed analysis of the growth

behaviour and the asymptotics of the function br(\) attached to a finitely gen-

erated virtually free group. Finally, here is an application of (5) involving

2The fact that torsion—free subgroups of a finitely generated virtually free group are free
follows from the structure theorem for these groups due to Serre (in the easier direction) and
Karrass/Pietrowski/Solitar; cf. [43, Chap. II, Sect. 2.6, Prop. 11] and [21]. The corresponding
result proved in the latter paper relies heavily on the fundamental work [44] of Stallings. See
also [12] for a full exposition of the structure theorem, its background, and related material.
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non—trivial choices for the sets A and M.

How many fized—point—free SL(2,Z)-actions are there on a 10-set having ex-
actly 4 orbits?

Call this number N. In (5) put I' = SL(2,Z), ¥ = 0, M = {4}, and
A =1{2,3,4}. Then

W

!
N:£<
1

o, (5 smm) ) )

n=2

Using the presentation I' 2 (a,b | a* = 05 = b%a=% = 1) we find that

|[Hom(T, S)| =1
|[Hom(T', S;)| = 2
|Hom(T', S5)| = 12
|Hom(T', Sy4)| = 96.

Plugging this information into (4) and taking log gives

> sa(T)2n= ) (—1)* (z—|—22 +22% 4424 4 ...)“/lu7

n>1 p>1

from which we read off that s,(T') = 1, s3(I') = 4, and s4(I') = 9. Using these
values in (6) gives N = 573300.

So far seen a number of counting formulae relating the enumeration of group
actions (i.e. ordinary permutation representations) to the computation of sub-
group numbers, culminating in a master identity (5) comprising all of today’s
knowledge concerning this particular problem. We also hinted at the fact that
such transformation formulae can be quite useful and have been a starting point
for some rather deep investigations concerning, for instance, the asymptotic
enumeration of finite group actions or the theory of subgroup growth (we shall
return to both these aspects in Lecture V). But learned something more. From
a perhaps somewhat philosophical point of view the existence of a formula like
(4) means that enumerating permutation representations of a group I' yields
decodable information on structural invariants of I' (in this case subgroup num-

bers filtered by index). Contrast this property of symmetric groups with the
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situation for a sequence {G,} of finite groups chosen more or less at random.
Generically, the numbers [Hom(I', G,,)| will certainly tend to carry some struc-
tural information on the group I', but in general there will be no way of decoding
this information. Indeed, this specific property contributes significantly to the
quality of the groups S, as a representation sequence. In dealing with possible
generalizations of permutation representations we will have to start from some
class R of sequences Ry, Ry,... of finite groups, which is a fairly natural and
technically sufficiently controlled ‘neighbourhood’ of the sequence {S,}, and it
is far from clear from the outset what such a class might be. However, our
answer to the question posed at the beginning of this lecture (whether there is
a ‘good’ generalization of permutation representations) will also have to depend
on the precise meaning attached in this context to the word ‘good’, i.e., we will
have to exhibit a criterion, applicable to sequences {R,} € R, when such a se-
quence is to be termed a good representation sequence. Building on the above

idea we will use the following criterion:

A sequence {R,} € R will be termed ‘good’ if the generating function
> [Hom(T, R,,)| 2" /n! (7)
n>0

can be expressed in terms of the representation sequence {R,} and invariants

of ' for all finitely generated groups T'.

The question what would be an appropriate and natural choice for the class R

will be taken up in the next lecture.

The Second Lecture: Generalizing permutation represen-
tations

The first lecture still leaves us with the task of specifying a class R of represen-
tation sequences { R, }, which would form a natural and technically sufficiently
controlled environment for pursuing the problem of generalizing permutation
representations from the combinatorial point of view outlined at the end of the

last lecture; and a priori it is far from clear where to look for an appropriate
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choice of R. The first hint in this direction (that I am aware of) came in the
paper [9] of Chigira. In this paper Chigira studies the equation 2™ = 1 in finite

wreath products of the form H S, and Hl A,, and in the Weyl groups W,

of type D, obtaining generating functions for the sequences {c,,(H 1.5,)}5%,,
{tm(H 1A}, and {en(W,)}02,. For instance, his result for symmetric

wreath products ([9, Theorem 2]) reads

00

D tm(H1S,) 2" [n! = exp (Z |H | tya(H) zd/d> ; (8)

n=0 d|m
Chigira’s results, limited as they are, nevertheless were the first to point towards
the possibility of developing an enumerative theory of wreath product represen-
tations generalizing both (5) and Chigira’s results in a far reaching and uniform
way; a quest which, if successful, at the same time leads to the discovery of a
rather natural extension for the concept of permutation representations. It is
this theory which we seek to outline in the present lectures. We now proceed
to the description of the class R that we are going to use. Let H be a finite
group, N < H a normal subgroup with H/N abelian, and let {II,,} denote the
sequence {5, } of symmetric groups or the sequence {A,} of alternating groups.

Define
(HZHH)N::{(f,W)EHZHn: Hf(i)eN}, n>0. (9)

The process of passing from the full wreath product H ! II,, to the subgroup
(H11,)n is referred to as localisation with respect to N. If (H : N) < 2 we call
such a localisation tame. Our class R will consist of all sequences {R,} of the

form (9). Specific elements of R are
- symmetric wreath products H 1S, (I, = S,, N = H)
- alternating wreath products H1 A, (Il, = A,, N = H)
- the Weyl groups W, of type D, (Il, = S,, H = C5, N = 1).

As it turns out, a sequence {(HII,)n} is a good representation sequence in

the sense of our criterion if (and only if) (H : N) < 2, and our basic counting
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4

result, to be explained next, computes the generating function (7) as well as
certain refinements of this series whenever {R,} has tame localisation and T
satisfies some rather mild finiteness assumptions (always met for instance if T

is finitely generated).
The Main Counting Result

We shall use algebraic multiplication in S(), i.e., the product m; - 72 of per-

mutations m,my € S(Q) is defined via
(m1 - ma)(w) := mo(mi(w)), w € Q.

Consequently, group actions on sets will always be right actions, and, for a finite
group H and a permutation group II(Q) on the finite set €2, multiplication in

the wreath product
HUI(Q) = {(f,m): [:Q— H, mT(Q)}
is given by the formulae
(frsm) - (f2,m2) := (f, 1+ m2)
f(w) = fi(w) fa(m(w)), we.

The canonical projection from H { II(€2) onto II(£2), which picks out the second
component, will be denoted by e. Let I' be a group (finite or infinite), H a
finite group, and let ¥ C I'— {1} be a normal subset of I'. Moreover, fix a non—
empty set A C N of positive integers, and collect all these data into a quadruple
@ = (I'H,%X,A). Given @ and a finite set Q we call a homomorphism 7 : ' —
H ) S(Q) (X, A)-admissible if the action er induced on @ is (X, A)-admissible
(in the sense explained in Lecture T), and we denote by Homg (T, H 1 S(2)) the
set of all (£, A)-admissible representations of I in H 1 S(2). The quadruple Q
itself is termed admissible if the set Hom® (T, H1S,) is finite for every n > 0. As
before, if T is finitely generated or of finite subgroup rank, then Q = (I', H,X,A)

is admissible for each normal set ¥ C T'— {1}, every finite group H, and every
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set A of positive integers. For a set M C Ny, an integer n > 0, and with Q,
N < H, and {II,,} as introduced above, we denote by

Homg’M(F, (H11,)n) (10)

the set of those (¥, A)-admissible representations 7 : I' = (H | II,,) ; such that
the number of orbits into which [n] decomposes under er is contained in the
set M. Tf Q is admissible, then the set (10) is finite for each set M of non-
negative integers and every n > 0. Our first main result computes the expo-
nential generating function of the sequence {|H01n§’M(F, (H11,)n) |32, when-
ever the quadruple Q = (I, H,X,A) is admissible, the representation sequence
{(H11I,)n} has tame localisation, and I" satisfies one further very mild finite-

ness assumption (again implied by finite generation). Before stating this result

we take a closer look at its key ingredients.

The series @Ir-g(z) Let Q = (T, H,X,A) be an admissible quadruple, and let
N < H be a normal subgroup with ///N abelian. Given a subgroup I" of (finite)
index n in I'; a homomorphism x : IY — H, and a right transversal {71,... , 7.}
for TV in T', define

Iy = {7 el: JIx(yvHT ") € N}7
J

where = : I' = {v,...,7v,} associates with each element v € T the repre-
sentative 7 of the coset I"y. Consider the map ¢ : I' = H/N sending v to
[1; x(v7v757")N. Since H/N is abelian, the composition of y with the canoni-
cal projection H — H/N factors through I'/[I,I"] inducing a homomorphism
X T/, T"] = H/N, and ¢ = x’ o Viv, where Vi : T — TV/[I7,T7] is the
transfer of I' into I['. Since the transfer is a homomorphism and independent of
the choice of representatives, the same is true for ¢; consequently, T’y = ker(3))
is a normal subgroup of index at most (H : N) in I, and is independent of the
system of representatives used in its definition. Let v : T' — S(I"\I') describe
the action of T' by right multiplication on the set T"\I" of right cosets of I in T,
and let II(I"\T') be the subgroup of S(I'\T') isomorphic to II,. Given a positive
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integer n and two normal subgroups I'y, 'y ST define

s(n, Ty, Ty) = > [{xeHom(,mH): Ty=Ty}|. (1)
(B =n
I'nE=@
o (I(T\T)) =Ty
As one can show, admissibility of @ implies in particular that the cardinal
number (11) is finite for all » € A and all normal subgroups I'y, 'y I T. With

each pair (I'm, I'v) of normal subgroups in I' we associate a formal power series

@Fl’_[\’(z) via

@ E |H|n L (TL FH,FN) ”/n

neA

Note that if two pairs (I'm, 'n) and (I'f;, I'y) of normal subgroups are conjugate
under an automorphism of T', then @Rv(z) = OE;’;’(Z) The maps x : [V —
H introducted above play a role analogous to that of characters in ordinary

representation theory.

The function ®r. Put ap(ll) := max,ea(S, : II,), and assume that
(H : N) < 2 and that I' contains only finitely many subgroups of index
po = max (ax(Il), (H : N)). Consider the system of subgroup pairs

B 1= {(FH,FN): (T: Tn) < aa(TD), (T : [w) < (H : N)},

and fix a set ¥ C I' which generates I' as a normal subgroup. With each pair
(T, Tn) € Ur we associate a formal variable 2(r,ry) and a discrete variable

v(I'm, T'y) taking non—negative integral values, and form the power series

‘I)F(Z(rn,FN); (I'm,Tn) € Ur) =Y, 11 (EFHFFN)/V I, Tw)l,

v (T'm, ')

where the right—-hand sum is extended over those maps v : Ur — Ny satisfying

the following 2|E| 4+ 1 conditions:
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S (T, Ty) €M

(Tm,In)

Y v(Tn, ) =0 mod ar(ll), e £ (12)
e¢l'g

Y v(I'n,I'n)=0 mod (H:N), ec k.
AN

The function ®r is called the exterior function associated with the data H, N,
{I1,.}, A, and M. Denote by Jr the intersection of all subgroups of index g in T'.
The quotient I'/ Jr is an elementary abelian 2-group of rank log,(32,<,, su(I')).
One can show that the function 1 does not depend on the choice of the nor-
mal generating system [, and that the functions ®r and ®r,z., formed with
respect to the same data {I1,,}5°, H, N, A, and M, coincide up to a canonical

identification of variables

Z(CnTw) 7 #(Cn/JrDn/Tr)s (F”’ FN) € Ur.

We shall see later that the exterior function ®r can be expressed explicitly as

an arithmetic mean of truncations of certain exponential functions.

The result. This is the following.

Theorem A ([31, Theorem 1]). Let Q= (T, H, X, A) be an admissible quadru-
ple, N < H a subgroup of index (H : N) < 2, M C Ny a set of non-negative
integers, and let {I1,,} denote either the sequence {S,} of symmetric groups or
the sequence {A,} of alternating groups. Assume that T contains only finitely
many subgroups of index max (aA(H), (H : N)). Then

> [Homg™ (I, (H 1 IL,)n)| 2" /n! = ®r (OFY (2); (Tn,T'w) € Ur),

n20 (13)
i.e., the exponential generating function of the sequence {|H0m , (H11,) |}OO
is obtained from the series ®r by replacing each variable ;) wzth the cor-

. . r
responding power series Op (2).

Sketch of the proof. Given a non-empty finite set @ and two normal sub-
groups I'n,I'y < T' define RCEJTV(Q) to be the set of all representations
7:T — H15(Q) such that
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(i) er is transitive,

(i) er is Y—free (i.e., e7(o) is a fixed—point—free permutation

for each o € X)),
(iii) (er)™YTI(Q)) = T'n,
(iv) 71 ((H15(Q)n) = L.

Moreover, given a base point wy € Q, let U(},wy) denote the subgroup of
H15(82) consisting of those elements ( f, 7) such that f(wg) = 1 and 7(wg) = wo.
Clearly, U(2,wo) = H1S( — {wo}), and hence

U(Q,wo)| = |H|®1 (0] — 1)L

The action of H1.S5(?) by conjugation on the set Hom(T', H 1 S(Q)),

for 7 € Hom(I', H 1 5(Q)), 2 € H15(Q), and v € T, restricts to an action
of H15(Q) (and hence of U(€,wy)) on the complex RCR’;(Q) Furthermore,
as a consequence of transitivity, this action of U(Q,wg) on RCE;V(Q) is free.
Let 7 : I' — H 1 5(2) be an element of RCR{IV(Q) Then the stabilizer IV =
stab.;(wo) is a subgroup of index || in T which avoids ¥, VN Y = (), and
satisfies 7' (I(I'\T')) = TI'y. For v € T put 7(y) = (f,,m,) and define a
map x, : [V = H via x-(7') := fy(wo). One checks that x, is in fact a
homomorphism and that x, = x,, if 7 and 7, are equivalent under the action

of U(f},wp). Choose elements v, € I' such that
(1) (wo) = w, w € Q,

and for v € ' and w € Q define 4/ € I" and o’ € Q by the equation 7,7 = 7.
Then, for v € T,

1 /(@) = [Ixr(r7z') mod N. (14)
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Combining (14) with the defining property (iv) of RCRJTV(Q) it follows that the
homomorphism Yy, constructed to 7 € RCII:‘;I’(Q) satisfies I'y, = I'y. Hence, the

assignment 7 — X, induces a map

RCIN ()
TV, wp) : —m { 5t F’H:I‘:I‘-}.
FH( /LUO) U(Qaw()) - (F:F%J:KH ok ()In( 7 ) * N
'nt=0

o (I(T\D))=T",
The most difficult part of the proof (and the part that we are not going to
say anything about) is to show that this map \Illl:g(ﬂ,wo) is in fact a bijection.
Assuming this result we roughly proceed as follows. Since Q is admissible, the
inclusion
RCLY () C Homd(T, H15(), |0 €A

shows that RCII:Q(Q) is finite for every set  with |Q] € A and all normal
subgroups I';, Iy I T. Hence, the cardinal numbers s(n, ', I'n) introduced

earlier are finite whenever n € A, and
IRCEY ()] = [HM7 (12] = D!s(19, T, Ty), (9] € A (15)

Now think of the set Homag™ (I, (H 1 II,)x) as being decomposed according
to the orbit decomposition associated with its elements 7, and of the maps
7 as being decomposed into the disjoint sum of the representations induced
by 7 on its orbits. Reversing this point of view we construct the elements
of Homp™ (T, (H 1 11,,))x) by glueing together representations from complexes
RCIE]{[V(Q) for various sets € and normal subgroups ', 'y < T'. Controlling
this process by means of the subgroup pairs (I'm,I'y) we can ensure that the
resulting representations map I' into the group (H11I,)y, and the relation (15)
is the decisive tool in enumerating the representations constructed in this way.

O

The Third Lecture: Some examples and a formula for the
exterior function

In order to familiarize ourselves with different aspects of Theorem A, let us

begin by looking at some special cases.
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Symmetric wreath products. Putting II, = S, and N = H we have
(H11L,)xy = H1 Sy, aa(Il) = 1, and Ur = {(I',T')}. Dropping the subscript

(I, I'), the exterior function ®r becomes

Op(z) = Z 2 vl = em(z),

veM

and Theorem A yields the following.

Corollary. Let Q = (T, H, 2, A) be an admissible quadruple, and let M C Ny

be a set of non-negative integers. Then

> [Homa™ (T, H1 S8,)| 2" /n! = ‘)M(Z |H | sgz(n) z”/n),
(16)

n>0 neA

where s (n) ;== > |Hom(I", H)|.
' (M:T)=n
T'nE=¢
Letting H = 1 in (16) we recover Proposition 1, the main counting result for
permutation representations, together with all its applications. If, on the other

hand, we let ' = G’ and H be arbitrary finite groups, |G| = m, and put ¥ = (),
A =N, and M = Ny, then we find that

i |[Hom(G, H 1 S,)|2"/n! = exp (Z |H | sg(d)zd/d), (17)

n=0 d|m

where s¢(d) := s{ 4(d) = ¥(G.)=4 |[Hom(U, H)|. This is a generalization of for-
mula (3) to symmetric wreath products. For G = C}, a cyclic group of order m,
formula (17) specializes to Chigira’s result (8) mentioned at the beginning of

Lecture II. For the dihedral group
D=D;={wo|uw=0?=1, owo=w)

of order m = 2/ the picture is slightly more involved. Let d be a divisor of m.

If d | £ then D contains d dihedral subgroups of order m/d, namely the groups

U; = (wh, w'o), 0<i<d
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Also, if d is even, D has one cyclic subgroup of index d, namely U = (w?).

Hence,
d|Hom(Dyq, H); d=1(2)
sp(d) = § tmya(H); d=0(2),d f1
Lm/d(H)—|—d|HOHl(Dg/d’H)|; dEO(Q)d| l,

and, by (17)

S [Hom(D, H1 8,)| = /nl = exp (|H| S [Hom(Deya, 1) (]2
n=0 d|¢

S >(|H|z>2d/d). (18)

P
Alternating wreath products. In Theorem A put I, = A,, N = H, ¥ = {),
A=N,and M =Ny . Then (H11,)y = H1A,, and the set Ur can be identified
with the system of all subgroups of index at most 2 in I'. Let I' = G = ({) be
a cyclic group of order m with m even. Then there are two subgroups of index
at most 2 in G, Gy = G and G, = ((*), and we denote by z, v, respectively

29, Vg their associated variables. Put £ = {(}. Our exterior function ®¢ takes

the form
2 ks 1
Og(z1,22) = Z = 5 exp(z1) cosh(zz) = = {ezl"'z2 + 621_22}.
nmso 1! 2
Z/QEO(z)

For d | m consider the subgroup U = (¢?) of index d in G. The generator ¢
acts on the coset space U\G as the d-cycle 7;(¢() = (U -1, U -(,..., U- ().
Consequently, we have 7y(G) C A(U\G) if and only if d is odd. From this we

see that
tmya(H), dodd

0, d even

s(d,G1,G) = {

and
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tmya(H), deven

S(d’Gz’G){o i il
A odd.

It follows that

01(2) = 0G,(z)= D2 |H|" tmpa(H)2"/d,
d|m
d=1(2)

Ox(2) = OG,(z)= D2 |H|" tmpa(H)2"/d,
d|m
d=0(2)

and, by Theorem A

> im0t = 3 { exp <|Z = a1 4]
n=0 d|lm

o (S A i) 41d) | 1)

dlm
For odd m this equation coincides with (8). Thus, we have obtained [9, Theo-
rem 4]. The special case of (19) where H = 1 and m = 2 is already found in [25,
Sect. 5]. As another example let us consider the Klein 4-group G = C% = ((, ).
Here, the exterior function @4 occurring in the enumeration of alternating rep-
resentations will depend on four variables zg, z¢, 2y, ¢y, corresponding to the
four subgroups Gy = G, G¢ = ((), G, = (1), and G¢, = ((n). Note that G¢,
G, and G, are equivalent under Aut(G). Let E = {(,n}. We have
2g° ZZ‘ 7 zg;”

e N D DI n o o o e
ug,uc,y,,,u@zo 0 #¢e Lye Hgme

ve+ven=0(2)
vntvey E()(Q)

exp(zo) [cosh(zc) cosh(z,) cosh(z¢,) + sinh(z¢)sinh(z,) sinh(z@)] =
l {620+ZC+ZT/+2(" e S R S e S ezo—zc-zn‘i'zw}_
Something interesting happens in the last step: by expanding the hyperbolic

functions in terms of exponential functions we obtain 16 terms, 8 of which can-

cel, with the remaining ones occurring in pairs. We will come back to the latter
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phenomenon and the problem of explicitly computing the exterior function ®p
in general at the end of this lecture. It remains to compute the interior func-
tions Og(z), O¢(2), ©,(z), and O, (z) corresponding to the variables zo, z¢, 2,

z¢y respectively. We have

|[Hom(CZ, H)|, d =1
s(d,Go,G) = ¢ 0, d=2
1, de=4
and
S(H), d=2
o(d, Gy @) = § s €
0, otherwise.
This gives
Hp?
Oo(z) = |Hom(022,H)|z—I—uz‘i7
H|w(H
Ols) = O,(z) = Oy, () = 1122

and hence, by Theorem A

> [Hom(C3, H1 A,)| 2" /n! = i (Z [Hom(C3, H1S,,)| z"/rz!)

n=0 n=0
P {1 + 3exp(—2|H|w(H) 22)},
where

> [Hom(C3, H1.5,)|z" [n! =

n=0

3
exp (|Hom(0227 H)|z+ %22 + %24);

cf. formula (18).

The Weyl groups of type D,. If we put I, = S,,, H = C5, and N =1, then
(H11,)n = W, is the Weyl group of the (crystallographic) root system of type
D,,. Consider again the cyclic group I' = G' = (() of order m with m even, and
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let ¥ =@, A =N, and M = Ny. Keeping the previous notation, the set Ur can
again be identified with the set {G}, G2}, and, as before

1
Dg(z1,22) = 5 {ezl+22 SE 621—22}_

For d | m consider the subgroup U = (¢?) of index d in G and a character
X : U —= Cy. It m/d is odd then x = 1, and G, = G1. If; on the other hand,
m/d is even, then there are two characters x : U — Cy: the trivial character

Xo = 1 with G, = Gy, and a non-trivial character x;. In the latter case
d
H (T =l £1,

ie., ( € Gy, and hence G, = G. We conclude that

1, m/d even

s(d,G,G1)=1 (d|m) and s(d,G,Gy) =
( =1 (d]m) ( 2) {0, m/d odd.

It follows that

O1(z) =)_2"12%/d and ©y(2)= Y 2%'27/d,

dlm d|lm
m[d=0(2)
and hence
=] 1 2[1—1 2[1
Y (Wo)z"nl=Zexp| > Al +exp| Y =2 .
n=0 2 d|lm d d|m d
m[d=1(2) m[/d=0(2)

Again, this formula also holds for odd m in virtue of (8), and we have found

[9, Theorem 5]. The corresponding result for the Klein 4-group is that

>~ [Hom(Cj, W,)| 2" /n! = = exp (42—{—67 + 2z ){1 +3€_4Z}.

n=0

Calculation of ®r. A decisive step for the further development of our the-
ory is the explicit computation of the exterior function ®r. As remarked in

the previous lecture, ®r does not depend on the (normal) generating system
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of T used in its definition, and its calculation may be performed in the fi-

nite group I'/Jr, where Jr denotes the intersection of all subgroups of index
po = max(ap(I1),(H : N)) in I'. Put

U 1= {F' V<D, (0:T) < MU}’

and let 7 : T' — I'/Jr be the canonical projection. The quotient V = T'/Jr is
an elementary abelian 2-group of rank r = log, (ZuSuo SM(F)), which we view
as a vector space over the field k = GF(2) with two elements. Let E be the
standard basis of V, and let (-,-) be the usual inner product on V' with respect
to E, i.e., (u,v) = Y wv;. We define a map™: V — Ut via o := 7 (vt). Tts
inverse is the map = : Uf — V given by I' = 0 and IV = v with v # 0 and
(v,x) = 0 for all @ € n(I”) if (I' : I'Y) = 2. Under this bijection the set Up is
identified with the subspace

Uy = Vo, © Vi

of dimension R = 'r(log2 ap(IT) + log, (H : 7\7)) in V@V, where Vi := {o} and
V2 := V. The standard basis of Uy is &€ = Uy N ((E x Vi) U (V1 x E)). The

inner product on V' induces the inner product
((u,v),(z,y)) = (u,z) + {v,y)

on V@V, and, hence, on Uy. Denote by @y = Oy (Z(u’u); (u,v) € Z/IV) the power
series obtained from ®p by replacing each variable 2(T,Tx) and v(I'm, I'y) with
the corresponding variable z(, . respectively v(u,v), where & = I'y and & = T'y.
Moreover, for a set M C Ny of non—negative integers and a (formal) power se-
ries f(z1,...,25) = e e 50 Qyy 2yt .. 22, denote by [f(z1,...,2z;s)]m the

truncation

|:f(217... ,ZS)}M = Z (111/1,...,1/3 le/l "'ZZS

of f with respect to M. The following result provides an explicit formula for
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®y, and hence also for the function ®r.

Theorem B ([34, Theorem 3.1]). We have

1
Oy = ——
Y T 2

v)eUy

exp( Z aey) — Z Z(z7y)):| :
))=1 M

((=9),(w,0))=0 (=), (wv

Sketch of the proof. Up to truncation with respect to M,
oy =3 TI =% /v(u,0),
v (u,w)EUy
where the right-hand sum is extended over the maps v : Uy — Ny such that
> viz,y) =0 (2), (u,v)€E. (20)
(@) (uw))=1

For a map v € K4V let
S=5():= {(u,v) €Uy : v(u,v) = 1}.

Viewing (20) as a system of equations over k, a map v : Uy — k is a solution

of (20) if and only if
> (u,v) = (0,0).

(u,v)ES

Hence, introducing the set
Sp = {S CUy: > (u,v)=(0,0), (0,0) & S},
(u,w)€S
and blowing up the solutions of (20) over k to maps v : Uy — Ny we obtain the

following description of the function ®y:

Dy = e*le0) Z H sinh(z(u)) H cosh(z(uw))s (21)

S€Sy (uw)eS (uw)eti\s

where Z/{E, := Uy — {(0,0)}. Expanding the hyperbolic functions in terms of

exponential functions, (21) can be rewritten as

@V — 62(0’0) Z Cs exp ( Z E(’U,, 'U)Z(u,u)) (22)

i i
EE{:{:I}UV (u,v) €Uy,
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with certain coefficients C. € Z[ 3 } For a sign function

22F—1
e :Ulu/ — {£1} define

Ei(e) := {S €8o: {(u,v) €S :e(u,v)=—1}=0 mod 2}
E_(e) := 8y — E4(e).

Then

C. =2~ 3 (— 1) Hless)esh )=}
. €% (23)
= 3" (B, ()| - F_(0)]).
Next, one shows that (i) if E_(¢) # () then C. = 0 (by setting up a bijection
between Fy(e) and FE_(¢) in this case), and (ii) |So| = PPR-R-1, Combining

(22) and (23) with (i) and (ii) we find that

(I)V — 2—R ez(o,o) Z exp < Z 6(u, ’U) Z(uﬂ,)>.

g
ce{x1}*v (u) €ty
Ey(e)=50

The proof of Theorem B is then completed by showing that the sign functions
e : UL, — {£1} satisfying Ey(c) = Sp are precisely those obtained from some
subspace H < Uy of codimension < 1 by putting

Fi ) = +1, (u,v) € H—{(0,0)}
SR =1, (u,v)ely — H.

Indeed, let H be a hyperplane in Uy, and let S be a subset of Z/l‘u/. Then we

have
> (u,v) € H ifand only if |SN(Uy — H)| =0 mod 2,
(uw)eSN(Uy—H)
and hence
> (u,v) € H if and only if |[{(u,v) € S: ep(u,v) = —1} =0 mod 2;
(u,w)€S

in particular, ey satisfies £4(ey) = Sp. The converse statement, to the effect
that a non—trivial sign function ¢ satisfying E4(¢) = S must come (in the sense

defined above) from some hyperplane of Uy, is less obvious. a
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The Fourth Lecture: Explicit formulae for abelian groups
and computations in Quillen complexes

Combining Theorems A and B with results from the theory of Hall polynomials,
it is possible to derive explicit formulae for the generating functions
Ynso [Hom(G, Ry,)|2" /n!, where (' is a finite abelian group and the representa-
tion sequence {R,} is any of {H1S,} or {H 1 A,} with a fixed finite group H,
or {W,}. This is a much more formidable task than, say, the derivation of Chi-
gira’s corresponding results on finite cyclic groups (cf. Lecture III), and serves
well to illustrate some of the power of Theorems A and B. Unfortunately, it is
also a lengthy and rather technical subject matter, and time does not permit
us to enter into much detail here. Instead, what I have chosen to talk about in
the present lecture is a fascinating link between such formulae and the topology
of certain Quillen complexes. Specifically, we will see how explicit identities for
elementary abelian groups may be used to produce an efficient and extremely
fast algorithm for computing the Euler characteristic of Quillen complexes as-
sociated with members of one of the representation sequences mentioned above.

The identities our algorithm is based upon are as follows. First,

> [Hom(Cy, H15,)|"/n! =
(24)

~e (] ) Hon(C5 . 1112 ).

Here p is a prime, r a non-negative integer, H a finite group, and the p—binomial
coefficient (;) is, by definition, the number of p-dimensional subspaces in an
P

r—dimensional vector space over GF(p). It is well known that
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Second, we have

n!

> [Hom(Cj, H1 A,)|2" /n! = 2“’"(

n=0

>, [H 5 H 1S,
5 Hom(Cs, zS)|Zn)

n=0

r—1
{14 = e (- o miger) b )
and finally
>~ [Hom(Cy, W,)|z"/n! =

. = 2-*(§j [ Hom{G3, Op S”)|Z”> {1 o [ — 1)e—2"2}. (26)

!
n=0 L

Of course, for p odd
[Hom(C}, H1 A,)| = [Hom(Cy, H1S,)|, n=>0
and
[Hom(C), W,)| = [Hom(C},C215,)|, n >0.

We begin by recalling some definitions and outlining the basic strategy under-

lying our approach.

The basic strategy. Let P be a finite partially ordered set, and let 2A(P) be its
associated (real) incidence algebra, i.e., the set of all functions f: P x P - R
such that f(z,y) = 0if z £ y, with pointwise addition and scalar multiplication,
and multiplication * defined by

(f*g)zy)= > flz,2)g(zy). (27)

r<z<y

2A(P) is an associative R-algebra with (two-sided) identity § given by

e ={y 12

It is easy to see from the definition (27) that an element f € A(P) has a left
(right, two-sided) inverse if and only if f(z,x) # 0 for all € P. The Mobius
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function pp is defined as the inverse of the zeta function (p of P, the latter

being given by
1

0, otherwise.

<y

Cp(z,y) = { 7
The order complex A(P) of P is, by definition, the abstract simplicial complex
whose k—dimensional simplices are the chains xg < ... < xp from P. The re-
duced Euler characteristic Y(A(P)) of A(P) is defined as Y(A(P)) = (1) f;,
where f; denotes the number of i—dimensional simplices of A(P). Since A(P)
contains precisely one simplex of dimension —1 (the empty chain), Y(A(P)) is
related to the ordinary Euler characteristic x(A(P)) by X(A(P)) = x(A(P))—1.
For a finite group G and a prime p define S,(G) to be the poset of all non—trivial
p-subgroups of G, ordered by inclusion. Similarly, define A,(G) as the subposet
of §,(G) whose elements are the non—trivial p-tori of G, i.e., the non-trivial
elementary abelian p-subgroups of G. The complexes A(S,(GF)) and A(A,(G))
appeared first in the work of Brown (see [6] and [7]) on Euler characteristics
and cohomology of discrete groups, and their homotopy properties were studied
in some detail by Quillen around 1976; cf. [40]. Quillen showed, among other
things, that geometric realizations of these two complexes are homotopy equiv-
alent, and that they are contractible if G has a normal p-subgroup. Moreover,
he conjectured that the converse of the last result holds. One of his main re-
sults ([40, Theorem 12.1]) implies the truth of this conjecture in the case that
G is soluble. In general, Quillen’s conjecture is still open, although significant
progress has been made using the classification of finite simple groups (see [3]).
Here, we focus on the computation of the (reduced) Euler characteristic of these

complexes for certain families of groups G.

By a result of P. Hall (see [18, (2.21)] or [41, Prop. 3.6]) the reduced Euler

characteristic of A(P) and the M6bius function on P are related by
X(A(P)) = pp(0, 1),

where P is the poset obtained by adding a minimum element 0 and a maximum
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element 1 to P. By the definition of the Mobius function,

XAP) =~ 3 up(0,2).
z€PU{0}
In particular, if P = A,(G), we can think of 0 as the trivial subgroup 1 < G.
Then, if T < G is a p-torus of rank r, we have (see [18, (2.7)] or [41, Ex. 5.2])

Nm)(1=T) = ,LLE(T)(LT) = (—l)r [)(;),

where £(T') denotes the lattice of all subgroups of T'. Hence, the problem of
determining X(A(A,(G))) is reduced to the problem of enumerating the p-tori
in G by rank. For an arbitrary group G this is difficult. However, if we know
[Hom(C7, G)| for each positive integer 7, then we can use Mdbius inversion on
the lattice of subgroups of C} to determine the number |Inj(C7, )| of embed-
dings of €} in GG. The number of p-tori in G of rank r is then obtained by
dividing [Inj(C7, G)| by the order of Aut(C}) = GL(r, p). The inversion process
just described together with certain analytic considerations explained below
produces an expression for Y(A(A,(G))) as an infinite series (formula (32)),
but we can use this series representation together with a result of K. Brown
to produce a finite algorithm which finds the desired Euler characteristic. Of
course, the efficiency of this algorithm depends on being able to quickly com-
pute the values |[Hom(C},G)|. If G is a member of one of the representation
sequences {H15,} or {H{A,} with some finite group H whose associated func-
tion [Hom(C}, H)| is known, or if G is one of the Weyl groups W,, formulae
(24) - (26) provide exactly this information.

The algorithm (outline). We shall need three series—product identities dis-
covered by Fuler in his investigations relating to partitions.® The first of these

identities is

L+ > pn)g"=J[(1=¢")7", la <1, (28)
n=1 n=1

3Cf. [14, Chap. 16].
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which exhibits the generating function P(q) = 1 + >22 p(n)¢" for p(n), the

number of unrestricted partitions of n, as an infinite product. The other two

0o m - ]
DI ey sy oo Sl | (RS DRI
and
e t"q(;) o0
S SN g ) poey ey Sl | SR (30)

where in both cases we have absolute convergence for |{| < 1 and |¢| < 1.
Formulae (29) and (30) can be given interpretations in terms of partitions with
restriction as to the number of their parts; see [1, Chap. 2, Ex. 17]. Both are
special cases of the g-binomial theorem; cf. for instance [15, Sect. 1.3] or [2,

Sect. 10.2]. Now define two functions F(z) and G(z) b

23
1 (2= 1)z =1)- (" =1)

||
Mg

respectively
1

= ;1—2)(1—22)---(1—2”)'

Setting { = g = 1/z in (29) gives
=[10a-@a/9mM7,
n=1

which, when combined with (28), shows that F'(z) is absolutely convergent for
|z] € (0,1], and that for |z| > 1 we have F(z) = P(1/z). If, on the other
hand, we put { = —¢ and ¢ = 1/z in (30), then we find that G(z) is absolutely

convergent for |z| > 1, and that

s

G(=)=TL (1~ (/2. > 1.

n=1

Combining the latter equation with (28) and the fact that F'(z) = P(1/z) finally
shows that
F(z)G(z) =1, |z]>1.
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These are the facts concerning the functions F'(z) and G(z) we are going to use.

By establishing the estimate

[Hom(CF+, )|/ T (' — 1)
|Hom(C§,G)|/Hj=] (pi —1) = phre(@F1 — 17

—_

one shows that the series
& (Lyye Mom(CEG)
k=0 il = 1)
is absolutely convergent for every finite group G and each prime p. Here, r,(G)

denotes the p-rank of G, i.e., the maximum over the ranks of the p—tori in G.

Next we claim the following.

Proposition 2 ([35]). For every prime p and each finite group G we have
, o |Horn(Ck,G)|
— X(A(A,(G))) = P(1/p) Z =

rd fe(pf —1)

Proof. By the previous observations, the right-hand side of (32) is (absolutely)

(32)

convergent, and we have

o0 o Hom{Ch G| = p(s) o0 . [Hom(CF, G|
PO E R R a1
&, lHom(CE )| p(2")
X ) &I ((p; )
R U [Hom(C, G|p 2
_g)kg( ) L = DITZE - 1)

For r > 0, let T'(p,r, &) denote the number of p-tori in G which have rank r.

We have
—UAA(G) = 3 (=) ) T(p,r, @),

and

|Inj(O;7G)| _ |Inj(C;,G)|
GL(rp)l P T (0 — 1)

T(])7 7‘7 G) =
Let V = C’;. Then

[Hom(V.G)| = 3~ [j(V/W,G)| = Y [mi(W, )],

w<v W<V
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the last equality following from duality in the lattice of subspaces of V. By
Moébius inversion, we find that

r

Wj(V, &) = 3 w(W,V) [Hom(W,G)| = 3 (=1)=* p(">") (;) [Hom(C¥, @),

w<v £=0

whence (32). O

Equation (32) is an interesting representation of Y(A(A,(G))) as an (absolutely
convergent) infinite series, but, as it stands, it is of course not sufficient to
produce a finite algorithm. However, by truncating the series on the right-hand
side of (32), estimating the remainder by means of (31), and applying a result

of Brown [6] to the effect that X(A(A,(G))) € pZ, we obtain the following.

Theorem C ([35]). Let G be a finite group, and let p be a prime. Define

P

1)~ 2P(1/p)

w(p, G) := min{k > 1,(G) : [Hom(Cy, G) i }

Then

#(p,G)—1 5 |Hom(CZIf,G)|] 7 (33)
P

C UAMA(E) = {P(l/m S ()

.
k=0 it pf — 1
where for x € R\LZ, [z], denotes the integer multiple of p which is closest to x.

Theorem C, when combined with formulae (24) — (26) provides a finite and
fast algorithm for computing the Euler characteristic of the Quillen complex
A(A,(G)) when G is part of one of the representation sequences mentioned

earlier, after the following two details are handled:

(i) Formula (33) involves P(1/p), so we must be able to efficiently compute this
value for each given prime p. However, evaluating the function G(z) at z = p

gives an alternating series rapidly converging to 1/P(1/p).

(ii) In order to determine k(p, @) one must know r,(G). The following lemma
gives r,(G) in terms of r,(H) when G is one of the groups H1.S, or Hl A, with
some finite group H, and also gives r,(W,). The results below are probably
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well known, but I have been unable to find an explicit reference other than [35].

Lemma 3 ([35]). Let n € N, and let p be a prime. Then

(a) r5(Sn) = [n/p].

rp(Sn)—1, p=2andn=2,3(4
(b)rp(An):{ (Sn) I (4)

T (150 )s otherwise.

(c) Let H be any finite group, and let 11, be one of A, or S,. Then

)= rp(In),  mp(H)
" ro(H)n, r,(H)> 0.

rp(H UL

TP(Sﬂ)v P > 2
(d) rp(Wn) = {n, p=2andn=0(2)
n—1, p=2andn=1(2).

The Fifth Lecture: Asymptotics of |Hom(G,H S,)| and
subgroup growth

Having dealt with the exact enumeration of generalized permutation represen-
tations it appears natural to ask about the asymptotic behaviour of arithmetic
functions of the form |Hom(T', R, )|, where {R,} is a representation sequence
of the type considered in Theorem A. Here, we will focus on the special case
where I' = (7 is a finite group and R, = H 1S, for some finite group H, which
has a distinct complex analytic flavour. This case in particular incorporates the
problem of asymptotically enumerating finite group actions, which has received
considerable attention since the early 1950’s, and was finally settled by myself
in 1995.* Another interesting feature of this special case is its connection with
the theory of subgroup growth: sufficiently precise estimates for the function

|Hom(G, H 1 S,)| with arbitrary G and H can be translated into asymptotic

4See [46] or [30, Sect. 1] for some remarks concerning the history of that problem.
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information on the function s/ (n) = ¥r.rv)=, [Hom(I”, H)| for a large class of
virtually free groups I'. We will illustrate this important aspect by deriving an
asymptotic formula for the function sff(n) in the case when T' is a free product

of the form
P=Gi*---xG, % I, (34)

with r,s > 0 and non-trivial finite groups G.,.

The function |Hom(G, H1.5,)|. In view of formula (17) the problem of ob-
taining asymptotic estimates for the arithmetic function in question is a special

case of the following.

(P) Given a real polynomial P(z), derive asymptotic information on the Laurent
coefficients o, of the entire function exp(P(z)) = 6% an2”, which is explicil in

P(z) and n.

Problem (P) was studied already around 1920 by Pdlya [39] in connection with
his investigation concerning the zeros of the derivatives of certain analytic func-
tions. His result is however not sufficiently explicit for our purposes. Also,
Pélya’s method does not give complete asymptotic expansions, but only partial
information on the first term. In the case P(z) = z, a solution of (P) is, of

course, given by Stirling’s formula
nl ~ (202" 2™ (n = o0), (35)
or, on a higher level of precision, by the expansion
n! & (2m)/2 /2 e {1 + i ¢ n“’} (n — o0) (36)
v=1

of factorials derived from Stirling’s asymptotic expansion of log I'(z). As is well
known, the coeflicients ¢, in (36) can be expressed in terms of Bernoulli numbers
via the (formal) identity

o Bk —(2k-1) ) _ o —v .
eXp(EQk(le)z _1+DZ=:1C,,Z . (37)

k=1
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In dealing with the function [Hom(G, H1S,,)| the crux is to obtain results for (P)
analogous to (35) or (36) for a sufficiently large class of polynomials including

in particular all polynomials

P~y VD o
e d
associated with a pair (G, H) of finite groups, while maintaining this high level
of explicitness in P(z) and n. Indeed, interpreted in this rather strict sense, (P)
is not a well-posed problem, since the class of functions {eP(Z) 1 P(z) € R[z]}
turns out to be too large to allow for a uniform asymptotic behaviour of the co-
efficients v,. Hence, we have to investigate problem (P) under certain technical
restrictions on the polynomial P(z), which on the one hand should be flexible
enough to accommodate a sufficiently large class of polynomials, while on the
other hand being stringent enough to enforce uniform asymptotic behaviour of
the a,. Let P(z) = Y5, ¢, 2" with ¢, # 0. Two important such conditions in

our context are Hayman’s condition

(H) oy, > 0 for sufficiently large n

and the gap condition

(G) ¢, =0form/2 <p<m.

Condition (H) can be rephrased in terms of P(z) as follows: P(z) meets condi-
tion (H) if and only if (i) ged (supp(P)) = 1, and (ii) Cmax(supp(P)(Z—d7)) > 0 for
every integer d > 1. Here supp(P) := {p € N: ¢, # 0} is the support of P(z).

The gap condition (G) has turned out to be the most efficient way of exploiting
the fact that the polynomials P (z) have the property that

supp(PY) € {d: d | deg(P#(2))}.

Indeed, it is this condition which allows us to obtain completely explicit esti-
mates for polynomials of arbitrary degree. The following result, which provides
a generalization of Stirling’s formula (35), conveys some of the flavour of my

investigations concerning problem (P).
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Theorem D ([30, Theorem 1]). Suppose that the polynomial P(z) meets con-
ditions (G) and (H). Then the coefficients o, of the entire function exp(P(z))
satisfy the asymptotic formula

K
V2mn

where ng := n/(mcy) and

nan/m exp (P(n(l)/m)) (n — o0), (38)

Oy ~

) m=/2, m odd
K =K(P):= p
m~2exp ( - 8”;/:), m even.

Sketch of the proof. Our starting point in proving Theorem D is the asymp-

totic formula

exp (P(7n))
ri/2mmn

in terms of the positive real root r, (for sufficiently large n) of the equation

(n — o00), (39)

Qy, ~

rP'(r) = n, which follows from Hayman’s work [20]. In order to turn (39) into an
explicit asymptotic formula we have to approximate r, by a function p, (which
is explicit in n and P(z)) with sufficient precision to allow r? and exp(P(r,)) to
be estimated asymptotically also, i.e., r ~ p™ and exp(P(r,)) ~ exp(P(pn)).

For this we will need 7, with an (absolute) error of order o(n~1t'/™). Let

1/m

= (m1P(1y2)

2#0

D(z) := <§; pey zm_“)

Applying Lagrange inversion to the equation w®(z) = z and substituting w =
n~™ and z = r~!, we find that
1

o~ —-1/m - 1 ﬁu+1 —v/m
o Gin {1%—;@ V+1n } (n — 00), (40)

where
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i.e., 3, is the coefficient of 2*~! in the expansion of (®(z))” around the origin.

Define a function p, by

il
-1 l/m 1+ -1 ﬁl"f'l —u/m} )
R AP

Clearly, py, is well-defined for sufficiently large n, and, by (40), r, = p,+O0(n™"),

hence

expl(P(pa)

" PN 2mmn
Note that so far we have only used assumption (H) (to ensure (39)). Expanding
(@(2))" = (mem)/™ (1 + Tps! £ 2m=#)¥/™ we infer from (41) plus the gap

1 mem

condition (G) that (i) #1 = (men)Y™, (i) B, = 0for 1 < v < m/2+ 1, and
(iii) that

(n — o0). (42)

m 4+ 2

_m=2
Bmja41 = 1 Cmya (Mem)™2m, 2| m. (43)
Abbreviating the sum 3., o<, <m 81 L %’Tn_l’/m as ¥, and using the fact that

¥ is of order O(n=Im/2/™) we find that as n — oo
gt = ng™/™ (1+2)" = ng™™ exp (nZ‘ -a?/2+ o(l)),

p o~ ngn/m exp (nZ — 0‘2/2) (n — OC')7 (44)

where

0, m odd.
In order to rewrite exp(P(p,)) we have to deal with the terms exp(p#) for

2 -1
{m+1 /31 ﬁm/2+1, ™m even

1 <p<m/2and p = m. First, it is immediate from the definition of p, that
-1
explph) ~ exp(ny/™), 1< < ||, (45)

So, it remains to deal with the case y = m for m odd and the cases y = m/2,m
for even m. For m even and p = m, the most complex subcase, we find that as
n — oo

1
pr=ng(1+X) " =ny—c;'nS + ";—I_ o? +o(1),

Cm
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and hence

m 4+ 1

26

exp(pl) ~ exp (no —clnE + 0'2) (n — o0, 2| m). (46)

In a similar way we find that

m/2 / m

exp(py,””) ~ exp (no W -

0') (n — 00, 2| m) (47)
and
exp(pl) ~ exp (no — c;}nE) (n — o0, 2 [ m). (48)

Taking into account formulae (42), (43), (44), (45), (46), (47), and (48) we
obtain (38). O
Applying Theorem D and Stirling’s formula to the identity (17) gives

|[Hom(G, H1.5,)| ~

’ -1 1 sH(d)
[,VH H (1-1/m)n . m ] S G H d/m 4
XG (| In) exp m n + |H| o d (| In) ’ ( 9)
d<m
where m = |G| and
. m~1/2, m odd
2% —
“ m~% exp ( = —Ll(sc(ﬂ;ﬁ%m 2), m even.

A noteworthy consequence of (49) is that for finite groups G and G,
|Hom(GY, S,)| ~ [Hom(G2, S,)] = |Hom(G4,S,)| = [Hom(Gs, S,)|, n > 0.

This phenomenon is referred to as ‘asymptotic stability’ of finite groups. Under
more stringent conditions on the polynomial P(z) (still met by the polynomials
PH(2)), the asymptotic formula (38) can in fact be extended to a full asymptotic
expansion of ay; cf. [30, Theorem 2]. The latter result should be viewed as an
analogue of Stirling’s expansion (36) and the identity (37) for polynomials of
higher degree. Its proof, which is based on the work of Harris and Schoenfeld
[19], is several orders of magnitude harder than that of Theorem D, and the
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result itself is too technical to be stated here. However, as a consequence of these
developments, a complete asymptotic expansion of the function [Hom(G, H1S,)|
is obtained for arbitrary G and H of the form right-hand side of (49) times a
Poincaré series in (|H|n)=1/™

|H|, and the sZ(d); cf. [31, Theorem 4].

, with coefficients given explicitly in terms of m,

Subgroup growth of free products. Let I' be a free product of the
form (34), m, = |G,| for 1 < pu < s, H a finite group, and put k¥ (n) :=
|[Hom(T', H1.5,)|/(n!). Then, by (49) and Stirling’s formula,

h{!(n) ~ LI}! |H|*'n~! @{j(n) (n — o0), (50)
where
- _ ()" - (sa,(mo/2)”
LH::(27T) 7 (my...my) ]/2|H|exp(( Z
r |H | 2|;U 2mg, (51)
and

) _\=x()n ’ | R s (d,) N\da/ma
& (n) := <|H|n) exp (X(F) n + il >y 0 (|H|n)

Note that, by results of Kurosh and Baer/Levi, the numbers r,s, and the groups
G (up to order and isomorphism) are isomorphism invariants of I' (cf. for
example [22, §35]). If T is as in (34), then its Euler characteristic (in the sense
of Wall) is given by®

|

(=3 — —r — 541
M) =2, - —r-s+
Putting ¥ =0, A = N, and M = N in formula (16) we find that the functions
hH (n) and 3H(n) := |H|""'sH(n) are related by the transformation formula
nhfi(n) =3 sF(k)hfI(n—k), n>1 (53)
k=1

5Cf. [8, Chap. IX, Prop. 7.3] or [42, Prop. 14].
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Hall’s formula (1) for free groups is a special case of this. In order to discuss

the asymptotic behaviour of the function sf(n) we adopt, for a moment, the

following more formal point of view. Consider two sequences 1 = hg, hq, ho, ...

and sq, $2, 83, ... of real numbers satisfying a relation
n
Z Sphp_r =cnh,, n>1 (54)
k=1

with some constant ¢ > 0. We require that s, > 0 and h, > 0 for n > 1. Define

the triangle A = (H} Jo<k<n associated with the transformation (54) by

0<k<n,

and for each fixed integer K > 1 put

n—K

AB =Y (),

k=K

For the application we have in mind both sequences {h,} and {s,} grow super-
exponentially fast. This means that generating functions associated with these
sequences are purely formal, which would seem to suggest that nothing can be
accomplished here by analytic means. However, a general philosophy — well
known for instance in probability theory — states that if the growth of the se-
quences involved is much faster than the growth of the transformation between
them (which in our case is exponential), then asymptotic information can be
transferred from one sequence to the other. The simplest result in this direction
is the following observation of Wright, which allows us to derive an asymptotic

formula for the sequence s, once we are given an asymptotic formula for h,,.

Lemma 1 ([48, Theorem 3]). If in the context of (54) we have AS) — 0 as

n — 0o, then s, ~ cnhy,.

Furthermore, combining the estimate (50) with methods from Real Analysis,

one can show the following.

Lemma 2 ([32]). Suppose that x(T') <0, let H be a finite group, and let K > 1
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be a fized natural number. Then as n — oo

K pH (k) RE (n — k)
2 W

k=K

= O(n™x), (55)

Formulae (50) and (53) in conjunction with Lemmas 1 and 2 now yield the

following.

Theorem E ([32]). Let T be a free product of the form (34) with x(I') < 0, and
let H be a finite group. Then we have

st (n) ~ L’ @' (n) (n — o0), (56)
where LA and ®H(n) are given by (51) respectively (52).

This is a generalization of [29, formula (30)]. As an example, consider the
modular group I' = PSL(2,Z). Here r = 0, s = 2, m; = 2, my = 3, and
Xx(I') = —1/6, and Theorem E gives

Sf’[SL(Z,Z)(n) e
|H|exp < 1)

nf ‘ [ / [ / 1
L D ™ o (= i)™+ )™+ ).

There exists a more elaborate asymptotic method for divergent power series due
to E. M. Wright [49] and — in greater generality — to E. A. Bender [5], which
involves the sums AU for all K > 1, and allows us, in the context of (54), to
derive a full asymptotic expansion for the function s, from a known expansion
of the sequence h,. This method, when combined with a full asymptotic expan-
sion of the function Af(n), yields a complete expansion for s (n) of the form
LE ®H(n) times a Poincaré series in (|H|n)~'/™r, whose coefficients are given
explicitly in terms of T and H. The latter result in turn is a decisive tool in
attacking a long standing problem going back to Klein and Poincaré concern-
ing the asymptotic distribution of the isomorphism types of subgroups in the

modular group and other free products. Consider again the (inhomogeneous)

modular group I' = PSL(2,Z) = C; * C3. By Kurosh’s subgroup theorem, any
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subgroup IV < T' is of the form

M2 Cyx...xCyx Cyx...xC3 % F,

A Iz

with non—negative integers A, y, and v. Hence, the isomorphism type of a sub-
group IV < T'is conveniently described by means of the triple ¢{(IV) = (A, u,v) €
N3. Moreover, if I has finite index in T, then an Euler characteristic calculation

shows that ¢(I") and (I" : [') are connected via the relation
3N+ 4p +6(v—1)=(T:T).

The problem to construct, classify, and enumerate finite index subgroups in
the modular group with given restrictions on the isomorphism type goes back
to Klein and Poincaré, and has received a large amount of attention since the
1880’s, both as an intrinsic problem for the modular group, and in connection
with the construction of modular forms; cf. for example [4], [16], [23], [24],
[36], [37], [38], [45], and the literature cited therein. Despite these enormous
efforts, not too much appears to be known concerning the asymptotic behaviour
of the arithmetic functions associated with these counting problems. Denote
by ar(A, g, v) the number of finite index subgroups I" < T' such that (I) =
(A pyv), let t; = (A, pi, ;) € N3 be a sequence of isomorphism types such
that n; := 3\ + 4p;i + 6(r; — 1) — 00 as i — oo, and consider the function
ar(t;). Then the Klein—Poincaré problem asks: what can we say about the
sequence {ar(t;)}5°, in particular what is its growth behaviour and asymptotics?
If t; = (0,0,v;) with v; > 2 and v; — oo as ¢ — oo, then the general results
obtained in [26], [27], and [28] concerning torsion—free subgroups of finite index
in finitely generated virtually free groups apply; for example we find from [27,
Theorem 5] that
ar(t;) ~ % 6“7 (v — 1) (5 — o0).

Consider the equation

= X () ()" B apr)  (59)

Ay >0
3A+4p+6(v—1)=n
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with ' and n fixed, and varying H. Then the set of triples (A, y,v) (and thus
also the values of the function ar) involved in the right-hand sum will remain
the same, while the coefficient (1o H))*(ea(H))#|H|” varies with H, as does the
left-hand side sff(n). Hence, by varying H we are able to produce sufficiently
many independent equations of the form (58) to solve for the ar’s in terms of
the functions sf(n). This in turn allows us to bring the asymptotic formula (56)
given in Theorem E respectively its refinement [32, Theorem 1] to bear on the
above problem, which, in conjunction with techniques for the approximation of
sums, leads to asymptotic estimates for the function ar(t;) for a large class of
sequences {{;} of isomorphism types. Moreover, this strategy is, of course, not
confined to the modular group, but can be used to systematically investigate
the corresponding more general problem for free products of the form (34) and

some of their lifts; cf. [32] and [33].
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