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ACTIONS ON ALGEBRAS AND APPLICATIONS

Yuri Bahturin ®

Abstract

This text represents some working materials for the author’s mini-
course delivered at Algebra School in Brasilia within the week of July
24 - July 28, 2000. This is not a finished research or survey paper and
not an account of the talks actually given. The author apologizes for
any inconveniences that may arise because of such a nature of all that
follows.

1. Theme One: Gradings and Actions on Associative Al-
gebras

1.1 Introduction. Some Examples

In this lecture mini-course we are going to discuss some recent results on vari-
ous classes of algebraic systems endowed with additional structure, which can
be formalized as the action (or, quite often, coaction) of a Hopf algebra. In
particular, we will speak about graded algebras, algebras with a fixed group of
automorphisms or with a fixed Lie algebra of derivations, etc.

There is no need to put an additional effort to have these structures: they
naturally exist in the whole number of situations. For example, the polynomial
or free algebras are graded by the degrees of their homogeneous elements and
classical simple Lie algebras are graded by their root systems. Any algebra A
has the automorphism group and the derivation Lie algebra, and these act on
A, along with their subgroups and subalgebras.

An important remark: in these notes we are not covering any substantial
portion of the material in the area of actions of algebras. Instead, we describe

some results and approaches suggested in the recent work of the author and his
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research colleagues. There are a number of other researches and their results
are summarized in quite a few books, of which we mention just [M3, Pa2, NVO].

We start with some simple examples, which can be done “by hand”.

Let us look, for instance, at the gradings by the group Z,. Suppose we have
an associative algebra A over a field F' with such a grading: A = Ag & A;. By
definition, Ay and A; are F-subspaces and AgAg C Ag, AgA1, A1Ao C A; and
A1A; C Ap. This tells us that Ap is a subalgebra, A is a left and right Ag-
module and there is also a bilinear map u : A} X A; — Ay which is compatible
with the left and right Ag-module structures on Ag and A;. In other words,
the role of Ay in this interplay between Ag and A; is much more important.
So, the basic question is: to what extent the properties of A are defined by
those of Ag? For example, if Ag = 0 then A? = A} C Ay = 0. If we take A,
arbitrary and g = 0 then, in this way, we expire all Z,-graded algebras A with
Ag = 0. If A2 = 0 then A* = 0. Indeed, it is sufficient to look only at the

product of the form abed where a € A;, b € A, c € A;,, and d € A;,. Here

129 39
is always 0 or 1. Now, if we add indices modulo 2, then a € A;, ab € A; 1i,,
abe € A viytis, abed € Ajqiytisri,- NOW My = 13, mg = 91 +12, M3 = 11+ 12413
and m4 = 1y + 4y + 13 + 74 take only two values 0 and 1. If at least two of them
take the same value 0, say, my and m;, with k& < [, then the product of the first
k factors and the next [ — k factors belongs to Ag, hence their product is zero.
Otherwise at least 3 values, say m;, my, ms take value 1. Then two neighboring
products of the factors from k+1 to [ and from [+ 1 to n are in Ag and, again,
the whole product is zero. Actually, exactly the same argument works to show
that if A is graded by a not necessarily commutative group G and (Ag)" = 0
then A*” = 0. But if we assume that Ap is commutative then already no such
simple answer exists. Still, there is an answer and this will be discussed later.
The situation will immediately change if we allow the number of grading
components to be infinite. For instance, let us consider the algebra A of poly-
nomials of positive degree. It can be given a grading by integers if we assume

that the homogeneous polynomials of degree n form the graded component A,

for any n € Z. Then A, = 0 except when n is positive. We have Ay = 0 but
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of course A" # 0, for any n > 1. This is just one example showing that if we
want some properties of Ag inherited by A we should always assume the grading
finite, i.e. only finitely many A, nonzero.

We can also look at the algebras where Z, acts by automorphisms. For
instance, what are the finite-dimensional associative algebras, which are simple
in the following sense. A is simple in this sense if it has no proper nonzero
ideals which are stable under the action of all automorphisms in question. Let
us also for simplicity assume that the base field F' of coefficients is algebraically
closed. If Zj acts trivially then we speak about simple algebras in the usual
sense, that is, A = M, (I), the full matrix ring of order n over F'. Otherwise,
let ¢ : A — A be a nontrivial automorphism of order 2, the generator of Zs.
Then if charF # 2 it has two eigenvalues =1 and we have the decomposition
A = A' & A" into the sum of the respective eigenspaces. If a € A,, b € Ag,

we have
p(ab) = ¢(a)p(b) = (aa)(8b) = (apB)(ab),

showing that ab € A,s. This shows that we can set Ay = A! and A, = A™!
and our algebra becomes Zs-graded. In this case it is well-known (and will be

shown below) that there are only three types of such algebras

1. A= F[(s)2] ® My, k a natural number; if we choose a multiplicative form
of Zy = (s), then the basis of Ag is spanned by the matrix units £;; and
that of Ay by sFE;;, with the natural product.

2. A = Mj,; where we have that A, as an algebra, is isomorphic to the full
matrix algebra M,,, n = k + [, and the grading is given by splitting any
matrix of order n into four matrices Ay, A1, Az and Ayy of orders k x k,
kx1, I xk,and [ x, respectively. The matrices with zero blocks A5 and
Ay form Ag and those with zero blocks A7 and Ay form A;.

Clearly, now we also have the classification of associative finite-dimensional
algebras, which are simple in the sense of the action of Z4 by automorphisms.

The action of ¢ on A is identity on Ay and negative identity on A;. By the
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way, in the exceptional case of charF = 2 if we take the group algebra F[(s)s]
then this is a Zy-simple algebra but it is not even semisimple and has a nonzero
nilpotent radical R = (1 4 s). This happens because (1 + s)? = 12 4 s? = 0.
This is one of the reasons why we will be assuming in the future that if a finite
group G acts on an algebra by automorphisms then its order is not divisible by
the characteristic of the field.

As we saw from our examples, any Zy-graded algebra over a field of char-
acteristic different from 2 is an algebra with an action of the group Z,. The
same is true for any algebra graded by a finite abelian group G over an al-
gebraically closed field F' of characteristic zero. To show this we consider the
group of characters G of G. The elements of this group are the homomor-
phisms (=characters) of GG into the multiplicative group F* of nonzero elements
of the base field F. The product x of two characters y, ¢ € G is given by
(x¥)(9) = x(9)¥(g). If A= €D, Ay is a G-graded algebra, then we may set
X oa=x(g)a as soon as a € A,. Now we have that G acts on A, that is,

(x¥)oa = (x¥)(g)a = x(9)¥(g9)a = x(g9)( 0 a) = x o (Y 0 a),

as required. Also, assume a € Ay, b € Aj. Then ab € Ay, and we have

x o (ab) = x(gh)(ab) = (x(g)x(h))(ab) = (x(g)a)(x(h)b) = (x o a)(x 0 b),

as required. It is well-known from the representation theory of finite abelian
groups that the elements of e separate the elements of G, that is, for any
g # h € @ there is a character x such that x(g) # x(h). It follows that
any G-invariant subspace B of A is graded in the following sense. One has
that B = P, By where B, = BN A, for any g € G. For, if a = ) a,
belongs to an invariant subspace B then for any y € GG we have the elements
xoa=3 x(g)ag. Itis now an elementary exercise to show that any a, € B,
proving the required. Conversely, any G-graded subspace B is G-invariant.
Indeed, in this case we have to check that y o ¢ € B only for homogeneous «,
that is, such one that a € A, for some g € G. But such an « is an eigenvector

for any y € @, proving the desired.
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As an example, we can classify Z,-graded simple finite-dimensional associa-
tive algebras, p a prime number. We set G = Z,. Given a finite-dimensional
associative algebra A without proper G-graded ideals we can assume actually
that A is acted by the group of characters G which is, as is well-known, iso-
morphic to G itself. So we will classify such A with an action of @ that have
no nontrivial proper invariant subspaces. Notice that the nilpotent radical N
of A is invariant under all automorphisms of A, in particular, under the action
of G. Tt follows that N = {0}. Now A is a semisimple algebra, that is the sum
of ideals which are simple algebras. If I is one of such ideals then @ acts on
the sets of these ideals. The stabilizer A = {x|x o I = I} of I under this action
is a subgroup of @, hence A = {e} or either A = G. In the latter case I is
@—inva,riant, so that A = [ is a simple algebra in the usual sense. In the former
case there are precisely p different minimal ideals in the orbit of I. Because the
sum of these ideals is @—invariant, these are all the minimal ideals of A. If ¢ is

~
a generator of G, we can write

A= @ vH). (1)

Now let us construct another algebra C' = F[é] Q) I, where F[(] is the group
algebra of G with the multiplication (y ® 2)(p®@y) = 0 in all cases except p = 1
in which case it is y @ (zy). Now G acts on C naturally: y*(r®z) = (x7) @ z.
If we do all the verifications we observe that @, indeed, acts on C'. Thus C
is a G-graded algebra. Let us show that our algebra A of the former case is
isomorphic to C'. We construct a map f : ¢ — A given by f(x ® ) = x o z.
Because for y # 7 the ideals yo I and mo [ are different, it easily follows that we
have a homomorphism of algebras. Since G is abelian f is compatible with the
action of this group. Now f is obviously surjective from (1) and the dimensions
of A and C are the same. So f is a homomorphism of algebras with the action of
G A simple argument then shows that f is also a homomorphism of G-graded
algebras. Actually, we can replace C' = F[@] ® I by another G-graded algebra
D = F[G) @ I, with natural G-grading D, = g ® I and natural tensor product
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multiplication (a ® 2)(b® y) = (ab) @ (zy). We only have to map 1* @ = into
Z?:_(} v'Rgl where g is the generator of G and v is a p-th primitive root of 1.
A much more general result can be found in [BSZ2]. We are able to describe
all G-graded simple algebras for a finite abelian group . Recall that in this
case a G-graded algebra R = ©4eq R, is a left module over the group ring F[@]
of the group G of all irreducible characters on G and any y € G acts on R by
an automorphism. Also recall that any G-graded algebra R = @,eqR, has a
canonical GG/ H-grading where H is a subgroup of G and R; = @,e: R, for any

coset t =alG € G/H.

Theorem 1.1 ([BSZ2]). Let G be a finite abelian group and R = ©yecRy a
finite-dimensional G-graded algebra over an algebraically closed field of charac-
teristic zero. If R is G-graded simple then:

1) R is semisimple with isomorphic simple components;

2) there exists a subgroup H C G and a simple ideal B C R such that B is
G/ H-homogeneous;

3) as a G-graded algebra, R is isomorphic to the left F[@]-module A =

~.

F[G] @ppa) B with the multiplication

_J]0 fox™ €A
(X®b)(¢®c)_{x®b(/\*c) Fo—= 5 with ke A (2)
where A is a subgroup ofé of all automorphisms p € G such that u(B) C B,
moreover, H = {g € G|\(g) =1 for all A € A}.

Note that any algebra R satisfying 1),2),3) is always graded simple. Clearly,
this description is up to the gradings of matriz algebras. We mentioned a result
on Z, earlier. Now we are going to use actions to obtain this classification and
then formulate, without proofs, the results from [BSZ2], with the description
of the gradings by an arbitrary finite abelian group on matrix algebras over
algebraically closed fields of characteristic 0.

So, we want to find all possible Zs-gradings on the matrix algebra A = M,
over an algebraically closed field of characteristic different from 2. According to

what was said above, given any such grading, we have an automorphism of order
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2 whose eigenspaces are exactly the grading subspaces Ag and A;. According
to the well-known Noether - Skolem Theorem any automorphism is equal to
an inner automorphism induced by a non-degenerate matrix 7' € M,. Since
the automorphism has order 2 we have that T? is a scalar matrix AE. By our
hypothesis there is u € F such that u?> = A. Then U = i‘T induces the same
automorphism and U? = E. Thus U is a diagonalizable matrix with the diagonal
elements +1. Using an appropriate basis, we get U = diag(1,...,1,—1,...,—1)
with k positive 1’s and [ negative 1’s, k + [ = n. If we take an arbitrary n x n
matrix X and naturally split it into four blocks X; of order k x k, X1, of order
k x I, X1 of order [ x k and Xy of order [ x [ then

Xll )(12 r—1 Xll _X12
( X21 X22 ) _XZI X22

This shows that

{8 V)

Now we give some results about the gradings of matrix algebras from [BSZ2],

omitting the proofs.

1.2 Abelian gradings on matrix algebras

We start with the definition of gradings of a special type. Let G be an arbitrary
group and R = M, (F) the n x n matrix ring over a field F. We consider the
n-th direct power G" = GG x ... X G of the group G and show that with any
element = (¢1,...,9,) € G" one can associate a grading on the matrix ring.

First, we define a grading on the subring generated by the matrix units

Ei;,1<i,j<n. Fixz=(g1,...,9.) € G" and let
Ej € Ry < g=g7'9; (3)

Since E;jEy = 0 for k # j, and gi_lgjgj_lg, = ¢7'g,, the condition (3) in
fact defines a grading on R. If in addition we require that all scalar matrices

belong to the component R, where e is the identity element of G (this condition
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holds automatically if we consider M, (F') not as a graded ring but as a graded
F-algebra), that is,

FCR., (4)

then we get a finite G-grading on M,(F). This grading will be trivial if and
only if g, = ... = ga.

Definition 1.2.1. A grading on the matriz ring M,(F) is called elementary if
it satisfies Condilions (3), (4{) for some set (g1,...,9.) € G™.

It is well-known that a simple (left) Artinian ring is isomorphic to the matrix
ring M, (D) over some division ring D. For such a ring one can obtain a grading

from Condition (1) if we require in addition that
D CR.. (5)

Definition 1.2.2. A grading on a simple Artinian ring M, (D) is called ele-
mentary if it satisfies Conditions (3), (5) for some set (g1,...,9,) € G".

Note that all matrix units are homogeneous with respect to any elementary
grading and the grading is uniquely defined by hy,...,h,—1 € G such that
Eis € Rpyye vy Bncin € R,y

Recall that amap p: A=, A, » B= @gGG B, is called a homomor-

G
phism (isomorphism) of graded rgings if ¢ is an ordinary ring homomorphism
(isomorphism) and ¢(A4,) C B,,g € G.

Next we are going to describe all abelian gradings on finite-dimensional
simple algebras over an algebraically closed field I of characteristic zero. If
( is a finite group then the matrix algebra M,(F') admits a lot of elementary
G-gradings. But one can construct also gradings of a different type, as it will
be shown below.

Let R = M, (F) be a matrix algebra over an algebraically closed field F' of

characteristic zero and G = (a), x (b), the direct product of two cyclic groups
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of order n. Let also ¢ be a primitive nth root of 1 in F'. We set

6n—l 0 0 0 ] 0 0
g e 001 ..0
R B
00 1
L. 1 100 .0
Then
XYGX'=cY,, XP=Y"=F (6)

and all X;ij,l < 4,7 < n, are linearly independent. Clearly, the elements
Xinj, 1,7 =1,...,n, form a basis of R and all products of these basic elements
are uniquely defined by (6).

Now for any g € (7, g = a'b’, we denote by R, a one-dimensional subspace
R, = (X;Y}) (7)
Then from (6) it follows that R = @,eq R, is a G-grading on M, (F).

Definition 1.2.8. The grading on M,(F) given by (6),(7) is called an e-
grading.

Remark 1.2.1. It is not difficult to see that for different primitive roots of
1, ¢ and g, the matrix algebra M, with e-grading is not isomorphic to M,
with p-grading, that is, there exist no isomorphism ¢ : M,, — M, such that
0(X.(e)) = Xu(p), o(Xi(2)) = Xp(pt). But one can extend the notion of graded
isomorphism and say that A = @©,cqA, is isomorphic to B = GrenB) as a
graded algebra if there exist a group isomorphism 7 : G — H and algebra
isomorphism ¢ : A — B such that ¢(A,) = B;(,). In this sense the e-grading

and the u-grading are isomorphic.

All homogeneous components of the grading defined above are one - dimen-
sional. Hence it cannot be elementary because the identity component of any

elementary grading has dimension at least n.

Another way for finding new gradings is the tensor multiplication. Let G

be an abelian group and S, T two subgroups in G. If A = G545, B = GierBs
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are some S- and T-gradings on A and B, respectively, then C = A® B is a
G-graded algebra with Cy = ©4-,A;B; and Supp ¢ = ST. In particular, one
can equip C = A® B with a G = S x T-grading if A is S-graded and B is
T-graded. Moreover, if dim A; = 1,dim B; =1 for any s € Supp A,t € Supp B
then dim Cy =1 for any g € Supp C.

Now we can show how to construct any grading on a matrix algebra with

one-dimensional components.

Theorem 1.2 ([BSZ2]). Let F' be an algebraically closed field, char F = 0,
and M,(F) = R = &,ecRy a grading on a malriz algebra over F by an abelian
group G such that dim R, <1 for any g € G. Then H = Supp R is a subgroup
of G, H=Hy x---x Hy, Hi~7Z,, X Zp.,,i =1,...,k, and R is tsomorphic to
M, (F)®---® M, (F') as an H-graded algebra, where M,,(F') is an H;-graded

algebra with some ¢;-grading.

We call a G-grading R = ©,cqR,“fine” if dim B, < 1 for any g € G. The
previous Theorem gives us all “fine” gradings on M,(F). In fact any abelian
grading on M, (F) can be constructed from the “fine” and elementary gradings

in the following way.

Theorem 1.3 ([BSZ2]). Let G be an abelian group and M, (F) = R = ©,ecR,
a matriz algebra over an algebraically closed field F, char F = 0, with a G-
grading. Then there exist a decomposition n = tq, a subgroup H C G and a
tuple (g1, ...,9,) € G such that M, (F) is isomorphic to My(F)® M,(F) as a
G-graded algebra where M,(I") is an H-graded algebra with a “fine” H-grading
and M,(F) has an elementary grading defined by (g1, ..,4,)-

In the proof of 1.3 it is useful to use the following result:

Lemma 1.2.1. Let C = My(F) be a k x k malriz algebra over a field F' with
a G-grading C = SyeqCy. If dimC. =1 then this G-grading is “fine” and any

non-zero homogeneous element in C' is invertible.

Our most recent researches allow at this point stating the following result

about the structure of not necessarily simple graded rings.
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Theorem 1.4. Let G be a finite abelian group and A is a finite-dimensional
graded algebra over an algebraically closed field F' of characteristic 0, N the
nilpotent radical of A. Then there is a semisimple graded subalgebra S in A
such that A =S @® N and, given another subalgebra S’ with the same property,
there is an element © € N, such that S' = (14 z)S(1 + z)™".

Another result is the description of simple graded modules over a finite-

dimensional simple graded algebra.

2. Theme Two: Actions and Polynomial Identities on
Associative Algebras

In this part we again consider graded associative algebras over an arbitrary field

F" which have the form

B=3 &, (8)

g€eG

where G is a finite multiplicative group and
RyRy, C Ry, forall g,h € G.

Definition 2.0.4. A Pl-algebra is an algebra satisfying a non-trivial polynomial
identilty. If A is an associative algebra then this is an identical relation of the

form

T1...Zp = Z QsZg(1) " To(n)-
TgESp
o#e
In the case of Lie algebras as well as so called Lie type algebras(see Part 2.3) we
must consider so called left-normed products, i.e. those where each next factor
is multiplied on the product of all previous ones, say a, ab, (ab)c, ((ab)c)d, ete.

Then the polynomial identity takes the form
ToT1...Tp = Z BoToZs(1) """ To(n)-
Uf;:,
Bergen and Cohen showed in [BC] that any G-graded algebra R is a PI-

algebra as soon as its identity component R, is a Pl-algebra. This is not true if
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( is infinite because any free associative algebra with identity element is graded
by the infinite cyclic group with identity component the base field. The proof in
[BC] uses a PI-structure theorem on the centralizers of separable algebras proved
by Montgomery in [M1]. This approach does not produce a bound on the degree
of the polynomial identity satisfied by R except in the case when R is graded-
semiprime. QOur primary aim in [BGR] was to provide a new, quantitative
proof of this result which bounds the minimal degree of the polynomial identity
satisfied by R in terms of |G| and the minimal degree of an identity satisfied by

R, only. Namely, we prove the following:

Theorem 2.1 ([BGRY]). Let F' be an arbitrary field and let G any finite group.
Suppose that R is a G-graded associative F-algebra such that Ry satisfies a
polynomial identity of degree d. Then R satisfies a polynomial identily of degree
n, where n is any integer satisfying the inequality

GI"(1Gld — 1)*"
(IGld —1)!

=

It follows that R satisfies a polynomial idenlity of degree n as soon as
e|G|(|G|d — 1)2 <n,
where e is the base of the natural logarithm.
A similar result holds for algebras graded by finite semigroups.
Finally, it should be pointed out that this combinatorial technique was in-
spired by the work of Latyshev [Latl] and Regev [Re2].

But before we begin our exposition of combinatorial techniques we devote

some space to a shorter proof using the structure theory.

2.1 Structure Theory Proof

A simple remark is as follows.

Remark 2.1.1. Let R be a G - graded associative algebra as in (8) with R, a

Pl-algebra and K be any commutative algebra over I'. We consider the tensor
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product R @ K and set (R ®@r K), = Ry @r K. Then R @p K is a G- graded

algebra with its zero component a Pl-algebra.

An important consequence is that if R@r K as in Remark 2.1.1 turns out to
be a Pl-algebra and K is an associative algebra with identity element we have

that R is itself a Pl-algebra.

2.1.1 Semiprime Case

We first consider the case where R is a semiprimitive associative algebra as in
(8) with R. a Pl-algebra. We are going to use the following result which is an
adaptation of [BMPZ, Lemma 1.5 in Chapter 5]. In that Lemma it is shown that
the dimensions of all irreducible R-modules are uniformly bounded if and only
if the dimensions of all graded irreducible R-modules are uniformly bounded
(provided G is a finite group). Actually, it has been shown that with each
irreducible R - module V' one can associate an irreducible graded R - module
W with dim V' < dim W. We briefly recall the construction.

Suppose that V' is an irreducible R - module. Consider a collection of vector
spaces W, with attached F' - isomorphisms 7, : W, — V, g € G. Set W =

GgeaW,. We define the structure of a graded R - module on W as follows:

aow= Ta_'l_g(czOTg(w)) where a € R,, w € W,, a,g € G.

The mappings 7,, ¢ € G, can be extended to an epimorphism 7: W — V
which is a homomorphism of (non - graded) R - modules. Pick any non - zero
homogeneous element w € W; let S be a graded R - module generated by w,
and let 7" be a maximal graded R - module not containing w. Then, obviously,
U= (S+1T)/T is a graded irreducible R - module. Since V is irreducible and
7(w) # 0 one has 7(T) = {0} and 7(S+7T) = V. So we obtain an epimorphism
7:U — V of non - graded R - modules.

This enables us to prove the following.

Proposition 2.1.1. Let R be as in (8) with G finite. Suppose that the base
field F is algebraically closed and such that its cardinality exceeds dim R.. If
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R. satisfies a non-trivial polynomial identity of degree d then the dimensions of

all irreducible R - modules are bounded by |G| - (d/2).

If R is a semiprimitive algebra as in Proposition 2.1.1, with R. a Pl-algebra,

then we can consider R as a subcartesian product in the Cartesian product

P = H P, where each P, is primitive ©)

It follows by Proposition 2.1.1 that each P, satisfies a polynomial identity
of degree at most |G| - d.

Now we can prove an intermediate result.

Proposition 2.1.2. Let a graded semiprime associative algebra R as in (8)
be such that R. salisfies a polynomial identity of degree d. Then R is itself a
Pl-algebra satisfying a polynomial identity of degree |G| - d.

2.1.2 Amitsur’s trick

If R is an arbitrary algebra as in (8), with R, a Pl-algebra of degree d, let us
consider an algebra

B=]]Bs (10)

pel
where [ runs through the set of all p - tuples of the form (a4, ..., a,) witha; € R
and p = |G| -d, Bg = R for ay 3. It is obvious that B is a G - graded algebra

with its zero component isomorphic to

B. =TI (Bs).. (11)

Bel
Clearly, B, is a Pl-algebra of still the same degree d and then, by the above
section 2.1.1 , B/L(B) is a Pl-algebra of degree p, L(B) being the lower nil-
radical of B. If f(z1,...,2,) = 0 is a non-trivial identity of B/L(B) then for
any yi, ..., Yy, there exists n such that (f(zy,...,2,))" = 0. It remains to choose
Y1,-..,Yp so that for any selection ay,...,a, € R there is a component 3 € [
such that z1(8) = aq,...,z,(8) = a,.

Finally we have our main result.



ACTIONS ON ALGEBRAS AND APPLICATIONS 85

Theorem 2.2 ([BC]). Let R be an associative algebra over an arbitrary field
F which has the form

R=ER, (12)

9geG

where G is an additive commulative group. If Ry salisfies an identily of degree
d and p = |G| then R satisfies a power of the standard identity of order pd, that

is, for some t we have

Spa(Eilz s +5 l'pd)t =0

identically in R.

2.2 Combinatorial Proof

We need some special techniques to work with identities in the case of graded

algebras.

2.2.1 Free graded algebras

Let F'(Z) be the free associative algebra over F generated by a countably infinite

set Z, and let G be a finite group of order s. We represent Z in the form

7=\ 7,

geG

where Z, = {z](g),ztgg), ...} are disjoint sets. We often abbreviate Z; = Y and
zf]) = y; for each ¢ > 1. The indeterminates from Z, are said to be homogeneous
of degree g. The homogeneous degree of a monomial zz(lgl) e Z}ft) in F(Z) is
defined to be g1g, - - - g:, as opposed to its total degree, which is defined to be t.
Denote by F, the subspace of the algebra F'(Z) generated by all the monomials
having homogeneous degree g. Notice that F,F, C Fyp, for every g,h in G.
Consequently, F(Z) = D, Fy is a G-grading, and F'(Z) is the free G-graded

algebra generated by the sets Z,, g € G.
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2.2.2 Graded identities

Let us fix an enumeration of G: 1 = ¢y, 9a,...,¢s. R is said to satisfy the graded

identity
f= f(z](gl), e Zt(fl), 21(92), ey z,(zgz), ey 21(95), : 104 zf(fs)) =0,
where f is a nonzero element of F'(Z), if for arbitrary rggi), R rif‘) € Ry, the
equality
f(rig‘), B3 rifl), rggg), s@ns rifz), st rﬁgs), ; rt(fs)) =0

is satisfied by R. We denote by T(R) the set of all polynomials f € F'(Z) such
that the graded identity f = 0 is satisfied by R. In other words, Tg(R) is the
ideal of G-graded identities of R.

If, for each @ > 1, we set z; = > . z}g), then the set T'(R) of polynomials
in the z;’s vanishing in R coincides with the T-ideal of polynomial identities of
R. Tt is clear that T(R) C Te(R).

For each n > 1, define a subspace of F(Z) by

Vi = Spanp{z,(1y- - Tom)| @ € S}

Then V,, is the space of multilinear polynomials of degree n in the variables
xz;, 1 <0 < n. Let G™ denote the direct product of n copies of G. For each

a=(a,...,a,) in G" define

Vo = Spang{z,(1) " Zo(n)| 0 € Sny2zi = 21 for each i}.

Notice that V,* is the space of multilinear polynomials of degree n in the variables

vi=@p v

aeGn
From the above definitions, it follows that V,, C VnG and

z](al), e z,(f”)

. Assign

Vi, NTe(R) =V, NT(R).
Observe as well that

dimgV, = n! and dimgV = |G|"n!
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The integers
G

cn(R) imp VO To(R)

v, G
m and Cn(R) = dlmF

are called the nth codimension and the nth G-graded codimension of R.

Lemma 2.2.1. For every n, c,(R) < c%(R).

Proof. We have

Vo  _ Va ~ Vo + [V N Ta(R)]
V.NT(R) Van[VeNnTa(R)]  VINTa(R)

the latter being a subspace of
Ve
VENTa(R)
O
Notice that R satisfies an (ordinary) multilinear polynomial identity of de-
gree n precisely when ¢,(R) < n!l. Therefore, by the lemma, in order to prove

that R satisfies an identity, it suffices to show that ¢¢(R) < n! for some n.

2.2.3 The width of a monomial

For a monomial w in F(Z), we say w has width m if w contains a product of
m consecutive submonomials of homogeneous degree 1, and m is maximal. We
wish to demonstrate next that if a monomial has large total degree then it must
also have large width.

Let us begin with a general lemma about finite groups.

Lemma 2.2.2. Any fived word w = ayay---ajgq in a finite group G' contains

a product of d consecutive subwords each with trivial evaluation.

Proof. Set ¢t = |G|d. Then the number of initial subwords w; := ay,wy :=
a1dg, ..., W i= ayay - --a; of wis t. Therefore there exists g in G which is the
evaluation of at least d-many of these initial subwords. If ¢ = e then there

exists 73 < --- < 14 such that evaluating in G' we have

€ =W = Wi = = Wiy
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Therefore in this case the required product of subwords of w is

g, (gt = gy} o (i ot =o g

So, we may assume that g # e and g is the evaluation of at least d + 1 initial

subwords. So, there exists 77 < --- < t441 such that evaluating in G we have
g=wj =W, = - = wid_'_l,
Now for each j, 1 < j < d, write w;,,, = w;;g; where g; is the appropriate

subword of w. It follows that the evaluation of each g; in G is 1 and

Wigyy = Wi 9192 "~ gd-

Thus g1g, - - - gq is the required product of subwords of w.

We now apply this result to the free G-graded algebra.

Corollary 2.2.1. Fvery monomial w in F(Z) of total degree |G|d has width at
least d.

Proof. Again put ¢ = |G|d, and write w = vyvy - - - v, where the v;’s lie in Z.
Let a; be the homogeneous degree of each v;. Now applying Lemma 2.2.2 to

the fixed word ajas---a; in G yields the desired result.

We now deduce the key result of this section. Recall that we haveset Y = 73
and y; = ZZ(I) for all 7 > 1.

Proposition 2.2.1. Suppose that

Yiyz - Yd + Z QoYo(l) - - Yo(d) € Ta(R),
o'ESd
o#l
where the a, are scalars. Then for every monomial w = vivg---vy in F(Z)

with total degree t > |G|d we have

vy - vy € Spangp{vya)- vy T € S, T # 1} 4+ Ta(R)
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Proof. By the previous corollary, w = w'u; - - - uqw”, where the u; are elements

of Fi. Thus,

ViV -V = w'ul LAl wa”
P / 1" T
= — E QW' Us(ry - Up@yw”  (mod Ta(R)).
c€Sy
a#l

2.2.4 Good permutations

Let 1 <t < n be an integer and ¢ € §,. Following [Re2], we call the per-
mutation o {-bad if there exists a sequence 1 < i3 < --- < 7 < n such that
o(i1) > -+ > o(i;). Otherwise, ¢ is t-good.

For each ¢ € S, and a = (a1,...,a,) in G", set w? = Z5(1) " ** Zo(n), Where
Z = zz(a‘). The monomial w? is called t-good if o is {-good. Notice that there
are |G|*-many ¢-good monomials in V. corresponding to the same t-good per-

mutation in S,.

Proposition 2.2.2. Suppose that R, satisfies a polynomial identity of degree
d, and fiz integers t and n where n > ¢ > |G|d. For each a = (a1,...,a,) in
G, V@ is spanned, modulo V. N Ta(R), by the set

{wilo €S, is t—good}.

Proof. We may assume that R. satisfies a multilinear polynomial identity of
degree d. Fix a in G™ and set w = w{ = 2129 - z,, where z; = ZZ(E”) for each 1.
The natural basis
M, ={w;|o € Sn}

of V! is well-ordered by the left lexicographic order on the subscripts of the
2;’s. We shall show that whenever o is ¢-bad, then, modulo V¢ N Tx(R), w? is
a linear combination of smaller monomials in M,,.

By assumption, there exist 1 <i; < --- < ¢; < n such that o(4;) > --- >

o(i:). Factorize w, accordingly:

W, = w()(za(il) a ')(Zo(ig) § 3 ) Tr (Za(z',) i@ )
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Write w; = 25(i;) * + * Zo(ij,—1) for each 5, 1 <7 <t —1, and wy = 25(,) * ** Zo(i)-

Now, by Proposition 2.2.1, we have

Wiwy - - Wy = Z orw-y - Wrpy  (mod V7N Ta(R)),
TES
Tl

for some scalars a,. It follows that

W, = Z W0 Zo(ipy) ***) ** * (Polin) +°)  (mod V¢ N Ta(R)).
€S,
e
Because all the monomials on the right are smaller in the lexicographic ordering,
the result now follows.
a
According to [Latl], if n > ¢ then the number of t-good permutations in S,

is at most
(t _ 1)2n
(t—1)!

We have, therefore, the following immediate corollary to Proposition 2.2.2.

Corollary 2.2.2. Forn >t > |G|d,

G (= >
(t—1)!

We are now ready to deduce our main Theorem 2.1.

cG(R) <

ki

Proof. For n large enough,

¢y < 1GI"(IGId = )
e (R) £ ¢ (R) < T (Gld-1)!

Therefore R satisfies a multilinear polynomial identity of degree n. It remains

to estimate the minimal integer n satisfying this inequality. Consider Euler’s

Gamma function
I'(z) 2/ et df,
0

The following inequality is well-known:

€

< F(:I:—I— 1)

(3:)1 = L(z+1)

2rx
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for all > 1 (see page 105 of [F], for example). Substituting n for « where n is
the least integer greater than or equal to €|G|(|G|d — 1)? yields

(161061 - 1)) < (%) < P(n+ 1) =n!

as required.

2.3 G-identities of associative algebras

Another direction of PI theory is identities of algebras with involution. Let A be
an associative algebra with an involution % : A — A. The classical S.Amitsur’s
theorems [AM1, AM2] say that a non-trivial *-identity in an associative alge-
bra with involution * implies a non-trivial ordinary identity and if the set A4
(respectively, A_) of symmetric (respectively, skew-symmetric) elements satis-
fies a non-trivial polynomial identity then the whole of A satisfies a non-trivial
polynomial identity. In that proof no relation was found between the degrees of
identities in Ay or A_ and in A. The new combinatorial approach just described
gives us an upper bound for the minimal degree of an identity on A depending
only on the degree of #-identities or, say, on the degree of the identity in A4 (or
on A_) and that in A.

In fact, a more general construction can be considered. Namely, let A be an
associative algebra over a field F' and Aut™(A) the group of all automorphisms
and anti-automorphisms of the F-algebra A and G < Aut™(A) a finite subgroup.
If Aut(A) is the group of all automorphisms of A then G N Aut(A) is a normal
subgroup of G of index < 2.

Let X be a set, G a finite group and H a normal subgroup of G; if we
interpret H as automorphisms and G'\ H as anti-automorphisms, we can con-
struct F/(X|G), the free algebra on X with a G-action. Now F(X|G) is freely
generated by the set {29 = g(z) | # € X,g € G} on which G acts in a natural
way: (291)2 = 29291 Extend this action to F(X|G): if v and w are mono-

mials, g € G, then (vw)? = v9w? if g € H and (vw)? = wiv? if g € G\ H.
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By linearity, now G acts on F'(X|G) with H as automorphisms and G \ H as
anti-automorphisms.

Given any algebra R as above, by interpreting G < Aut*(R) and H = G N
Aut(R), any set theoretic map ¢ : X — R extends uniquely to a homomorphism
é: F(X|G) — R such that ¢(2?) = ¢(z)?. For a fixed R, let ® be the set of all

such homomorphisms and set

I'= () Kerg.
$€D
An element f € F(X|G) will be called a G-polynomial; if f € I, then f will be
called a G-identity for R.
Let G" =G x--- x G and g = (g1,...,9,) € G". Write

P, = Spa,nF{;ti‘(’;l)) .EZ(EES) | o€ S}

for the space of multilinear polynomials in F'(X|G) in the variables «{',... 29",
In particular, for 1 = (1,...,1) we have P,; = P,.
A G-identity f is G—multilinear if f lies in )

has the form

s€Gn P, , and essential if it

f=zt...zt + E g T4y " Ty

1#£0€SpgeG™
The main result about G-identities we would like to formulate ([BGZ2]) is as

follows.

Theorem 2.3 ([BGZ2]). Let A be an associative algebra over a field F' and
G a finite subgroup of Aut™(A). Suppose that A satisfies some G-mullilinear
essential identity of degree d. Then A satisfies a non-trivial polynomial identity,

whose degree is a function of d entirely.

Using this general statement we improve Amitsur’s results mentioned above.
In the case G = {1, +} where * is an involution, G-polynomials and G-identities
are called *-polynomials and *-identities, respectively. Besides, any *-identity

of degree d implies a multilinear essential *-identity of degree at most 2d.
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Corollary 2.3.1. Let A be an associative algebra with an involution * over a
field F satisfying a non-trivial x-identity of degree d. Then A satisfies a non-

trivial polynomial identily whose degree is a function of d entirely.

Corollary 2.3.2. Let A be an associalive algebra with an involution * over a
field F. If a non-trivial identity of degree d is satisfied on the elements of A4
(or A_), the whole of A satisfies a non-trivial polynomial identity whose degree

is a function of d entirely.

Remark 2.3.1. A similar question was discussed for some non-associative alge-
bras in [BSZ1]. In particular, some results similar to Theorem 2.3 or 2.3.1 have
been proven for any Lie algebra. Theorem 2.3.2 is also true for Lie algebra with
an involution but only for the skew-symmetric elements. The reason is that any
Lie algebra has an involution of the form z* = —z. Indeed, [z, y]* = —[z,y] and
[*,y*] = [-%, —y] = [x,y]. But then all the elements are skew-symmetric and
we have that x = 0 is an identity satisfied by any symmetric elements. This
also shows that if a *-identity is satisfied by L then there is no need that an

ordinary identity holds as well.

We finish our discussion of polynomial identities in graded algebras by look-
ing into the question of what characteristics of the poynomial identities of A.
preserve for A as a whole. Usually identities do not preserve. For instance,
G, the Grassmann algebra in infinitely many variables is a Zj-graded algebra,
the homogeneous tensors of even degree forming Gg, those of odd degree - G;.
The component Gy is commutative, which is a particular case of the standard
identity

S Bizen 5B = Z sign(o):ﬂg(l) " Bo(n)-
o€Sym(n)
But the whole of G is well known to violate any of S,(x1,...,2,) = 0. Yet

the so called symmetric identities behave nicer. If char I/ = p > 0 then any
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Pl-algebra over F satisfies a symmetric identity

Pn: Zxa(l)"'xo(n)zo

TESy

of some degree n (see [K2]). It was shown in [BGZ1] that there exists a depen-

dence between the degrees of P, on A, and A.

Theorem 2.4 ([BGZ1]). Let G be a cancellative semigroup with the identity
element e. Consider a G-graded associative ring R = deg R, such that the
set H = {g € G|R, # 0} is finile and conlains n elements. If a subring R,
satisfies an identity P, = 0 then the whole of R satisfies P, = 0.

As a consequence of this Theorem we obtain two known results:

Theorem 2.5 ([Dom)]). If a ring R satisfies P, = 0 then M,(R) satisfies
Pnk =0.

Here M, (R) is as usually the ring of n x n matrices over R.

Theorem 2.6 ([ZSm)]). Let G be a finite abelian group of order n and R =
Y gec Ry a G-graded algebra over a field of characteristic p > 0. If Ry is
commutative, then R satisfies the identily P,, = 0.

3. Theme Three: Lie Type Algebras

The proof of the main results in [BGR] does not use any structure theory but
is of purely combinatorial nature. Thus it seems natural to extend the main
idea of [BGR] to the case of Lie algebras and even to a much wider class of
algebras including as subclasses all associative algebras, Lie algebras and color
Lie superalgebras.

We introduce the notation and the notions we will need. Let G be a semi-
group with land A =3%" .
We say that the G-grading is finite, if there is a finite subset H in GG such that

A, be a G-graded algebra over an arbitrary field F.
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A, = {0} for all g ¢ H. (Without loss of generality one may assume 1 € H.)

In other words

A=) "4, [H|=s<ox.
geH

Further we say that A = Y A, is a Lie type algebra if for any g, h,k € G

there exists constants a, 3 € F', such that
a(be) = a(ab)c + B(ac)b (13)

for all @ € Ay,b € Ap,c € Ay, where a £ 0. If @« = 1,8 =0 for all g,h,k € G,
then A is an ordinary associative algebra with a G-grading and if a = 1,8 = —1
then A is a Lie algebra over F. The relations of the type (13) are satisfied
also by Lie superalgebras with a Zj-grading as well as more general color Lie
superalgebras. So called quantum Lie algebras (see [Lin]) also fit into the pattern
of these relations. Another class that is getting more and more important is that
of so called Leibniz algebras, that is, algebras that satisfiy the Jacoby identity
but need not be anticommutative.

We start with considering Lie superalgebras.

3.1 Pl-envelopes of Lie superalgebras

We consider Lie superalgebras over a field & of characteristic 0, graded by a

finite abelian group G, of the form
L=L,. (14)
9€G

L has a bracket operation [, ] satisfying the generalized anticommutativity and

Jacobi identities:
[:v,y]—l—ﬂ(x,y)[y,x] =0, (15)
[[2,y], 2] = [z, [y, 2]] = B(=, y)[y, [z, 2]] (16)

for any homogeneous = € L,, y € Ly, z € L. Here § : G x G — k* is the

commulalion factor, or bicharacter, (see Part .2) i.e. a function satisfying

Blg,h+k) =B(g,h)B(g, k), Blg,h)B(h,g)=1. (17)
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We write 8(z,y) = B(g,h) if x € L,y € L. If G = {0} we have ordi-
nary Lie algebras, while if G = Z; = {0,1} and 3(1,1) = —1 we have Lie
superalgebras. It is easy to see that 3(g,¢9) = £l for any g € G. We set
Gy ={g € G| B(g,9) = £1}. We call the Lie superalgebras just defined
(G, B)-Lie algebras. For details see [BMPZ]. 1f A = @ 5 A, is a G-graded

associative algebra, then setting

[z,y] = 2y — B(z,y)yz (18)

for x € A,, y € Ay, we make A into a (G, §)-Lie superalgebra [A]g or simply
[A].

Pl-envelopes of ordinary Lie algebras were studied in [B1]; here we look at
the analogous situation for Lie superalgebras. We call a G-graded associative
algebra A an envelope of L if L C [A] and A is generated by L. We say that
A is a Pl-envelope of L if A is an envelope of L and A satisfies a non-trivial
polynomial identity. A related notion is that of special Lie superalgebras: any
Lie superalgebra having a Pl-envelope is called special. Obviously, by Ado’s
Theorem [Sch] any finite-dimensional Lie superalgebra is special. The universal
enveloping algebra U(L) is the most natural example of an envelope for L and
any envelope is a homomorphic image of U(L). It is shown in [BMPZ] that
if char k = p > 0, then U(L) is a Pl-envelope of L and so in this case the
Pl-envelope does not have to be finite-dimensional. Thus if we are interested
in those L for which any Pl-envelope is finite-dimensional, then it is natural to
restrict ourselves to the case char k = 0. So from now on we assume char k£ = 0.
In this case if we set Ly = @ e, Ly, L= @, eq_ Ly and dimL < oo, then
U(L) is a Pl-algebra iff Ly is abelian, i.e. [L4, L] = {0}.

A surprisingly sharp result was obtained in [B1].

Theorem 3.1 ([B1]). Let L be a finite-dimensional semisimple Lie algebra
over a field k of characteristic 0, and let A be a Pl-envelope of L. Then A is

finite-dimensional and semisimple.

A less sharp but more general version of this is the following.
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Theorem 3.2 ([B1]). Let L be a finite-dimensional perfect Lie algebra (that
is, L =L, L]) over a field k of characteristic zero. Then any Pl-envelope A of

L is finite-dimensional.

These theorems were an important tool used by Yuly Billig [Bi] to prove that
no affine Kac-Moody Lie algebra is special (this gave a solution to a well-known
problem of Latyshev about the speciality of a homomorphic image of a special
Lie algebra).

Our main aim is to generalize Theorem 3.2 to the case of (G, () - Lie -
superalgebras. If G # G, that is, if we have odd elements, we exhibit a
whole series of examples of simple Lie superalgebras sl(n,m),n # m,n,m > 1,
0sp(2,2n),n > 1, W(n),n > 2, whose Pl-envelopes can be infinite-dimensional.
So it is only natural that we assume quite often that G = G (the case of so
called color Lie algebras). In this case we are able to prove full analogues of
Theorems 3.1 and 3.2.

We define a semisimple (G, 3)-Lie-superalgebra as one without solvable G-
graded ideals. Our results are as follows. We first consider the case when

G: G+.

Theorem 3.3 ([BM]). Let L be a semisimple (G, 3)-Lie-superalgebra over a
field k of characteristic zero with G = G4 and let A be a Pl-envelope of L.

Then A is finite-dimensional and semisimple.

Theorem 3.4 ([BM]). Let L be a (G, [3)-Lie-superalgebra over a field k of
characteristic zero with G = G4, A a Pl-envelope of L. Then A is finite-
dimensional if and only if L is perfect (that is, L = [L, L]).

In the general case, the result is as follows.

Theorem 3.5 ([BM]). Let L = L, @ L_ be a finite-dimensional (G, 3)-Lie-
superalgebra over any field k of characteristic zero. Then the following are

equivalent:

1. Any Pl-envelope of L is finite-dimensional;
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2. Any (graded) Pl-homomorphic image of U(L) is finite-dimensional;
3. L, is a perfect color Lie algebra.

The following subsection presents some of the techniques necessary for prov-
ing the results just formulated. The proof of Theorem 3.5 is not included be-

cause of the lack of space.

3.1.1 Scheunert’s trick and some applications

We will need later the following version of the Poincaré-Birkhofl-Witt (PBW)

Theorem.

Theorem 3.6 ([BMPZ]). Let L = Ly @®L_be a (G, 3)-Lie-superalgebra, S(L)
the symmetric algebra of the vector space Ly and A(L_) the Grassmann algebra
of the vector space L_. Then U(Ly), the universal enveloping algebra of Ly, is
an assoctative subalgebra of U(L) generated by Ly and we have the vector space

isomorphisms
U(Ly) = S(Ly) and U(L) = U(Ly) @ A(L). (19)

In the remaining part of this section we consider M. Scheunert’s approach
enabling one to pass from (G, 8)-Lie-superalgebras to ordinary Lie superalgebras
with a number of properties preserved. If o € Z?(G, k*) is a multiplicative 2-
cocycle, and L a (G, 3)-Lie-superalgebra satisfying (15), (16) with commutation
factor (3, then replacing multiplication in L on homogeneous elements z,y € L
by

[z,9]" = oz, y)[x, 4] (20)
we arrive at a (G, §')-Lie-superalgebra L7 satisfying (15), (16) with commuta-
tion factor 8" = 36, where §(z,y) = o(z,y)/o(y,x). Let By : G x G — k*
be the ordinary superalgebra commutation factor, i.e. Bo(g,h) = 1 except

Bolg,h) = —1 for g,h € G_.

Theorem 3.7 ([Sch]). Let G be a finitely generated abelian group, and 3 :
G x G = k* a commutation factor with G = G4. Then there exisls a 2-cocycle

o € Z*(G,k*) such that 3§ = 1, where § is as above.
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In other words, if L is a color Lie algebra, then L7 is an ordinary Lie algebra
(with the G-grading still preserved!). In the general case when G # G4 note
that 3’ = [0, satisfies the conditions of the theorem. Thus we can find o
with 33,0 = 1, whence 8§ = 35! = Bo. It follows that from any (G, 3)-Lie-
superalgebra by a change of the form (20) we can switch to an ordinary Lie
superalgebra L7 = Ly @ L] with Ly = Ly, Ly = L_.

Scheunert also shows that we can pass from a (G, 3)-Lie-superalgebra to an
ordinary Lie superalgebra by tensoring L with a twisted group algebra k,G (o as
before). Here we give another approach (Proposition 3.1.1) to this switch which
is more appropriate to our main aim. Along the way, we generalize Theorem
2.2 to arbitrary abelian groups (this was done independently by H. Pop [Po] in
the case of algebraically closed fields).

Theorem 3.8 ([BM]). Let G be an arbilrary abelian group, and k an arbilrary
commultative ring with 1 and with group of units k*. Then for any commutation
factor B : G x G — k* there exists 0 € Z*(G,k*) such that if we set §(g,h) =
o(g,h)/o(h,g), then 36 = .

Proof. By the above remarks, it suffices to prove our statement when G = G .
In this case we have to find a 2-cocycle o with o(g,h)/a(h,g) = 6(g,h) for all
g,h € G where § is the commutation factor § = 371, We recall that o is a

2-cocycle with values in £ if for all z,y, 2z € G we have
o(z,y)o(z+y,z) =oc(z,y+ 2)o(y, z). (21)

Let S be the partially ordered set of all pairs (H, o), H a subgroup of G,o €
Z*(H, k") with 36 = 1,4 as before, with (H,o) < (H',¢') if H C H' and
o'|lg = 0. We can apply Zorn’s Lemma to S because it is obvious that it is
non-empty and there is a maximal element for any chain {(M,,04)}, namely
(M,o), where M = |J, M, and o(g,h) = oa(g,h) if g,h € M,. Then we
have a maximal element (B,0p) in S. If G = B, we are done. Otherwise

there is a € G\B. We set A = (a,B). If (a) N B = {0}, then for arbitrary
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u=s1a+by,v=sa+by € A, s1,8, € Z,by,by € B we set (following Scheunert)
O'(Sla + bl7 Sod + bg) = (S(bl, &)Szgo(bl, bz)
Then
o€ Z2(A k), §(u,v) = o(u,v)o(v,u)™" and o|gxp = 0o.
This contradicts the maximality of (B,09). The verification of this will be
included while considering the more general case (a) N B # {0} and so we pass
to this case.

Thus we may assume that ¢ = pa € B for a suitable prime number p. Any
element in A can be uniquely written in the form sa +b6, 0 < s < p, b € B.
Also, for brevity, we write o in place of oy.

For v = sja + by,v = sya + by, s; and sy as s just above, b;,b, € B and

$1+ s =pg+r,0<r < pweset

o(u,v) = 8(by,a)?0(c,by + by)?o(by, by). (22)
It is easily seen that our formula extends o to A and

o(u,v)o(v,u)™?
= §(by,a)*20(c,by + by)?0(by,b2)8(by,a) 1o (c, by + by) 90 (by, by) !
= 0(82b1 — $1b2,a)0(b1,b2) = 8(s1a + by, s2a+ by) = d(u,v),

following from 6(g,g9) = ¢(g,9) = 1 for all ¢ € G. It remains to check the
cocycle identity (21) for o. This can be done by direct verification which we

omit.

a

Proposition 3.1.1. If A is a G-graded associative algebra and [A)g the respec-
tive (G, B)-Lie-superalgebra given by (18), then A with multipication

(ab)’ = o(a,b)ab, a € A,, be Ap, (23)
is a G-graded associative algebra and we have
[A%]5 = ([Als)°,

where 0,8, and ' = 3§ are as described before 3.8.



ACTIONS ON ALGEBRAS AND APPLICATIONS 101

Proof. This is a simple computation. Take homogeneous a,b € A and compare

the #'-bracket in A” and the o-twisted 3-bracket in [A]. That is,

[a,blgr = (ab)” — '(a,b)(ba)”

= (a,b)ab B (a, b) (b,a)ba
= o(a,b)(ab— (#'67")(a,b)ba)
= o(a,b)(ab— B(a,b)ba)

= o(a,b)[a,b]s = ([a,b]5)”,

proving our claim.
]
We close this section with some general results about graded algebras; we

do not require that G be abelian.

Lemma 3.1.1. Let A be a G-graded associative algebra over a field k, with G
finite, and let o € Z*(G,k*). Let A be the (associative) algebra with multipli-
cation

(ab)? := o (a,b)ab
for a,b homogeneous. Then
1. A is a Pl-algebra if and only if A° is a Pl-algebra;
2. A is semiprime if and only if A° is semiprime, provided |G|™" € k;
3. A is semiprimitive if and only if A° is semiprimitive, provided |G|™! € k.

Proof. First note that A% is also G-graded, with (A7), = A, as vector spaces,

and that since o(e,g) = 1, e the identity element of G, it is clear that A, =
(A7)e-

1. If A is a Pl-algebra, then so is A, and (A?).. Applying a theorem of
Bergen and Cohen [BC] (for a different proof holding even if G is an
infinite group, and A is a Lie algebra; see [BZ1]), it follows that A7 is a
Pl-algebra. Similarly the converse holds.

2. Assume that A is semiprime. By [CM], Cor. 5.4, N(A.) = N(A) N A,
where N(A) is the prime radical of A. Since N(A) = {0} also N(A.) =
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{0} = N(A?).. Now by a theorem of [CR] we must have N(A”) nilpotent.
Since A has no |GJ-torsion, N(A?) is a graded ideal by [CM], Cor. 5.5.
But then (N(A”))”_l is a nilpotent graded ideal of A, a contradiction,
unless N(A”7) = {0}.

3. The proof is very similar to that of 2: replace the prime radical by the
Jacobson radical J(A) and [CM], Cor. 5.4 and 5.5, by [CM], Cor 4.2 and
Theorem 4.4(3).

3.1.2 Some proofs

In this section we prove Theorem 3.4 and Theorem 3.3.

We start with the proof of Theorem 3.4.

Proof. We first assume that L is perfect. Without any loss of generality sup-
pose that & is algebraically closed (otherwise apply standard procedures of ex-
tending the ground field of coefficients). Using Proposition 3.1.1 of section 3.1.1,
we find 0 € Z%(G, k*) such that in A7, the ordinary bracket [a, b] = ab—ba differs
from the 3-bracket [a, b] = ab—F(a, b)ba on homogeneous a, b by a nonzero scalar
o(a,b). So the same vector space L under the new multiplication of A becomes a
Lie algebra under the ordinary bracket. Since [a,b]” = o(a,b)[a,b], o(a,b) € k~,
the span of all [a,b]” is the same as that of all [a,b]. So we have L7 = [L?, L7]°.
Similarly we observe that A7 is generated by L7 as an associative algebra. By
Lemma 3.1.1, part 1, A7 is a Pl-algebra.

By Theorem 3.2 it follows that dim A7 < oo; hence dim A < oo, as required.

Conversely, we now prove that the condition L = [L, L] is not only sufficient
but also necessary for having any Pl-envelope finite-dimensional.

We will show that if L # [L, L], then L has a Pl-envelope which is not finite-
dimensional. First consider the case when L is an ordinary (graded) Lie algebra.

Let M = L/[L,L] . The quotient map ¢ : L — M induces a homomorphism of
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associative algebras
Y :U(L) = UM) = k[Xy,...,X,],s =dim M.

Let x : L = End(V) be any faithful finite-dimensional representation of L; such
exists by the extension of Ado’s Theorem obtained by Scheunert [Sch]. Letting
7 := % ® Y, the Lie tensor product of these maps, we obtain a homomorphism
of L into @ = U(M)® End(V).

Now 7 is an imbedding since x is faithful, and it is not difficult to see that
A:=7(U(L)) is infinite-dimensional (since if X; = ¢(z;), the images under 7 of
the distinct ordered monomials in the z; are linearly independent). Moreover @
is a Pl-algebra, since U(M) is commutative and End(V') is finite-dimensional.
Thus A C @ is an infinite-dimensional Pl-envelope of L.

Finally if 3 is non-trivial, we may use Scheunert’s construction as before
and pass to L7, an ordinary Lie algebra. If A is the Pl-envelope constructed
as above, then A7 is an infinite-dimensional PI-envelope of L (where we have
used Lemma 3.1.1 for PI as above).

ad

Remark 3.1.1. Applying M. Scheunert’s procedure enables us to generalize V.
Kac’s Theorem [Kac] about solvability of Lie superalgebras to general (G, 3)-
Lie-superalgebras and to show that a (G, 8)-Lie-superalgebra L = Ly @ L_ is

solvable iff L, is solvable.

We recall that a (G, 3)-Lie-superalgebra L is called semisimple if it has no
(-graded solvable ideals.

Proposition 3.1.2. Let L be a G-graded Lie algebra, G a finite abelian group.

If L is graded semisimple, then it is semisimple in the ordinary sense.

Proof. We start with the case where k is an algebraically closed field. Suppose
L has a solvable ideal M which is not graded. Consider the dual group . Then
G acts on L by automorphisms in a natural way: if y € &, = € Ly, then yx2 =
x(g)z. An ideal of L is G-graded if and only if it is G-invariant. Now for any
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X € G we have that x * M is an ideal of L and thus that M = eréx*l\/f DN
is a graded ideal. Since the sum of two solvable ideals is always solvable, we
conclude that M is a non-trivial G-graded solvable ideal of L. Hence M = {0}
and then M = {0}, as stated.

If k£ is not algebraically closed, then the standard procedure of extending
the field of coefficients works because then the extended algebra is (graded)
semisimple (respectively, solvable) if and only if this is true for the original

algebra.

Now we pass to the proof of Theorem 3.3.

Proof. Let o € Z*(G, k") be a 2-cocycle such that L7 is an ordinary Lie algebra
and A7 is a Pl-envelope of L7, as in the proof of Theorem 3.4. Obviously L7 is
a G-graded algebra without G-graded solvable ideals. It follows by Proposition
3.1.2 that L7 is an ordinary semisimple Lie algebra, hence by Theorem 3.1
we have that A7, as a Pl-envelope of L7, is finite-dimensional and Jacobson
semisimple. Now we have shown that A is a finite-dimensional algebra. By

Lemma 3.1.1, part 3, A is also semisimple, as required.

3.2 Identities of Lie Type Algebras

We start with a result, which is easy to remember.

Theorem 3.9 ([BZ1]). Let L = 3

field F', G a finite group. If the component Ly is a Lie algebra with a non-trivial

gec Lg be a Lie algebra over an arbitrary

identity then such is also L.

A question about the validity of such theorem even in the case of |G| = 2
was asked by A. E. Zalesskii. This result can be applied to Lie algebras with
an action of a finite automorphism group . The most correct formulation is
in the case of Lie algebras with actions of finite-dimensional Hopf algebras and

we have results on such algebras in Part 3.3.
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Theorem 3.10 ([BZ1]). Let L be a Lie algebra over a field F, G a finite
solvable subgroup in the automorphism group Aut GG, char F does not divide

|G|. If the invariant subalgebra L is a PI-algebra then also L is a PI-algebra.

In the case of associative algebras this result belongs to V. K. Kharchenko
[Kh] and S. Montgomery [M2] (no need to assume G solvable).

Now the main result of this section can be formulated as follows.

Theorem 3.11 ([BZ1]). Let

=) 1L

e

be a Lie type algebra over an arbitrary field F' with a finite G-grading where G
is a semigroup with identily element and cancellation. Suppose in the identity

homogeneous component Ly we have a non trivial identity of the form

ToTy - Tg—1 = Z Arl0To(1) """ To(d-1)5 (24)
c€Sym(d—1),0#e
in which xoxy -+ x4 and all xoT,(1) -+ - To4—1) are left-normed monomials and

a, € F. Then also in L a nontrivial identity of the same form (24) is satisfied.

From this theorem we easily derive the result of [BC] about the associative
algebras graded by a finite group. But more important here are the applications

to Lie algebras and their generalizations.

Theorem 3.12 ([BZ1]). Let L = @yeql, be a color Lie superalgebra, over
a field F with a finite grading by a semigroup G with identily element and
cancellation and such that Q) is a finite abelian group and the Lie algebra Lél)
satisfies a non-trivial Lie identity. Then also L satisfies a non-trivial non-graded

identity.

A standard example of color Lie superalgebras is an ordinary Lie superalge-
bra where Q = Z5,3(0,0) = 3(0,1) = 1, 3(1,1) = —1. In this case our theorem

takes the following form.
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Theorem 3.13 ([BZ1]). We consider a Lie superalgebra
L=LooL =) (I{ o L),
9eG

with a finite grading by a semigroup G with identity element and with cancel-
lation. If Lél) satisfies a non-trivial Lie algebra identity then also L is a Lie

superalgebra with a non-trivial identity.

If in the formulation of Theorem 3.12 we take ) as the grading semigroup

then we arrive at a corollary as follows. Let @ be a finite abelian group and
=1L,
9€Q

be a color Lie superalgebra over a field F'. If Ly satisfies a non-trivial Lie identity
then L has a non-trivial non-graded identity.
Finally, the simplest example of a non-associative algebra satisfying (24) is

a Lie algebra. Thus Theorem 3.9 is an immediate consequence of Theorem 3.11.

3.2.1 Main Techniques

For the proof of Theorem 3.11 we will need some constructions similar to those

in Part 1.2.
For each g in G we consider a countable set
Zy = (9. 29 1

and denote by Z the union of all Z,,¢g € G. Then the free non-associative
algebra F'(Z) over F', generated by the set Z, is naturally endowed by a G-
grading. Let us fix a finite subset H in GG and set

xizz;:l(g), A .

geH

The subalgebra F(X) generated by X = {21, 2,...} in F(Z) is not G-graded

but it is also a free non-associative F-algebra.
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We denote by V,, the linear span of all products of the form [:c(,(l) e xg(n)]
in F(X) with all possible arrangements of brackets, where ¢ runs through
the whole of the symmetric group Sym(n). Similarly, for any selection g =
(g15---,9n) in which all g; € H,7 = 1,...,n, by V¢ we shall denote the sub-
space in F(Z), spanned by all products

Finally, set
ve= P ve.
geH™
By T(L) we will denote the ideal of identities of algebra L in F(X), and by
TY(L) the ideal of graded identities of L in F(Z). We consider two sequences

of numbers

. Vi
ell) = dim gy
V’G
G =dj n
¢, (L) 11717‘/;9071(;([/)7

characterizing numerically the sets of non-graded and graded identities of L.

As before, in Lemma 2.2.1, we have
Lemma 3.2.1. ¢,(L) < ().

To compute the products of elements in a graded algebra we will need

Lemma 2.2.2.

Definition 3.2.1. The sequence (a1,...,a,) composed of pairwise distinct in-
tegers is called m-decomposable if there exist indices 1 < iy < iy < ...< 1, <n
such that a;, > aj for all j =i+ 1,... igp wherek=1,...,m—1. From m-

decomposability it follows that a;; > a;, > ... > a;,,. If the sequence (a1, ..., a,)

has no m-decompositions, then we call it m-indecomposable

The following is true
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Lemma 3.2.2. Let L =Y L, be a Lie type algebra with a finite G-grading and
s the number of non-zero components L,. We consider all homogeneous in the
G-grading elements yo,y1,...,Yn and denote by P the linear span of all prod-
ucts of the form yo(yi, - - - yi,) with all possible arrangements of brackets in the
right factor (yi, - - yi,,), such that (iy,...,%,) is a permutation of 1,...,n. Sup-
pose that the identily component Ly satisfies a multilinear identity of the form
(24). Then any element in P is a linear combination of left-normed products
of the form yoy;, - - y;, for which {ji,...,5,} = {1,...,n} and the sequence

(Jiy-++»Jn) is m-indecomposable for any m > sd.

Proof. It follows from (13) that P is a linear span of left-normed products of

elements g, 1, . .., x,, starting with zo. Everywhere in the sequel we will omit

brackets in the expression of left-normed products of the elements of L.
Remark, that we easily derive from (24) the existence of a graded identity

of the form

2021 24 = Z Bo20Z5(1) - - - Zo(d)s (25)
ceSym(d),oe
in which z; = zl(l),,@(, € F, and zp is an arbitrary element. Just multiply zo
by the left and the right sides of (24), in which z; are replaced by z;41, and
reduce all products to the left-normed expressions using (13). In doing so the
product zpz; - - - zg appears only once with coefficient a?=* # 0, while the other
summands form the right hand side in (25).

Now we introduce a lexicographic ordering on the integer tuples by com-
paring them from the left to the right. Let u = yoy;, - - - y;, be a left-normed
product. If j; = 1,4, = 2,...,4, = n, then (J1,...,J,) is m -indecomposable.
Arguing by induction, we may assume that all products yoyg, - - - yx, with (k1,

.., k) strictly less than (ji,...,J,) are linear combinations of left-normed
products yoy;, - - - y;,, with m-indecomposable tuples (i1, ..., i,).

We assume that the tuple (ji,...,J,) is m-decomposable and the indices
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t1,...,t, determine an m-decomposition, that is,

Jti 2 Tty oo Jtas -+ =3 Jtines = Tt dls e v+ Jtm

and let us show that u can also be expressed through m-indecomposable left-
normed products. We denote by v;,2 = 1,...,m, a left-normed product of
elements yg, with & running through values from j;; to ji,,, — 1, and by vy the
product of the first y, with & < j;,. We denote by B the operator of subsequent
multiplication by the remaining elements yr where k = 7, + 1,..., jn, if Ji,, <
Jn- Then the element

I3
u = vgvy v, B

with the use of (13) can be written as a linear combination of v with a non-zero
coefficient and the products Yoy, - - Yg,, With (¢1,...,¢s) < (J1,--.,Jn). Since
all y; were assumed homogeneous, we have vg € Ly, v1 € Ly ,..., 00 € Ly,
for some go,91,...,9m € G. Owing to the choice of m by Lemma 2.2.2, there

exist 0 < [y < 3 < ... <y < msuch that g14y,_, ---g;;, = 1 are in G for all

t=1,...,d. We introduce notation for new left-normed products:
Wo = Vg Vg, Wi =V14y;_, - -V, t=1,...,d.
Then wy,...,wq € Ly and the element

"
u' = wotwy - - - weC,

in which C stands for the operator of right multiplications by vi,41,...,Vm, if
l; < m, and then the action of the operator B, differs from u by a scalar factor
modulo a linear combination of some yoyq, - - - yq, With (q1,...,¢n) < (J1s---57n)-

Applying (25) we arrive at

W'=Y Bewowgqy - we(eC (26)

ceSym(d),oc#e
Now let us express wotw,y(1) - - We(q)C on the right side of (26) through left-
normed monomials Yoy, - - - Yg., by expanding brackets with the help of (13)

first on w;, and then on v;. Since o # e in Sym(d), we are going to obtain only
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the summands with (¢1,...,¢,) < (J1,-..,Jn). This gives that «” and then also
v’ and u are of the form required, and the proof of Lemma 3.2.2 is complete.

O
3.2.2 Proof of Main Theorem 3.11
We start with a lemma about codimensions.

Lemma 3.2.3. [f the subalgebra Ly satisfies an identity of the form (24), then
for any b for sufficiently large n the following inequalily is salisfied:
o n!
L)< —.
Sy <o

Proof. Let g = (g1,-..,9,) be a tuple in which gi,...,9, € H. Then V& =
PgennV? and

VEVENTO(L) = ) Vi /VEnTE(L). (27)

geEH™

The number of summands on the right side of (27) is equal to s™. For the proof

of the lemma it is sufficient to show that the dimension of each is less than #
For convenience we replace n by n+1. We fix a tuple g = (go, g1, - - -, gn) and set

z = 2%, Modulo TY(L) the space V%, = Vay1(20,21,-..,2n) is equal to the
sum Qo+ Q1+ -+Q,, in which @Q; is a linear span of the left- normed products
205 215 - - - 5 Zn, starting with z;. It is sufficient to show that the dimension of each
summand is asymptotically less than % We consider, for example, Q@ = Qo,
that is, the linear span of left-normed products 20z,(1) * - * Z5(n). By Lemma 3.2.2
the tuple (o(1),...,0(n)) can be assumed m-indecomposable, where m = sd.
We denote by a,,(n) the number of m-indecomposable tuples composed of

the numbers 1,2, ..., n. Then

lim © am(n)

n—00 !

=0 (28)

(see, e.g., [Raz, Chapter 1, section 2.1],). From (28) it follows that for all
sufficiently large n the following inequality is satisfied:
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nfam(n) 1
n! 2bs’

from which it follows that for n > 2bs we have

n! (n+1)!

dimQ < an(n) < (2bs)" = (2bs)nt1’

and the proof of Lemma 3.2.3 is complete.

a
Proof. [Proof of Theorem 3.11]. From Lemmas 3.2.1 and 3.2.3 it follows that
the left-normed products zoZo(1) - - To(n), 0 € Sym(n), are linearly dependent
modulo the ideal T'(L) of identities of algebra L in the free non-associative
algebra F(X). This means that also L satisfies a non-trivial identity of the

same type as (24), and the proof of Theorem 3.11 is complete.

3.3 Applications to Group Theory

The applications in question are based on some of Zelmanov’s work on Burn-
side’s Problem. To formulate one of the results we need some definitions. If
G is a group then we can speak about the Lie algebra L(G) associated with
G. We have to look at the lower central series {v,(G)ln = 1,...00} of G.
If (a,b) = aba='b7" is the notation for the group commutator then the lower
central series is given by v1(G) = G and, by induction, v,41(G) = (7.(G), G).
We have the so called “central filtration property”

(’Yn(G)ame(G)) C 7n+m(G)'
This property enables us to define a Lie ring L(() associated with G.

Definition 3.3.1. Set L(G) = @._, L.(G) where L,(G) = v,(G)/Lut1 (G).

n=1 N

This abelian group can be given a Lie operation (bracket) if we set

[2Y341(G)s Y¥m+1(G)] = (2, Y)Vmnt1(G) for z € 1n(G) and y € Ypmy1(G).

We call L(G) the Lie ring associated with G.
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For example, if we start with a free group F' = F(xq,...,x,) then, in the
associated Lie ring L(F') the elements z172(F),. .., x,72(F) generate a free Lie
ring.

In the case of p-groups, that is, the groups where each element is periodic
with period a p-power, p a prime number, it is more appropriate “refine” L(G)
by inserting intermediate terms so that the corresponding quotient groups be-
come elementary abelian p-groups, e.g. inserting normal subgroups of the form
(G* n VoG Vnt1(G), k =1,2,.... In the case of using this centaral filtration
the additive group of L(G) becomes an elementary abelian p-group, that is, a
vector space over Z,. If K is an arbitrary field of characteristic p then we can
form £(G) = L(G) ®Zp K and this is a Lie algebra over K associated with G.

In a number of important cases L(G) reflects the properties of G quite sat-
isfactorily, yet in working with £(G) one can use the full force of linear algebra.
This is similar to the situation with the correspondence “Lie groups” ¢+ “Lie al-
gebras” but in the latter case people often speak about the groups meaning their
Lie algebras, which never happens in the case of the just defined correspondence.

To formulate some recent results we need some more definitions. Given a
class C of groups we say that a group G is residually a group from C if for
any nonzero g € ( there exists a normal subgroup N such that = ¢ N and
G/N € C. We also say that G is locally (belongs to) C if any finitely generated
subgroup of GG is in C.

It is well-known (Golod Example) that there exist finitely generated p-groups

which are infinite. So the following result of Efim Zelmanov is quite important.

Theorem 3.14 ([Zel]). Let G be a finitely generated periodic residually p-
group. Suppose that the Lie algebra L(G) satisfies a non-trivial polynomial
identity. Then G is finite.

Now in our previous material we considered the situation where a group acts
on a Lie algebra and the fixed point subalgebra satisfies a non-trivial polynomial
identity. Then we have concluded that the whole Lie algebra enjoys the same

property. An important lemma is due to Rocco and Shumyatsky. Suppose that
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G is a torsion group with no 2-torsion and @ is a finite 2-group acting on G.

Let C = Cs(Q) = {g € G|q* g = g} be the centralizer of @ in G.

Lemma 3.3.1. Let N be a normal subgroup of G, which is Q-invariant. Then

Gan(Q) = Ca(Q)N/N.

Now suppose (G is residually a p-group for some prime p > 2 and that some
centralizer Cg(Q) satisfies a non-trivial group identity. Then we construct £(G)
and Lemma 3.3.1 enables us to transfer the action of @ on £(G) with Cr)(Q)
satisfying a non-trivial polynomial identity. This is exactly the situation where
our results of Subsection 3.2 work so that Theorem 3.14 applies enabling us to
establish the finiteness of the group in the appropriate cases.

Without going into further details I formulate some recent results based on

this circle of ideas. The first two results are due to A. Shalev.

Proposition 3.3.1 ([Sha]). Let G be a residually finite p-group acted on by
a finite 2-group Q. Suppose that p # 2 and Cq(Q) satisfies some non-trivial
identity. Then G is locally finite.

Theorem 3.15 ([Sha]). Let G be a residually finite tosion group with no 2-
torsion acted by a finite 2-group Q). Suppose that the centralizer Ca(Q) is solv-
able or of finite exponent. Then G is locally finite.

If @ is any finite group let m(Q) denote the maximal prime divisor of the
order |Q] of Q.
Then we have the following results of Shumyatsky.

Theorem 3.16 ([Shu]). Let G be a residually finite group acted on by a finite
solvable group Q with m = m(Q). Assume that G has no |Q|-torsion and that
Ca(Q) is either solvable or of finite exponent. If any of m — 1 elements of G

generate a finite solvable subgroup then G is locally finite.

Theorem 3.17 ([Shu]). Let G be a finitely generated periodic residually solv-
able group acted on by a finite solvable group Q). Assume that G has no |Q|-
torsion and Cg(Q) is either solvable or of finite exponent. Then G is finite.
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The above theorem is no longer true if we impose conditions only on Cg(Q).
Indeed, for any (not necessarily distinct) odd primes p and g Miller and Obraztsov
[MOD] have constructed a finitely generated infinite residually finite periodic

group admitting a fixed-point-free automorphism of order q.

4. Theme Four: H-algebras

We start with some known definitions which can be found, for instance, in [M3].

4.1 Some definitions and examples

Definition 4.1.1. A (unital) algebra A over a field F is a vector space over I

with a product which is a linear map m : A® A — A salisfying the associalivily:
mo(m®ids) =mo (idg @ m)
and a unit which is a linear map v : F' — A such that we have
mo (u®idy) = ' =mo (ida @ u).

Here 1dy is the identily map of A and p : FR A — A, ¢/ : AQ F — A,
respectively, the left and the right multiplications by the scalars in A.

Definition 4.1.2. A coalgebra C over a field F' is a vector space over F with

a coproduct which is a linear map A : C — C R C satisfying the coassociativity:
(A®ide) o A= (tde @ A)o A
and a counit which is a linear map ¢ : C — F such that we have
(e®@ide)oA=v,V = (ide @c)o A
where v : C — FRC, V' : C — CQF are the linear maps given by v(c) = 1®c,
V(e)=c® 1.

Definition 4.1.3. A bialgebra B over a field F is an associative algebra over
F with 1 (or with the unit linear map u : F' — B sending 1 of F into 1 of B)
and a coalgebra under some A e as above such thal both A and ¢ are algebra

homomorphisms.
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Definition 4.1.4. If A is an algebra and C is a coalgebra then the space
Hom(C, A) of all linear maps from C into A becomes an algebras under the

convolution product of maps given by

frxg=mo(f®@g)oA.

The neutral element of this multiplication is the map woe. If B is a bialgebra
then the inverse S of idp under the convolution product, if exists, is called the

antipode of B.
One can verify that S is an antihomomorphism of algebras.

Definition 4.1.5. A Hopf algebra H is a bialgebra with antipode. It is conven-

tional to denote the coproduct in H by so called Sweedler ’s notation:
Ah= hu)®he € He H.

The right hand side is simply an element in H @ H with the components (!)
labeled by hyy lying in the left tensor factor and those by h(y) in the second one.

Definition 4.1.6. Let F' be a field, A an algebra (not necessarily associative),
H a Hopf algebra, both over F'. We say that H acts on A or that A is an
H-algebra if the vector space A is made into a left unital H-module and, in

addition, we have
}L(CLI(I,Q) = Z(h(l)al)(h(z)ag)
where h € H and ay,ay € A. We also have used Sweedler’s notation from

Definition 4.1.5.
That A is a unital H-module is written through two equations as follows:
(hihs)a = hi(haa) and la = a for any hi, hy € H, a € A.

Definition 4.1.7. Let A be an H-algebra, as in Definition 4.1.6. An element
a € A is called an H-invariant if for any h € H one has ha = e(h)a. The set
of all H-invariants of A is denoted by A™.
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It is a trivial observation that the set of invariants A7 of an H-algebra A is
a subalgebra of A.
Our main concern in this part will be determining when for an H-algebra A

it follows from A being a Pl-algebra that also A is a Pl-algebra.

Definition 4.1.8. We say that a Hopf algebra H over a field F' belongs to
the class P if for any associative algebra A over F il follows from AT being a

Pl-algebra that also A is a Pl-algebra.

Actually, there is a dual situation, and this will be convenient for Part 4.2.

We start with so called comodules.

Definition 4.1.9. An H-comodule M is a space endowed with a comodule map
p: M — M® H which is a linear map such that (1 @ A)op=(p®@1)op and
(I1®e)op=1id. There is notation of the same type as for the coproduct. We
write

p(z) = 20 @ m1. (29)
(=)

If we use this notation then the above conditions take the form of

D (20)0 ® (z0)1) ® 21 = Y 20 ® ((w1)1 @ (21)s)

and
Z zoe(21) = z.

Definition 4.1.10. A right H-comodule algebra A is an algebra endowed with
the structure of a right H-comodule such that the structure map p is a homo-
morphism of algebras A and A @ H. An element a € A is called coinvariant if

pla) =a® 1. The set A°H of all coinvariants is a subalgebra.

It is important to remark that, in the case where H is finite-dimensional,
the H-module algebra is an H*-comodule algebra where H* is the dual Hopf
algebra, that is, the space of linear functions on H with values in the base field,
A(f)(h @ k) = f(hk) and (fg)(h) = (f ® g)(Ah). Here f,g € H* and h,k € H
(see [M3]).
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4.1.1 Examples

There are very simple examples of Hopf algebras which are not in P. As it
follows from our Main Theorem 4.1 any finite-dimensional Hopf algebra which
has a non-zero Jacobson radical is such. So over any F' one can take as such an
example the 4-dimensional Hopf algebra Hy which has a basis 1, g, x, gz where
1 is the identity element, g a group-like, i.e. Ag =g ®g, and g =1, 22 = 0,
Ar=2®1+g®zx, Sg =g, S =—z, zg = —gx. The counit is given by
e(g) =1 and e(x) = 0. If we do not insist on zero characteristic of F' then one
can take any group algebra F'[G] of a finite group G such that charF divides
|G|. We recall that any group algebra F[G] becomes a Hopf algebra if one
sets Ag = g ® g for any g € G. Tor the antipode one has to set Sg = ¢!,
g € G. For the counit we set ¢(g) = 1 for any g € G. If H = F[(] acts on
an algebra A then ¢ - (ab) = (g - a)(g - b) which means actually that G acts on
A by automorphisms. The converse is obviously true as well. The question of
when F[G] € P, for G finite and charF' = 0, was resolved by Kharchenko [Kh]
who showed that this is always the case. Kharchenko also gave examples in the
modular case (i.e. charF divides |G|) showing that then it is not necessary that

FIG] € P.

A good example of semisimple finite-dimensional Hopf algebras is provided
by the dual algebras (F[G])* to the group algebras F[G] of finite groups, with
arbitrary characteristic of F. If we set H to be the space of linear functions on
F[G] with values in I, endowed with ordinary multiplication of functions then
it is obvious that this is a commutative algebra, the direct sum of n copies of F,
n = |G|, each generated by a function p,, g € G, a characteristic function on G:
po(g) = 1,py(h) = 0 if h # g. Canonically, Ap, =3, pr @ px, and ¢(py) =0
if g # e and €(p.) =1,Sp, = py;—1. It is well-known that an algebra A with an

action of such an H is actually a G-graded algebra, that is, A = _, A, where

9€G
Ay Ay C Ay for any g, h € G. Actually, A, = {a € Alp,-a = a}, for any g € G.
So the elements p, act as projections on “homogeneous” components A,. It is

immediate that the subalgebra of invariants of this action is just the identity
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component A. of the grading. It has been shown in [BC] that (F[G])* € P.
Thus we have seen that both algebras with actions of automorphism groups
and graded algebras fall into the framework of algebras with actions of Hopf
algebras. It should be emphasized, however, that these examples and appropri-
ate crossed products (see [MW]) of such algebras are very important examples
of semisimple finite-dimensional Hopf algebras.
Our last remark here: every Hopf algebra H is an H-comodule algebra, if

we set p = A.

4.2 Main theorem about H-algebras

In our discussion in this section we denote the set of invariants of an H-module
M by I(M). Moreover the invariants of the left regular action of H on itself
will be denoted sometimes simply as I. If T(H) is the tensor algebra of a vector
space H without the component of degree 0 then there is a unique extension of
this latter action of H on H to T'(H) that makes T'(H) into an H-algebra. On

a homogeneous tensor v = hy @ ... ® h,, an element h € H acts by

hxv=3 (hayh) ®...0 (hmha).

To simplify the notation we often write T" in place of T'(H). We write T,, for
the homogeneous component of 7' of degree n. We write I,, = I(T},).

The following is the Main Theorem about H-algebras from [BL].

Theorem 4.1. Let H be a finite-dimensional Hopf algebra over a field F'. The

following conditions are equivalent.

1. For any associative algebra A over F with an action of H it follows from

A being a Pl-algebra that also A is a Pl-algebra (i.e. H € P)

2. There exists a function f: N — N such that for any associative algebra
A with an action of H if AT satisfies a non-trivial identity of degree t

then A satisfies a non-trivial identity of degree f(t)
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3. There exists a function g(t) such that for any natural t and any H-algebra
A with I(A)t = {0} one has A% = {0}

4. There exists a number N such that any H-algebra A, where I(A) has zero
multiplication, satisfies AN = {0}

5. dimT/(IdealrI(T)) < oo
Any of Conditions (1) to (5) implies H being semisimple.

A technical condition which is equivalent to any of Conditions (1) to (5) is

called
CONDITION (*)
For any ¢ € N there is h(t) such that for any n > h(t) one has

Ty, = Y T481,8...8 1y ® T,

ko+ki+-k+kip1=n
ki, ke>1

The proof requires some techniques with free H-algebras as the central no-
tion.

Let H be a Hopf algebra over a field F); X a non-empty set of variables,
T = T(H) the tensor algebra of the vector space H .

Let further T(X) be the free algebra over T' with free generators X. Every

element v of T(X) can be written in the form
ws Yy tak® (30)

where X is a word (or non-commutative monomial) in X, « is a label uniquely
defining X°. If v is a label for X*X# then we set v = 3. The ordinary degree
of X* will be denoted by |a|. Obviously, |a8| = |a| + |5].

We have a natural action of H on T(X) given by

hoxu =Y (hxts) X" (31)

(o7
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It is immediate that, in this way, T(X) becomes an H-algebra), that is

hox (urug) = > (hay * ) (he * ua).

The set H = H(X) of all elements of the form (30) with each ¢, homogeneous
of degree |a| is an H-subalgebra of T(X). We call H the free H-algebra with
the free generating set X.

Some basic properties of H are as follows.

Proposition 4.2.1. Let A be an arbitrary H-algebra. Then any map ¢ : X —
A extends to a unique homomorphism of H-algebras @ : H — A such that ¢|x =
. Thus any H-algebra A can be wrilten as a quotient H-algebra A = H(X)/J
for a suitable set X and a suitable H-ideal J of H(X).

Proof. It is sufficient to define @ on the elements ¢, X*. If X* = z;, ...2;
then t, => h ®...® h, for some hy,...,h, € H and we set

n

P(taX?) = (b1 % ¢(23,)) - - - (hn * p(:,))- (32)

The verification of @ being a homomorphism of H-algebras is immediate and
left to the reader.

O

If we look at the invariants of H and their behavior under H-homomorphisms

then we observe the following. It is well-known that if dimH < oo then

dim H” = 1 and if H is semisimple we have H” = F.[ with ¢([) = 1 (see

[M3]). Let I = @I be the set of left invariants of T = T(H). Then the

following is true.

Proposition 4.2.2. The H-invariants of H form a homogeneous subalgebra T
of H whose elements have the form (30) with each t, € I. If H is semisimple
then T = [+ H. If ¢ is an H-homomorphism of H and H is semisimple then

p(I(H)) = I(p(H))- (33)
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Proof. The form of an element in 7 is immediate from (31). Also if v € T then

f*u:g(f)u:uand if v € H then

h*(f*v):(hf)*'u:(e(h)f)*v:e(h)(f*v),

i.e. [*v € I. To prove the final statement we write

P(I(H) = ([ *H) = [+ o(H) = I(o(H)).

It is natural to define now the notion of H-identities.

We take X = {z1,22,...} countable and define two kinds of identities of
H-algebras. Given such an algebra A any element v € H (of the form (30))
is called an H-identity if under any H-homomorphism ¢ of H into A we have
@(u) = 0. The set of all such identities will be denoted by Tz (A). A particular
case of H-identities are those where, in (30), each coefficient ¢, is a scalar

multipleof 1 ® ... ® 1, k =| a |. The set of these elements is denoted by T (A).
—_———

These are ordina.ry polynomial identities of A. Now we introduce two kinds of
subspaces of ‘H, V,, g and V,,, for each natural n = 1,2,.... In the case of V,, y
we have to take all (30) where @ = o € S, i.e. X* = To(1)To(2) - - - To(n), With
arbitrary ¢, of degree n and o a permutation of {1,...,n}. If ¢, is a scalar

multiple of 1 ®...® 1 then we obtain V,. It is natural to call V;, i (resp. V,
————

n
) H-multilinear (resp. multilinear) components of H. Now we introduce the

numbers (the n-th codimensions)
Cn,H(A) = dim V;Z,H/TH(A) N Vn,H

and

n(A) =dimV, /T (A)NV,.
As in Part 2.2, we have

Proposition 4.2.3. For any H-algebra A and any natural n one has

cn(A) < e u(A). (34)
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Remark 4.2.1. The inequality (34) is important for the proof of the Main
Theorem because showing that A a Pl-algebra is the same as finding n such
that ¢,(A) < nl. From (34) it follows that it is sufficient to prove ¢, g(A) < n!

for some n. In fact, this condition is also necessary.

For the proof of the Main Theorem the following construction is essential.
Let us fix a natural number ¢. If A is an H-algebra then we define the subspaces
JD(A) and H-ideals M)(A) by induction on natural i € N starting with
JO(A) = MO(A) = {0}. If i > 0 then we set

JEHY(A) = {a € AVh € H = h*a=e(h)a+my, m, € MD(A)},
and define MUt (A) as an H-ideal of A generated by (J+D(A))* (the ¢-th
power of Ji+1(A)).

If A = T(H) we abbreviate the notation as just above and simply write J()
or M,

The following is true.

Proposition 4.2.4. 1. For any A as above and any i € N one has
JO(A) c JEH(A), MO (A) ¢ M (A), MO(A) c JHD(A)
and MY(A) is the ordinary two-sided ideal of A generated by (JTHD(A))".
2. For any H-algebra homomorphism ¢ : A — B we have
p(JO(A)) € JO(B), o(MY)(4)) c MY)(B).

For any H-algebra A we set

J(A) = G JO(A), M(A) = D MO(A).

It follows that M(A) C J(A).

Remark 4.2.2. If H is a finite-dimensional semisimple Hopf algebra then for

any H-algebra one has

J(A) = I(A) + MWD (A), M(A) = MO(A) = Tdeal4(I(A)).
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Proof. By what we have shown above, J¢+1)(A)/M®)(A) = [(A/M®)(A)). 1f
we take k = 1 then .](2)(A) - [(A)—I—M(l)(A), actually J(z)(A) = [(A)—I—M(l)(A)
by Part (1) in Proposition 4.2.4. Tt follows that M(*)(A) = M()(A) and then,
of course, for any k > 2 we have J®)(A) = I[(A)+ M(A), and M*-1) = M),
proving the required.
O
To proceed further we use the notion and the properties of good and bad

permutations from section 2.2.4. As before, we have

Proposition 4.2.5. An H-algebra is a Pl-algebra if and only if for some natural
n we have ¢, i < n! (actually, there exists N such that for any n > N we have

the above inequalily).
Now the proposition proving the necessity of Condition (*):

Proposition 4.2.6. 1. If H € P then H satisfies Condition (*) and H is

semisimple.
2. If H is not semisimple (but still finite-dimensional) then

(a) If char F' = 0 then there exists an H-algebra A with AT = {0} but
A is not a Pl-algebra.

(b) If char F # 0 then there exists an H-algebra A with (A7)? = {0}
but A is not a Pl-algebra.

For the proof the following technical result is of importance.
Proposition 4.2.7. The following equations are true

1. JOH(X)) = @52, JOH) N He

2 (JOUHX))): = {Z. faX 1fa € I, ol =}
Stmilar equations hold if J is replaced by M.

The next step is proving the implication Condition (*) = Condition (2) of

the Main Theorem.
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Proposition 4.2.8. Let A be an H-algebra, H satisfying Condition (*), and
A has a non-trivial identity of degree s. Fix any integers n > m > h(s) where
h(s) is given by Condition (*). Then

Vn,H/Vn,H N TH(A) =G+ TH(A) n Vn,H/Vn,H N TH(A)
where G is the linear span of the monomials t, X%, o an m-good permutation.

Then the following is true.

Corollary 4.2.1. Let H be a finite-dimensional Hopf algebra, dim H = d,
satisfying Condition (*), A as in Proposition 4.2.8. Then for anyn > m > h(s)

we have
d"(m —1)*™
crnpglAd) < ———m—2—
Proof. This is immediate from the observation about the number of m-good
permutations at the beginning of the section.

a

Theorem 4.2 ([BL]). Let A be an H-algebra over a Hopf algebra H, dim H =
d, satisfying (*) with function h(t). Suppose AH satisfies a non-trivial poly-
nomial identily of degree s. Then A satisfies a non-trivial identily of degree n
where n is any integer satisfying the inequality
d"(h(t) — 1)*
(h(t) = 1)!

In particular, if n is the least integer with ed(h(t) —1)* < n then A satisfies a

< nl.

non-trivial identity of degree n.

Proof. Very similar to the one in Part 2.2.
O
After this it remains to prove that Condition (*) is equivalent to the remain-
ing Conditions in Main Theorem, but we skip this quite technical material.
Theorem 4.2 also leads to the following quantitative version of [BC, Theorem

7, part (4)].
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Corollary 4.2.2. Let H be an s-dimensional semisimple commutative Hopf-
algebra over F and let R be an H-module algebra. Suppose that s < oo and
that

R" ={ac Rlh-a=¢h)a, for all h € H}

satisfies a polynomial identity of degree d. Then R satisfies a polynomial identity
of degree n, where n is any integer satisfying the inequalily
n 2n
s"(sd —1) ol
(sd —1)!
We complete this Part by formulating a very strong result of Vitaly Linchenko

[LV] based on the techniques just described.

Theorem 4.3 ([LV]). Let G be a finite subgroup in the automorphism group
of a Lie algebra L over a field F where charF is not a divisor of |G| and let LY

satisfies a non-trivial identity. Then L salisfies a non-trivial identity.

5. Theme Five: Bicharacters and Discoloration

As we learned earlier, given any abelian group G, and any “commutation factor”
B on G, any (G, §)-Lie color algebra can be twisted into an ordinary Lie algebra,
or an ordinary Lie superalgebra. In order to do this twisting, we showed the
purely group-theoretic fact that there exists a 2-cocycle o on G such that 3 is
a “skew-symmetrization” of o.

The object of this part is to extend the results of Part 3.1 to (H,3)-Lie
algebras, where H is a cocommutative Hopf algebra and [ is a skew-symmetric
Hopf bicharacter on H. We obtain a complete answer when the base field & is
algebraically closed of characteristic p > 2.

The results are divided into three parts. In subsection 5.1, we try to extend
the known fact that, using 3, the group G can be decomposed as G = G, UG_.
In Scheunert’s work, such a decomposition of G determined whether the twisted
object was an ordinary Lie algebra (the case when G = (¢4) or an ordinary Lie
superalgebra (the case when G_ is non-trivial). When H is cocommutative,

we prove that such decomposition holds: one can define suitable H, and H_
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such that H = Hy @& H_. Some of our results here apply to more general Hopf
algebras, called weakly coquasitriangular.

In subsection 5.2, we prove the analog of Scheunert’s first theorem; that is,
when H is cocommutative and 3 is a skew-symmetric bicharacter, then we can
find a Hopf 2-cocycle o on H so that 8 can be suitably factored using o. Here
we must assume, as mentioned above, that k has characteristic p > 2.

Finally in subsection 5.3, we consider (H, 8)-Lie algebras and their twistings,
and extend Scheunert’s second theorem. We prove that if H is both commu-
tative and cocommutative, with the same assumptions on k& as above, and (3
has a suitable factorization involving some o, then any such Lie algebra can be
twisted to an ordinary Lie algebra or an ordinary Lie superalgebra.

We now fix some notation. Unless otherwise stated, k will denote throughout
a field of characteristic not 2, and ® := ®j. H will denote a Hopf algebra over
k with comultiplication A : H — H ® H and bijective antipode S. We use
the Sweedler notation A(h) = E(h) h(1y @ hg), although we usually omit the
parentheses on subscripts, and when H is cocommutative, we sometimes omit
the subscripts altogether. We also frequently omit the summation sign. R will
denote a commutative k-algebra.

Given two maps «, 3: H — A, where A is an algebra, we denote the convo-
lution product of o and (3 by a* 8: H — A; that is (f * g)(h) = > f(h1)g(h2).

Given any function f, we will denote its convolution inverse by f~!, and its
composition inverse by f.

If g € H satisfies Ag = g® g and (g) = 1, then g is called grouplike; the set
of all such elements is denoted G(H). An element € H is called primitive if
Az = 2@141®2, and we denote by P(H) the k-space of all primitive elements.
If « € H satisfies Az = 2 ® g+ h ® x then x is called (g, h) — primitive.

The flip map is denoted by 7: H®@ H - H® H, that is, 7/(h @ k) =k ® h
for any h,k € H.

Recall that a tensor product of Hopf algebras H = K ® L is also a Hopf
algebra, with A = Ay = Ax @ Ap.

Consider a convolution invertible map v: H ® H — R for which v(1,h) =
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y(h,1) = e(h)1. If v satisfies

Z (@11, 2)7 (22, 42) = Z V(@ y121) (Y2, 22) (35)

then v is a right cocycle.
If v satisfies

D@ y)r(@aye, 2) = > (s 20)1(x, yaz2) (36)

then v is a left cocycle.

1

Note that if v is a left cocycle then v~! is a right cocycle. Moreover, in the

case where H is cocommutative, conditions (35) and (36) are equivalent, and
the set of all cocycles on H with convolution multiplication forms a group which

we denote by Z2(H, R) [Swl].

5.1 Decomposition of H into Positive and Negative Parts

This section is motivated by Scheunert’s work on H = kG [Sch]: when G has
a commutation factor (that is, a skew-symmetric bicharacter) 8: G x G — k~,

then G = G4 U G_, where

Gy={g€G|Blg,9)=1}, and G_={g€C|Blg,9)=—1}.

Here G4 i1s always a subgroup of G with index < 2.
Our goal is to generalize this decomposition to Hopf algebras and their

comodules.
Definition 5.1.1. Let H be a Hopf algebra.

(a) A function $: H® H — R is called a bicharacter on H if 3 is bilinear and
Vh,k,l e H,
(ii) B(h,kl) =3 B(ha, k)B(ha,1)
(iii) B is normal, i.e. 3(h,1) = B(1,h) =¢(h), Vhe H,
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(iv) B is convolution invertible.
(b) B is called skew-symmetric if B l=por.

We denote by B(H, R) the set of skew-symmetric bicharacters on H; this is
a group under convolution multiplication whenever H is cocommutative.

When H is the enveloping algebra of a Lie algebra £, then this definition
of a skew-symmetric bicharacter generalizes the usual skew-symmetric bilinear
form on Lie algebras. For that reason, and since many of our results specialize
to Lie algebras, we have chosen this terminology rather than the usual Hopf
algebra term “symmetric bicharacter”.

For any bicharacter (3 it is easy to see that

0(id®35) = Bo(S®id), and (37)
o(S®S9). (38)

gt =

g
B =8

Definition 5.1.2. Define
u(h) =Y B(ha, Shy) for all h € H.
Examples 5.1.1. (a) If H = kG is a group algebra of a group then
u(g) = Blg,97") = Blg,9)" = *1,
depending on g belonging to Gx. Here g € G.
(b) If H = u(@), the restricted enveloping algebra then for any x € L we have
u(z) = B(x, S1) + B(1, Sz) = e(x) —e(z) = 0.
(¢) Consider any H and define B(h,k) := e(hk). Then 8 is a bicharacter.

Lemma 5.1.1. Let H be a cocommutative Hopf algebra, and let 3 be a bichar-
acter on H. Then (3 is a left and a right 2-cocycle.

Definition 5.1.3. If f € H* satisfies f *id = id * f we say that f is cocentral.
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Definition 5.1.4. Suppose H has a bicharacter 8 and let V be a (right) H-
comodule. Define ®y:V — V by

by (z) = Z u(x1) o,

and set
Vi={z eV |Oy(z)=2} and V_o:={azeV|by(z)=—z}.

In particular we may consider H itself as a right H-comodule via A; then
Oy is given by &y = > u(hy)hi. Note that if b € Hy, then h = > u(h2)hs.
Applying ¢ to both sides we see that u(h) = e(h). Similarly if A € H_, then
u(h) = —e(h). However, these conditions are not sufficient to determine when
hisin Hy or H_. We will get such a condition below, in Corollary 5.1.1.

The situation in which u * v = ¢ is particularly interesting; in the following
lemma we see that it allows us to decompose H-comodules as a sum of positive
and negative parts. In particular this happens when v = ¢. In this case all
H-comodules have only a positive part; this situation was studied in [CWZ]
and [CW].

Recall that the coefficient space C(V) of a (right) H-comodule V is the
span in  of all {z;} such that p(z) = > 2o ® x4, for x € V. For « € V, the
coefficient space C'(z) of « is the coefficient space of the smallest H-subcomodule

of V containing z. C'(V) is always a subcoalgebra of H. See [L], [G].

Proposition 5.1.1. Suppose H has a bicharacter 8 such that w is cocentral.
Let 'V be any right H-comodule with ®v as above. Then

(a) Pv is H-colinear, and Vi and V_ are H-subcomodules.
(b) V=V, 3 V_ if and only if ®} = id.
(¢) x € Vi (respectively V_) if and only if C(x) C Hy (resp. H_).

(d) V=V, & V_ if and only if u+u = ¢ on the coefficient space C (V).



130 Y. BAHTURIN

Remark 5.1.1. A similar version holds for left H-comodules W. That is, define
W — Wby ®'(z) =3 u(x_1 ), and define W, and W_ as before. Then &’

is H-colinear and Wy and W_ are left H-subcomodules, assuming u*id = td*u.

Corollary 5.1.1. Assume that H is a Hopf algebra with bicharacter 3 such

that w is cocentral. Then
(a) Hy and H_ are subcoalgebras.
(b) Let (h) denote the subcoalgebra generated by h € H. Then

h € Hy ifand only if u(c)=e(c) Ve e (h)
h e H_ if and only if u(c)= —e(c) Ve e (h)

(¢) H=Hy @ H_ if and only if u*u =c.

Proof. (a) By Proposition 5.1.1, considering H as a right H-comodule via A,
H, and H_ are right coideals. Similarly, by Remark 5.1.1, H, and H_ are both
left coideals. Thus both Hy and H_ are subcoalgebras of H.
(b) (=) For h € H,, we know that u(h) = e(h). Now H, is a subcoalgebra by
part (a), so the result follows.
(«<). Assume that u(c) = e(c) for all ¢ € (h). Then ®(h) = > u(hy)hy =
S>e(hg)hy = h,so h € Hy.

A similar argument works for H_.

(c) This is just Proposition 5.1.1(d) with V' = H.

We give examples of cases when the condition u * v = ¢ holds.

Example 5.1.1. If H is cocommutative and 3 is skew-symmetric, then u*xu = ¢.
For w(h) = B(hy,Shi) = B7(Shi,hy) = B7(Sha,hi) = v(h). The second
equality follows from the skew-symmetry of 3, the third from cocommutativity

of H.

Notice that in this case S? = id so u also satisfies:

u(h) =Y Blhi,hy) and v(h) = 37" (ha, h1).
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Lemma 5.1.2. Let H be cocommutative. Then

(a) uw:H — k is an algebra homomorphism.

(b) ® is an algebra automorphism of H.

We can now give our result on the decomposition of H and its comodules.
Recall that a coalgebra C' is irreducible if the intersection of any two non-zero

subcoalgebras is non-zero.

Theorem 5.1 ([BFM]). Assume that H is cocommutative and uxu = . Then

(a) V=V, @®V_ for any right H-comodule V; in particular H = H, @ H_.
(b) If H is irreducible as a coalgebra, then H = H,.

(¢) Hy is a normal Hopf subalgebra of H, and (H-)* C H,.

However, when H is pointed cocommutative, more can be said. First we
need some other known facts:

An irreducible component of any coalgebra C' is a maximal irreducible sub-
coalgebra. A coalgebra C' is pointed if any minimal subcoalgebra D is one-
dimensional (equivalently, D is spanned by a group-like element). For each
g € G(C), let C, be the irreducible component containing g. When H is
pointed cocommutative, it is known that any irreducible component of H must
be H, for some g € G(H), and that H = $,eqH,. Moreover, H, = H1g = gH,
(see [M3, 5.6.4] or [Sw2]), and so H = H,#kG.

Theorem 5.2 ([BFM]). Let H be pointed cocommutative with a skew-symmetric
bicharacter 3. Then the conclusions of Theorem 5.1 hold. In addition

(a) Hy = @geq, Hy = H1#kGy and H_ = Oyeq_H,.

(b) If H_ # {0} then [H : Hy] = 2; that is, the quotient Hopf algebra H :=
H/H(H)" has dimension 2.
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(¢) If x € H is a (g,g)-primitive element, then x € H, and

reEH, < geG; and 2z€ H. <— geG_.

Remark 5.1.2. (a) Theorem 5.1(b) applies to any Hopf algebra generated by
its primitive elements P(H), as well as to any divided power algebra, as these
are all irreducible Hopf algebras.

(b) Theorem 5.2(c) actually holds for a (g, ¢)-primitive element x in any H,
as the Hopf subalgebra generated by {1, g,z} is pointed cocommutative. More
generally, if  is a (g, h)-primitive element, where also h € G(H), then one
can show that ®(z) = (B(x,h) + B(g,2))g + B(h,h)x. An element z is called
(g, h)-primitive if Ae =2 ®@ g+ h ® .

5.2 Constructing the Cocycle

The main aim of this subsection is to investigate properties of bicharacters of
cocommutative Hopf algebras, leading up to a generalization of Theorem 3.8
about the bicharacters of abelian groups. This theorem states, in particular,
that for any bicharacter 8 : G x G — k* such that G = G, there is a 2-
cocycle o : G x G — k* such that for any g,h € G one can write 3 as a

“skew-symmetrization of o; that is,

Blg.h) = a(h,g)o™ (g, h). (39)

In the case of finitely generated abelian groups and algebraically closed fields
of charcteristic 0 this result is due to [Sch]. For finite abelian groups over C
this result was also independently established in [Mos]. The relation (39) also
holds for arbitrary abelian groups, as was shown independently in [Po], [BM],
[Pal]; in [BM] & may be replaced by any commutative ring R.

An important application of this result was to give a correspondence between
Lie coloralgebras and certain ordinary Lie superalgebras; in the next section
we generalize this correspondence to (H,3)-Lie algebras for commutative and

cocommutative H with a skew-symmetric bicharacter 3.
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In this section we will show that an analog of (39) is true for most cocom-

mutative Hopf algebras.

Theorem 5.3 ([BFM, BKM]). Let H be a pointed cocommutative Hopf al-
gebra over a field k of characteristic not equal to 2. Let « be a bicharacter on

H with values in a commutative algebra R. Then o can be written in the form
alh, k) = o(h, k)« o7 (k, h),
for some 2-cocycle o if and only if a(g,g) = 1 for any group-like element g € H.

That is, given a skew-symmetric bicharacter 8 on H such that H = H,,

there exists a Hopf 2-cocycle o such that 3 = (o o 7) * 0~'; equivalently,

Bh,k) =" ok, h1)o~" (ha, ko) Vh,k € H. (40)

Conversely if H is cocommutative and 3 can be expressed in the form (40)
then necessarily H = H,. For then ®(h) = > h13(hs, h3) (using Example
5.1.1(a)). Now apply (40) and cocommutativity to get ®(h) = h.

First, we see that, given a cocycle, we can construct a bicharacter.

Lemma 5.2.1. Let H be a Hopf algebra with a bilinear map o: H @ H — k.
Define 3: H® H — k via f:= (co71)*xo~'. Then

(a) If H is commutative and o is a left 2-cocycle, then 3 is a skew-symmetric

bicharacter on H.

(b) If H is cocommutative and o is a bicharacter, then so is 3. Moreover

Bl :=cx (o7 o) is also a bicharacter.

We begin our “factorization of bicharacters by showing that when H is
cocommutative, it suffices to also assume that H is commutative.

First, recall that for any bilinear form v on a vector space V', the kernel of

7 is defined to be Ker(y) := {v € V | y(v,V) = v(V,v) = 0}.
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Remark 5.2.1. Let 3 be a bicharacter on H. Using Definition 2.1(i) and (ii),
it is easy to verify the following facts:

(a) If a € Ker(f), then also HaH C Ker(3), where HaH is the ideal of H
generated by a.

(b) Assume H is cocommutative. Then for any a,...,a, € H and any permu-

tation o € S, @1+ an — Ao(1) - - - Uo(n) € Ker(f).

Lemma 5.2.2. Let m: H — H be a surjective morphism of Hopf algebras.
(a) If B is a bicharacter on H, then 3 lifts to a bicharacter 3 of H. Conversely,
if B is a skew-symmelric bicharacter on H such that Ker(m) C Ker(3), then 8
induces a well-defined bicharacter B on H. Moreover 3 is skew-symmetric if
and only if B is skew-symmetric.

(b)If there exists a 2-cocycle & on H such that 3 = (Go7)+ & ', then there
exists a 2-cocycle o on H such that the same equation holds for 3 and o on H;
in fact we may define o(z,y) = o(w(z),7(y)).

Conversely, if B can be written in the form 8 = (cor)*c™!, for o a 2-cocycle
2 b y

on H, then 3= (cor)*xa'.

Recall that for any H, and h,l € H, the commutator of h and [ is given by
(hy1) := > hil1(Shy)(Sl3). The commutator subalgebra H' of H is the k-span
of all products of commutators. It is straightforward to check that when H
is cocommutative, H' is actually a normal Hopf subalgebra of H. Clearly the

Hopf quotient H/H(H')T is commutative.

Corollary 5.2.1. Assume that, given a bicharacter 3 on H such that H = Hy,
we may solve for o as in (40) whenever H is both commutative and cocommu-

tative. Then we may solve (40) for o whenever H is only cocommulative.

We next establish a connection between cocycles of a tensor product and

those of its components.

Proposition 5.2.1. Let H = K ® L be as above, with K and L (and so H)
commutative and cocommulative, and lel 3 be a bicharacter on H. Consider

the restrictions Br = Blkxx and 81, := Bloxr- If there exist cocycles o on K
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and v on L such that Bx = (co7)*a™" and B, = (yor)*~7L, then there exists
a cocycle p on H such that

B=(por)*p~h.

Proof. Let t =a®l,y=b@m,and z = c® s, for a,b,c€ K, [,m,s € L. We
define
p(x,y) = Za(avbl)ﬁ(627l1)7(l%m)'

The verification of the cocycle condition and the other properties required is of

technical nature, so we omit it.

5.2.1 r-characters on connected Hopf algebras

Let k be a field, H a cocommutative Hopf algebra over k, R a commutative

algebra over k.

Definition 5.2.1. An r-multilinear function o : H X ... x H — R is called an
r-character if it is convolution invertible and, for anyi =1,...,r, the following

two conditions are satisfied:
alh', ..., R 1 R L Ry =e(h'... . h"), (41)
alk', .. R I R BT (42)
= Z afb, ... R LA, . BB, . B, B, . ... HE),
forall *,... K=" [,m, bt ... k" € H.

It is easy to verify that all r-characters form a group under the convolution
product (since H is cocommutative). We will denote this group by Ch"(H, R).
Let S, be the symmetric group on r elements. Then for any m € S, we can

consider an r-character
(moa)(hl,...,h") = a(h™™, ... K™),

for any h',... A" € H.
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Definition 5.2.2. An r-character « is called symmetric if, for any © € S,, we
have moa = a. All symmetric r-characters form a group, which will be denoted

by Sym"(H, R).

Definition 5.2.3. An r-character a is called skew-symmetric if for any m € S,,
we have mo a = o®"7". All skew-symmetric r-characters form a group, which

we denote Alt"(H, R).

In the case of r = 1 we simply obtain the algebra maps from H to R, which
we will simply call characters. In the case of r = 2 our definitions agree with
those of bicharacters and skew-symmetric bicharacters given in section 5.1.

Now we will explore the structure of groups of r-characters with the special
interest in bicharacters. At first we assume that H is connected. Our aim is to

prove the following result.

Theorem 5.4 ([BKM]). Let H be a cocommutative connected Hopf algebra
over k, m be a posilive integer such that chark { m. Let a be an r-character on
H with values in a commutative algebra R over k. Then there exists a unique
r-character 3 such that o = ™ (under the convolution product). Moreover, if

a is symmetric (or skew-symmetric), then so is (3.

We first consider a slightly more general situation. Suppose we have a
multilinear map of r variables f : H x ... x H — R, which is normalized with

respect to the i-th variable in the sense that
FOB oo B 1B, oo ) = B o BB 5 BT,

for any h',...,h"=t AL . BT € H.

We define a multilinear map by setting
folB,.... B = flB',... A7) —e(h*...B), ¥h',....,#" € H. (43)

In the following important proposition H is not necessarily cocommutative
(but it is still assumed connected). The proof is similar to an argument of

Takeuchi [T].
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Proposition 5.2.2. Let fo be defined as in (43). Then fy is locally nilpotent.
After this it is sufficient to prove the following.

Proposition 5.2.3. For any multilinear map [ : H x ... x H — R, normalized
with respect to the i-th variable (or, more generally, such that f — e is locally
nilpotent), there exists a unique multilinear map g : Hx...xH — R, normalized
with respect to the i-th variable, such that f = g™ under the convolution product,

provided chark { m.

Proof. Since char k { m, we can consider the formal power series
1 1
Alt)=(1+t)m :H_EH—”'

Set g = A(fo). Obviously, ¢ is normalized with respect to the ¢-th variable, and

f = g™ by construction. We omit the proof of the uniqueness of such g.

Let us define two operators:
sym : Ch"(H, R) — Sym"(H,R) : a — H (moa),
TESy

and

alt : Ch"(H,R) — A" (H,R) : o — H (moa)®"”
TESy

for any cocommutative Hopf algebra H.

Corollary 5.2.2. If H is connected and r < char k or char k = 0, then sym and
alt are projections of Ch"(H, R) on Sym"(H, R) and Alt"(H, R), respectively.

In particular, we obtain the following corollary.

Corollary 5.2.3. Let H be a connected cocommutative Hopf algebra over a
Jield k of characteristic not equal to 2. Let « be a skew-symmetric bicharacter
on H with values in a commutative algebra R. Then there exisls a (unique)

skew-symmetric bicharacter 3 such that

alh, k) = B2(h, k) = B(h, k) * B~ (k, ).
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We next allow the possibility that G = G(H) is not trivial and also G # G,
or equivalently when H # H,. By Theorem 5.2 we know that H = Hy @
H_. Thus we may define the sign bicharacter 3y on H as follows: for any
homogeneous h, k € H

—e(h)e(k) ifh,k e H_

Bo(h, k) = { e(h)e(k) otherwise 44)

and extend (3, linearly to H. Note that 8;' = Bo. Since both Hy and H_
are subcomodules of H by Proposition 5.1.1, one can easily verify that 3y is a
bicharacter on H.

We can now obtain our best result on factoring bicharacters with cocycles;

it extends [Sch, Lemma 2].

Theorem 5.5 ([BFM, BKM]). Let H be cocommutative and k be algebraically
closed. Assume char k = p > 2. Let 3 be a skew-symmetric bicharacter on H.

Then:
(a) If H = Hy then there exists a cocycle o such that 3 = (coT)*o™!.

(b) If H_ # 0 then there exists a cocycle o such that = Bo* (coT)* 07,

where By is the sign bicharacter.

Proof. Since k is algebraically closed, H is pointed, and so H = H;#kG, where
H, is the irreducible component of 1 (as noted before Theorem 5.2).

Thus (a) follows from Corollary 5.2.3 and Proposition 5.2.1.

For (b), we apply (a) to the bicharacter 5 3y, which satisfies H = Hy. The
result now follows since 35! = fo.

a

Remark 5.2.2. Recently Etingof and Gelaki have shown, in the case of char-
acteristic zero, that if (H,3) is cotriangular and ¢r(S?|¢) = dimC for each
finite-dimensional subcoalgebra C' of H, then there exists a cocycle o such that
B = B.#(co7)* o', where (3, is a certain bicharacter with 32 = ¢. Their

methods are similar to those in [EG].
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5.2.2 Groups of r-characters in particular cases

The description of polycharacters on two types of connected Hopf algebras is

particularly transparent. We do not give proofs but just formulate the final

result and all necessary preliminary results, whose proofs are not very hard.
We will later need the following general results about the r-characters, which

are straightforward generalizations of the bicharacter versions given in [BFM].

Proposition 5.2.4. Let H be a cocommutative Hopf algebra, R a commutative
algebra over k. Let o € Ch"(H,R). Then a vanishes on the ideal I « H,
generated by commutators kl —lk, for all k,l € H, ie., o(H,...,I,...,H) =0,

for any position of I among the arguments of a.

Proposition 5.2.5. Let I <« H be any Hopf ideal of H, H = H/I. Then the
r-characters & of H are in one-to-one correspondence with the r-characters o of
H such that o(H,...,1,...,H) =0, for any position of I. This correspondence
is given by

alht,. . kY =alht + 1, "+ 1),
for any ht,... A" € M.

The proofs are straightforward.

These two propositions allow us to reduce the study of r-characters of any
cocommutative Hopf algebra to those of a Hopf algebra which is both commu-
tative and cocommutative.

At first we consider the polynomial algebra H = k[X], where X is any set
of variables (not necessarily finite), and Az =2 ® 14+ 1 ® z, for any = € X.

Proposition 5.2.6. Lel w' = a}...al, ... ,w" =2} .. .27, be monomials, o
an r-character on k[X]. Then a(w',...,w") = 0 unless m' = ... = m" = m,
and in the lalter case we have
1 r
a(w,...,w") (45)
_ il 2 7 il 2 o
= E &1, Toa(1)s - s Tprfa)) * « = * OB Baomys - - = 5 oo o))

72, TTESm

In particular, o is completely determined by its values on X.
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Proof. Induction on m!,...,m" using the definition of the r-character.

a

Proposition 5.2.7. Let a be an r-character of k[X], chark = p > 0, r > 2.
Then o vanishes on the ideal generated by x?, for all x € X.

Proof. Let w' = 2P, w?,...,w" any other monomials. Then by Proposition
5.2.6 a(w',...,w") = 0, unless all w?,...,w" have degree p. In the latter case

by (45) we obtain

alw',...,w")
= Z a($7$3r2(1)>~-~733;r(1)) . ...-a(x,xfrz(p),...,ac:ﬂ(p))
w2,..., 7T ESp
= p! Z a(z, 22 .’L'?rg(l) a5 25 :L':,r(l)) coofx, ";‘;, .’L'?rg(p), s ik, .’L':rr(p))

The proposition follows.
O
Now let L be a Lie algebra over k, H = U(L) the universal enveloping
algebra of L. By Propositions 5.2.4 and 5.2.5, the r-characters of H are in
one-to-one correspondence with the r-characters of H = U(L/[L, L]) = k[X],
where X is any basis of L/[L,L]. Let a be any r-character of H, & the
corresponding r-character of f and A the restriction of @ on the subspace
L/[L,L]. By Proposition 5.2.6, @ is completely determined by A. On the
other hand, it can be easily verified that (45) defines an r-character on k[X]
for any given values on the elements of X. It follows, that the correspon-
dence a — A is one-to-one, and it is actually an isomorphism of the Abelian
groups Ch"(U(L), R) and Hom((L/[L, L])®", R), since a * B(z',...,2") = (a*
B)(z,...,z") = a(z,...,2") + B(z,...,z"), for any z',...,2" € X. Obvi-
ously, a is (skew-)symmetric if and only if A is (skew-)symmetric. So we have

proved the following.
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Theorem 5.6 ([BKM]). For any Lie algebra L, commutative algebra R and
r>1

B
=
L
3

I

jus)

(<]
B

=
=
=~
E

as Abelian groups.

Here T7(V), S™(V) or A"(V) stand for the tensor, symmetric or skew-
symmetric power of a vector space V', respectively.

Let L be a restricted Lie algebra over k, chark = p > 0, and H = u(L) the
restricted enveloping algebra of L. We want to describe the r-characters of H,
r > 2. By Propositions 5.2.4 and 5.2.5 we may assume L Abelian. Fix a basis
X in L. Then u(L) = k[X]/Ideal(z? — 2P | Y2 € X). By Proposition 5.2.5,
the r-characters of u(L) are in one-to-one correspondence with the r-characters
of k[X] that vanish on Ideal(z? — 2! | V2 € X). But by Proposition 5.2.7, any
r-character of k[X] vanishes on Ideal(a? | Va € X), so the r-characters of u(L)
are in one-to-one correspondence with the r-characters of k[X] that vanish on
Ideal (2| Vo € X), and the latter are in one-to-one correspondence with the
r-characters of k[X]/Ideal(z! | Vo € X) = u(L/LPl). So we have proved the

following.

Theorem 5.7 ([BKM]). For any restricted Lie algebra L, commutative algebra
Randr > 2

Ch"(u(L),R) = Hom(T"(L/([L, L]+ L®)), R)
Sym"(u(L), R) = Hom(S"(L/([L, L]+ L)), R)
Alt"(u(L),R) = Hom(A"(L/([L, L]+ L)), R)

as Abelian groups.
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5.3 Bicharacters and Generalized Lie Structures

In this section we apply our previous results to give a bijection between certain
types of generalized Lie algebras and classical Lie algebras or Lie superalgebras,
under appropriate conditions. In order to do this, we will “twist” the Lie algebra
structure using cocycles and bicharacters.

Throughout this section, H will be a cocommutative Hopf algebra with a
skew-symmetric bicharacter 8: H ® H — R. In this situation, given right
H-comodules X,Y, we may define a “twist” map : X @Y — Y ® X:

0z@y) =) BleLy)yp @z Yz € X,yeY.

In fact, since 3 is skew-symmetric we have §? = id, and we may use this map

to form a generalized Lie algebra:

Definition 5.3.1. A (right) (H, 3)-Lie algebra is a (right) H-comodule £ to-
gether with a 3-Lie bracket [, |: L& L — £ which is an H-comodule morphism
satisfying, for all a,b,c € L:

(a) anticommutativity: [, ] = —[, ] 00, that is,
[a,b] = —B(ay, b1)[bo, ao)]-
(b) Jacobi identity:
[, 1o, 1®id)+[, 1o([, |®id)obizz+], Jo([, |@id)obss =0, ie.
[[a,b], ] + B(a1b1, e1)[[co, aol, bo] + B(ax, bycr ) [[bo, col, ao) = 0
A more symmetric form of this identity is

B(e1, a1)[[ao, b], co] + B(b1, e1)[[co, ], bo] + B(ar, b1)[[bo, c], ao] = 0.

(H, 3)-Lie algebras are a special case of Lie algebras in symmetric monoidal
categories, as described in [Gu]. Some basic properties of (H, 3)-Lie algebras

are considered in [FM].
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Examples 5.3.1. (a) Let A be a right H-comodule algebra, and define [, ]s
to be
[a,b]5 == ab—"Y _ B(a1, b )bodo.

Then [, g is a B-Lie bracket.

Denote the §3-Lie algebra created in this manner by [A]s.
(b) Let 8 = ¢ ® ¢, the trivial bicharacter. Then an (H,e ® )-Lie algebra is
an ordinary Lie algebra £ which is an H-comodule and such that [, ] is an
H-comodule morphism.
(c) Similarly, let 8 = 3y be the sign bicharacter. Then an (I, 3;)-Lie algebra is
an ordinary Lie superalgebra £ = L5 & L7, such that £ is an H-comodule and
[, ] is an H-comodule morphism. It is easy to see that L5 = L4 and L3 = L_

and so these subspaces are also H-subcomodules.

We remark that if chark = 2 then condition 5.3.1(a) is not appropriate.
For an ordinary Lie algebra £ in characteristic 2, 5.3.1(a) is replaced by the
condition that [a,a] =0 for all a € L.

In the presence of a cocycle in addition to the bicharacter, we may twist

the operations of H and its comodules. The following collects definitions and

results from [KS, $10.2.3] :

Definition 5.3.2. Let H be a Hopf algebra with a skew-symmetric bicharacter
G:H® H — R, and suppose o: H® H — k is a left cocycle.

(a) Define H, to be H as a coalgebra, with multiplication defined to be
h o k= O'(h], k‘] )hzggU_l(h;;, k;g)
Then H, (with a suitable antipode) is a Hopf algebra.

(b) Define the map By: H, @ H, — R by B, := (c o7)* B* 0™, that is, for
all k,h € H,
[))g(h,’ ]{I) = 0'(]{717 hl)ﬁ(hg, le)U_l(}Lg, kg)

If (H, ) is CQT then (H,,(,) is also CQT (so in particular 3 is a bichar-
acter on H).
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¢) If A is a right H-comodule algebra, define A” to be A as a vector space

and H,-comodule, with multiplication given by:
a-?b:=oc(ay,bi)aghy Va,be A
Then A% is an H,-comodule algebra.

For the rest of this section, we assume that H is cocommutative; in this case
o is a two-sided cocycle and H = H, as a Hopf algebra.

When H is cocommutative and [ is a bicharacter on H, then H is commu-
tative if and only if (H, ) is CQT. Thus the results in 5.3.2 apply. However in
this case, a direct computation also shows that 3, is a bicharacter on H.

Analogous to the definition of A%, we define a cocycle twist L7 of an (H, 3)-
Lie algebra L:

Definition 5.3.3. Define L7 to be L as a right H-comodule, with the map
[, ]:£L®L — L given by

[a,b]” := Z(I(al,bl)[ao, bo] Va,be L.

Our goal in this section is to find a cocycle o on H so that if £ is an (H, 3)-
Lie algebra, then the new Lie algebra £7 will be either a classical Lie algebra

or a Lie superalgebra. The next result extends [Sch, Prop 3].

Proposition 5.3.1. Let H be a commutative and cocommutative Hopf algebra
with a bicharacter 3, let L be an (H,3)-Lie algebra and assume o is a cocycle

on H. Then L7 is an (H, [3,-1)-Lie algebra.

In the case of Lie algebras that come from associative algebras, all these

concepts mesh nicely, and we have the following analog of [BM, 2.4](see Part

2.3):

Lemma 5.3.1. Let H be a commutative and cocommutative Hopf algebra with a
skew-symmetric bicharacter 3 and a cocycle o. Then for any right H-comodule

algebra A,
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Let V' be a finite-dimensional (right) H-comodule, and £ an (H,()- Lie
algebra. We say that V' is an (H, §)-representation of L if there is a morphism
of (H, 3)-Lie algebras

U: L — [End(V)]s.

Since V' is finite-dimensional, End(V') becomes an H-comodule algebra [FM,
Lemma 2.10] and so can be made into an (H, 3)-Lie algebra as in 5.3.1(a).
If V is not finite-dimensional, then we do not know at this point how to define
a representation of £ on V'; one needs to have a suitable subset of End(V') which
is an H-comodule algebra. This can always be done when H = kG, as in [Sch].
We can now extend [Sch, Prop. 4]

Proposition 5.3.2. Assume that H is commutative and cocommmutative with
a bicharacter 3 and cocycle o. Suppose that L is an (H,[)-Lie algebra and
let V be a finite-dimensional H-comodule. If U : L — [End(V]g is an (H,()-

representation of L, then

U7 L7 — [End(V)]g,

-1

defined by
U7 (a)(z) := Za(al,xl)lll(ao)(:zo), Yae Lz eV
is an (H,3,-1)-representation of L.

We now formulate the main theorem of this Part; it extends Scheunert’s

theorem [Sch, Th.2].

Theorem 5.8 ([BFM, BKM]). Let H be a commutative and cocommutative
Hopf algebra over k with skew-symmetric bicharacter 3. Assume thal k is al-
gebraically closed such that either k has characteristic 0, or chark = p > 2.
Then:

(a) If H = H, then there exists a cocycle o on H such that L — L7 is a
bijection between the set of (H,3)-Lie algebras and the set of ordinary Lie
algebras which are (H,e @ €)-Lie algebras as in 5.3.1(b).
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(b) If H_ # 0 then there exists a cocycle o on H such that L — L7 is a
bijection between the set of (H, 3)-Lie algebras and the set of ordinary Lie
superalgebras which are (H, By)-Lie algebras as in 5.3.1 (¢).

Furthermore, in each of the cases (a) or (b), the transformation U — W7 is
a bijection between the finite-dimensional (H,[3)-representations of L and the
finite-dimensional H-comodule representations of the Lie algebra (respectively,

Lie superalgebra) L.

Example 5.3.1. In any characteristic p > 2: let H = k[z1,2q,...,2,]2! =
0,V:] with all z; primitive as before, and let A = k[t1,¢a,...,t,] be the polyno-
mial ring. A becomes an H-comodule algebra by defining p(t;) = ¢, @ 1 +1® ;.
Extending multiplicatively to all of A, we see that for f = f(t1,...,t,) € A,

p—1
= 5 o

k1yeeskn=0

where
1 Prrtethn f

Fllrdn) — .
R A

Any bicharacter # on H is determined by its restriction to the space V =
spang{zy,..., 2.}, and the restriction is a skew-symmetric bilinear form. Thus

(3 is completely determined by
Blxi, ;) = Xj € kforalli < j.

For any such 3, we may form the (H, 3)-Lie algebra [A]s by setting

rglm S0 flvalglntgioh |k gb o)

This is a rather nontrivial bracket but by Theorem 5.8, [A]g can be twisted

to an ordinary Lie algebra, since H = H,.
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