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EQUIVARIANT INTERSECTION THEORY AND
BOTT’S RESIDUE FORMULA

André L. Meireles Araftjo Israel Vainsencher *

Introduction

The goal of these notes is to describe a version of Raoul Bott’s residue formula
and illustrate its applications to enumerative geometry.

The ideas for the formula go back at least to H. Hopf’s well known result
expressing the Euler number of a manifold in terms of local indices around the
zeroes of a vector field. Bott’s formula relate characteristic numbers (i.e., top
intersection of Chern classes) to local invariants of a suitable vector field near
its zeroes.

The coming into play of such a powerful tool in enumerative geometry is
mainly due to S.A. Strgmme & G. Ellingsrud [14], culminating with the land-
mark results of Kontsevich [30] about enumeration of rational curves.

We follow closely the articles of D. Edidin and W. Graham [11] and of M.
Brion [7] for the basic notions of equivariant Chow rings. The proof of Bott’s
formula presented here is essentially copied from [7]. It rests on a theorem of
localization that describes the equivariant Chow ring in terms of the usual Chow
ring of the fixed points locus.

Our main interest goes towards applications to enumerative geometry. We
include several examples showing how the residue formula can be used to com-
pute characteristic numbers and a few Gromov-Witten invariants. Some of the
applications are classical, e.g., the 27 lines on a cubic surface. Our calculation

of the number of canonical curves in P2 incident to 24 general lines is based on
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recent work by J. Rojas and the 2nd author [35] and part of the 1st author’s
doctoral dissertation [31].

We assume the reader is familiar with basic notions of algebraic group ac-
tions, quotient spaces and intersection theory, cf. the books by A. Borel [5] and
W. Fulton [17].

It is a pleasure to thank the organizers for the opportunity to give a series
of lectures at the first Escola de Algebra of the new millennium for which the

original Portuguese version of these notes were prepared.

Blanket assumptions

We work over the field of complex numbers. Schemes are quasi-projective over
C. Variety means integral scheme. All maps are morphisms over C. A point in
a variety is always a closed point (i.e., a C-point).

A G-space is a scheme X endowed with an algebraic action G x X — X
where G is a linear group (often G = T', a torus). We assume throughout these
notes that X C PV is a quasi-projective subscheme and the action is induced

by a representation of G in CNV+!,

1 The Chow group

We introduce in this chapter the equivariant Chow group. It is defined in terms
of the “classical” Chow group, for which we recall a few basic facts. We also
offer a light invariant intermezzo.

1.1 The usual Chow group

The canonical reference for the material of this section is Fulton [17] or [18].

1.1.1 Group of Cycles

Let X be a scheme and set n = dim(X). The group of cycles of dimension k, or
k-cyeles in X is the free abelian group generated by the set of closed irreducible
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subvarieties of dimension k in X. It is denoted by Z;(X). The group of cycles
of X is the graded group

Z(X) = D ZuX)
k=0

By definition, each k-cycle ¢ in Zx(X) can be written uniquely as a linear

combination with integer coefficients,

where V' ranges in the collection of (closed and irreducible) subvarieties of X of
dimension k, with ny # 0 for at most finitely many V’s.

The support of a cycle ¢ =Y nyV is defined by

el = J W

ny #0
Let Xi,---, X, be the irreducible components of a scheme X. The funda-
mental cycle of X is defined by
=1

where m; = [(Ox x,) is the length of the local ring of X along X;.
Since the local ring Ox x, is artinian, the length is a positive integer, called
the geometric multiplicity of X at Xj.

1.1.2 Rational equivalence

Let V' be a variety and let R(V') be the field of rational functions of V. Let
r € R(V) be a nonzero rational function. We define the order of r along a

subvariety W C V of codimension 1 by

ordw(r) := l(A/(a)) — I(A/(D)),

where A = Oy,w and r = a/b with a,b € A.
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We note that ordy is well defined cf. [17] and
ordw(r - s) = ordw(r) + ordw(s), Vr,s € R(V).
We define the the divisor of a rational function r on a variely V as

div(r) := Z ordw(r) - W
w
where W ranges in the collection of closed and irreducible subvarieties of V' of
codimension 1.
The above formal sum is in fact a cycle on V since ordw(r) # 0 only for
finitely many subvarieties of V, cf. [17].
Let X be a scheme. The group of k-cycles rationally equivalent to zero on
X is defined as the subgroup Ry (X) of Zy(X) spanned by divisors of rational
functions of subvarieties of X of dimension k+ 1. The group of cycles rationally

equivalent to zero is the graded group

R.(X) == @ Ru(X)
k=0
The graded quotient group
AX) 1= ZU(X)/RX) = @ Z(X)/Ru(X)
k=0

is called the Chow group of X.

1.2 The G-Invariant Group of Chow and the Theorem of
Hirschowitz

We explain the construction of the G-invariant Chow groups. On the one hand,
these groups have motivated the study of the G-equivariant groups. On the
other hand, it so happens that in many interesting cases the two groups prac-

tically coincide.
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1.2.1 Cycles and G-invariant rational equivalence

Let X be a G-space. The G-invariant Chow group of X is the quotient group
A(X,G) = Z,(X,G)/Re(X, (), where Z,(X,G) C Zi(X) is the subgroup
generated by the closed irreducible subvarieties of X that are G-invariant. The
subgroup Ri(X,H) C Ri(X) is generated by all divisors of rational eigenfunc-
tions on G-invariant subvarieties of X of dimension k 4+ 1.

We recall that a rational function f on a G-invariant subvariety, W C X, is
said to be an eigenfunction if gof = X(g) - f for all g € G and some character
X = X; of G.

Note that the inclusion Z;(X, ) C Zx(X) induces a natural homomorphism

Ap(X,G) — Ag(X). In general, it is neither injective nor surjective.

1.2.2 Exercice.

Let X be an elliptic curve. Consider the Zy-action induced by = — —z. Show
that the invariant proper subvarieties consist of the 4 points of order 2. Deduce
that Ag(X,Z;) — Ao(X) is not surjective. Find an example where injectivity
fails.

When the linear group G is connected and solvable (e.g., G = T a torus),

we have the following.

1.3 Theorem of Hirschowitz

If a solvable and connected linear algebraic group G acts on a projective variety
X, then the natural homomorphism Ag(X,G) — Ag(X) is bijective.

The above theorem was originally proven by André Hirschowitz [23] in 1984
in the case when X is a projective variety. In 1995, W. Fulton, R. MacPherson,
F. Sottile and B. Sturmfels [19] proved the general case. The rest of this section
is devoted to a sketch of the proof given by Hirschowitz in [23]. The hypotheses

are required in order to validate the use of the principal tool, namely,
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1.3.1 Borel’s fixed point Theorem.

Let G be a solvable and connected linear algebraic group acting on a nonempty
projective variety V. Then G has a fized point in V. ([5], pag. 242.)

Now the idea is to apply the previous theorem to the Chow variety of the
projective variety X, denoted by CH(X). The latter parametrizes the effec-
tive cycles (of subvarieties) of the projective variety X. It is known that the
irreducible components of C H(X) are projective varieties, cf. [20].

Denote by Z}(X) C Z.(X) the subgroup of effective cycles (similarly,
ZH(X,G) C Z.(X,d)). By definition there exists a natural bijection

ZHX) +—= CHIX).

We shall say that a 1-cycle is rational if its support is a connected union of
some family of irreducible curves of geometric genus zero. Thus, saying that
two points of C'H(X) are members of a rational 1-cycle is tantamount to saying
that the corresponding cycles in X are rationally equivalent. Conversely, if U
is a cycle on X rationally equivalent to zero, then there exist a rational 1-cycle
C in CH(X) and two points U; and U on C such that U = U; — U;. We say a
variety Y is rationally connected if each pair of points (z,y) of Y is contained

in a rational 1-cycle of Y.

1.3.2 Proposition

Let Y be a unirational projective variety. Then Y is rationally connected.

Proof. Recall that Y unirational means that there is a dominant, rational
map P"--- — Y for a suitable n. By resolution of singularities, there exists
a surjective map X — Y such that X is obtained from P" by finitely many
blowups along smooth subvarieties. Let X be a rationally connected smooth
projective variety. Let Z C X be a smooth subvariety. It suffices to show that
the blowup X of X along 7 is again rationally connected. Let 7 denote the
exceptional divisor. It is enough to connect a point z on 7 to some point outside

the exceptional divisor. Say Z lies over z € Z. Join z to a point © € X \ Z.
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Let C' be a component of a rational chain joining z to x such that z € C. If
C is not contained in Z then C lifts to a rational curve C' C )?,5 s Z. Let
el map to z. Then Z,Z" lie on a fiber of the exceptional divisor and and
we are done since Z — Z is a projective bundle. If C' C Z, then normalizing
C we see that the pullback of Z over C is rationally connected, so that Z can
be joined to a point z’ lying over a point in the intersection of C' with another
component of the rational chain. This brings us closer to the point = and we

are done by induction on the number of components of the chain.

As a matter of fact, the main application of the theorem of Hirschowitz
needed in the sequel is to assert the map is surjective, i.e., the Chow ring

A.(X) is generated by classes of G-invariant subvarieties of X.

Proof. (of the Theorem of Hirschowitz)

Let AF(X) be the image of ZF(X) in A (X). We will show that
Z%(X,G) = AT(X) is surjective and hence, so is A(X,G) = A(X).

Given U € Z}(X), then we have U € C'H(X) and the closure V = G - U of
the orbit G- U is a G-invariant projective variety.

Therefore, by Borel’s Theorem, there exists a fixed point Ug € V. Since GG
is rationall we have that V' is unirational. Hence, by the above proposition U
and Ug are rationally equivalent, thereby determining the same class in A.(X).

For the injectivity, we just give a rough idea. We must show that the kernel
of the map Z.(X,G) — A.(X)isequal to R.(X,G). Let U be a cycle rationally
equivalent to zero. Then we may write U = U' — U? with U',U? € CH(X)
points representing two effective cycles lying in a rational 1-cycle C' C CH(X).
Thus, (U',C,U?) is a point in CH(X) x CH(CH(X)) x CH(X). The closure
W of the orbit of that point under the G-action is a projective variety. Again
by Borel’s Theorem, there exists a fixed point (U}, Cq, U&) € W. Looking at

the two projection maps onto C'H(X), one shows that Cg is a rational 1-cycle

IThis is obvious if G is a torus; for the general case, cf. [5], 15.8.
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containing U} and UZ and that U = U}, — UZ, and so we get U € R(X, ).

1.4 The G-equivariant Chow group

In this section we introduce the G-equivariant Chow group of a G-space X.
The functorial properties of flat pullback and proper pushforward will be re-
viewed in the G-equivariant context. Details will be omitted; most of them are
consequence of (more or less) well known results about quotients of varieties by
algebraic group actions that go far beyond the objectives of these notes. The
canonical references for these foundations are Borel [5] and Mumford [33].

We shall also define G-equivariant Chern classes for a G-equivariant vector
bundle F over X. Last but not least, we discuss at some length some examples
which, trivial as they may appear at first sight, yet they will be enough for the

applications we present in the final chapters.

1.4.1 G-principal bundle

Let G be a linear group and let X be a G-space. Set
g=dimG and n =dimX.

We choose an [-dimensional representation V' of GG such that V' contains an
invariant open dense subset U where the action is free. Such U C V will be
explicitly described in the main examples.

Let 7 : U — U := U/G be the quotient G-principal bundle. This means that
there exists an open cover {UZ} of U such that 7='U; ~ U; x G, with transition
functions ¥;; : U;; — G. Such a quotient always exists as an algebraic space,
since G acts freely on U.

For the cases we shall have a closer look, the quotient U/G is in fact a
product of projective spaces and the construction is elementary, cf. 1.5.1.

Note that the diagonal action (v, z,u) — (y-z,7-u) over X x U is also free.
Hence there exists a quotient X x U — (X x U)/G in the category of algebraic
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spaces which is a G-principal bundle. We denote the quotient (X x U)/G by
X x% U, or Xg for short. Again, in all cases we are particularly interested, the
quotient X is a projective scheme.

Henceforth, the notation /' C V means an open dense subset U of a
representation V' of G on which G acts freely, and Xg denotes the base of

the G-principal quotient bundle, which will also be written
XxU — Xg=XxU.

The main observation here is that the choice of U' C V' can always be made in
such a way that the map of restriction of cycles of X x V' to the open subset

X x U is bijective for any pre-assigned dimension.

1.4.2 A very instructive example

Let us consider G = T = C*, the unidimensional torus, acting on X = P! via
lo[zg, 1] = [xo,1 - 21]. Fix [ > 1 and look at the diagonal representation of 7'
inV=C! (v—=t-v). Nowset U =V ~{0}. It is clear that T acts freely on
U. Our T-principal bundle U — U/T is nothing but the familiar construction
C'~ {0} — P"'. Continuing, X x U — Xr also is a T-principal bundle,
whose base X7 we go on to describe. Examine the map

P! x C' ~ {0} N Pi-! x P!

(z,y) = ([zo, 1], (y1s--sw))  — ([, -l (21, zoyr, - - - zoy]).

The reader should have no difficulty to verify that we have
1/)(f°(95=y)) = "7[)(J5~y)7 VieT,z e Play eC'~ {0}

In fact, ™ (¢(z,y)) = To(z,y) = T. Taking z,...,2 as homogeneous co-
ordinates for the second factor, we see that the image of ¢ is the subvariety
W C PI=! x P! given by y;2; = y;zi, 1 < 4,7 <l. The projection W — P!=1
in fact identifies that variety with the P-bundle P(Oﬂ:l—l o O]Pl—l(—l)). Sum-
marizing, we have in fact X7 = P(Opi-1 & Opi-1(—1)) — P71 See 1.9 for a

generalization.



10 A. MEIRELES ARAUJO 1. VAINSENCHER

1.4.3 Proposition-Definition

We define the ith G-equivariant Chow group of X by
AF(X) = Aii4(Xa),

where | = dim(V), g = dim(G) and A. denotes the usual Chow group. The
group is independent from the chosen representation, provided V —U is of codi-

mension sufficiently big, i.e., > dim X — 1.

Proof. We use the so called double fibration trick of Bogomolov. Let V; and
V5 be representations of G with respective dimensions [; and l,, satisfying the
conditions above. That is, there exist open subsets U; C V; and U, C V5 such
that G acts freely on U; and U, and the complements V; — U; and V, — Uy have
codimension bigger than n — ¢.

Let GG act diagonally on V; @& V,. Then, Vi & V5 contains an open subset W
that contains both Vi & U, and U; & V5 on which G acts freely. Thus, there
exists the G-principal bundle quotient W/G. Hence, we have that

Aigt iy~ (X XEW) = Ay y1,-(X < (U1 8 V3)).

This holds because the closed subset taken away, (X x“ W)~ (X x%(U; & V3)),
is of dimension smaller than 7 + {1 + {5 — g.

On the other hand, the projection Vi & Vo — Vi renders X x& (U; & V3)
a vector bundle over X x¢ U; with fiber V; and structural group G. Thus,
Aittytty—g (X XG (Uy & V2)) = Aigt,—o(X x% U4), thereby implying the equality
Aitty4ty—g (X XEW) = Ay, —o(X x9U}). Similarly, one shows that the groups
Aittytty—g (X xFW) and Aiyr,—y (X x9Us) are one and the same. Hence, AY(X)
is independent from the representation.

O

Whenever we write AY(X) = Aiy1—y(Xg) = Ai—y(X xC U) it is always
assumed that a representation V' and the open subset U C V were chosen in

such a way that V' — U is of codimension bigger than n — ¢ in V.
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1.4.4 Invariant cycles

If Y C X is a G-invariant subvariety of X of dimension m, then Y gives rise to
a fundamental G-equivariant class, [Y]g = [V x9 U] € AZ(X).

In general, if V' is an [-dimensional representation of G and S C X x V
is an invariant subvariety of dimension m + [, then S admits a G-equivariant

fundamental class [S]g € AZ(X) given by
1Sle = (51 (X x 1))/,

1.4.5 Lemma

Letm: X xU — X x9U = Xg be the quotient map and let Z C Xg
be a closed irreducible subvariety. Then n='Z C X x U is G-invariant (and

irreducible if G is connecled).

1.4.6 Non-triviality of A%(X).

Notice it may well happen that the usual Chow group A;(X) be trivial, but
A%(X) be nonzero for some i < n, including negative i. Take for example
X = pt, yes, just a single point, and G = T = C*. Presently, Xt is just U/T.
Choosing a representation as in (1.4.2), we see that AZT(X) = Ai_H_l(]P’[_l) is

zero for ¢ > 0 and isomorphic to Z for all : < 0.

1.4.7 The ring structure

Whenever X is a smooth variety, the G-equivariant Chow group

AZ(X) = @ A7(X)

inherits an intersection product from the ordinary Chow groups. This endows
A%(X) with the structure of a graded ring. In this case, it is more convenient

to take the grading given by codimension, writing

AL(X) = Ao (X) and AL(X) = €D AG(X).
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1.4.8 Proposition

Let a € AS(X). Then there exists an l-dimensional representation V of G such
that o = 3" a;[Si]la, where each S; is a G-invariant subvariely of X x V of

dimenston [ + m.

Proof. Given that AZ(X) = A,1-,(Xg), cycles of dimension m+1—g in Xg
correspond exactly to G-invariant cycles of dimension m 4+ [ in X x U. Since
V' — U has sufficiently big codimension, therefore G-invariant (m + [)-cycles in
X x U extend uniquely to G-invariant (m 4+ [)-cycles in X x V. Employing the
double fibration argument it can be shown that any finite number of such cycles

will appear all in a suitable representation.

O

The representation V' is not necessarily unique. For instance, [X]s and
[X x V]g define the same G-equivariant class.

We shall see later (1.10.1) that, indeed, for many interesting cases it suffices
to consider just the cycles of G-invariant subvarieties of X, avoiding the general

search in X x U.
1.5 The T-equivariant ring of a point
1.5.1 Tori.

If T = (C*)*9 is a torus of dimension g, then we may take U = [[7_, (Vi —{0}),
with V; = C¥ denoting a representation of dimensional [;. We find for the

quotient a product of projective spaces,

U= f[ P,
i=1

Suppose g = 1, i.e., T = C*. For each i > 0 pick [ > 7 and set V = C! and
U as in the above instructive example. With these choices, the codimension of

V —U = {0} in V is equal to [ and we have U/T = P"~'. We may write,

Ay(pt) = A(U/T) = AP =Z - &',
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where h = ¢;(O(1)) denotes the class of a hyperplane section of P/=!. Hence we
get,
An(pt) = PZ- b = Z[h).

The equivariant ring of a point acted on by a torus plays a central role. We
denote it by Ry. If T is a g-dimensional torus, choosing V' and U as just above,

we see that

Ry := As(pt) = Z[hy, ..., hy] (1.5-1)

is a ring of polynomials with integer coefficients. Here each indeterminate hq,

..., h, represents a hyperplane section in some Pt

1.5.2 GL,.

For the general linear group G'L,, of n X n nonsingular matrices, take V' as the
space of n X p matrices (with p > n), and the action given by multiplication
of matrices. Now the open subset U C V' can be selected as the open subset
consisting of matrices of maximal rank. We see that U/G L, is the Grassmann

variety G'r(n,p) of all linear subspaces of C? of dimension n.

1.6 Functorial properties

All morphisms are assumed G-equivariant throughout this section.
Given a morphism f : X — Y of G-schemes, (f xid) : X xU — Y x
U induces a morphism fg : X¢ — Yg that renders the following diagram

commutative:
[ xid
XxU — YxU
{s i

XG — Yg.

fa
Note that in the above cartesian diagram the projections are surjective and
flat. We may deduce that if f: X — Y is either smooth, or proper, or flat of

relative codimension k or an embedding, then fg : X¢ — Yg will have the same

property.
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The proper pushforward f.: AS(X) — AZ(Y) is given by
fon : Avi—o(Xg) = Api—(Ya)-

If f:X — Y is aflat morphism of relative dimension k, the flat pullback
i AS(Y) — Aﬁ_k(X) is defined by

J& 1 Avnig(Xa) = Aigii—(Ya)-
1.6.1 Proposition

The maps f. and f* are well defined.

Proof. We use once more the double fibration argument of Bogomolov.
Let Vi and V; be representations. We have the cartesian diagram
Xx(UhoV) — YU W)

ul b
X %G, — Y x% U,

The projections are flat, and we already know that their pullback induce iso-
morphisms with the A¥ defined with the bottom part of the diagram. This
implies that f* is well defined. Finally, use the fact that proper pushforward is
compatible with flat pullback in order to conclude that the pushforward f. is

also well defined.

1.6.2 G-equivariant Chern classes

Let X be a G-space. Let F be a G-equivariant vector bundle on X. For each
pair i,j we define a map ¢§(E) : A7(X) — A7 ;(X) as follows.

Let V' be an [-dimensional representation of G and choose an open subset
U C V such that V — U has sufficiently big codimension and the G-principal
bundle X x U — X¢ exists. Then, according to [GIT [33], Prop.7.1] there exists
a quotient Fg of £ x U. It can be shown that Eg — Xg is in fact a vector
bundle. We give details for this later on in the cases when X is a T-space and

either £ is a trivial bundle (1.7.1), or when T acts trivially on X (2.2.1).
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1.6.3 Definition-Proposition.

The j-th G-equivariant Chern class
§(B) : AF(X) = AZ,(X)
is defined as the operator
a € Aip—y(Xg) — c;(E) Na=c(Eg)Na € Ai_ju_q(Xg).
This definition is independent from the choice of representation.

Proof. Let V} and V; be representations of (G. Consider the diagram

Ex¢(UheV) — ExOU

1 |
X2 (hen — Xx°0.

Since the projections are surjective and flat, we see that the pullback E x¢ U
to X x% (U, & V3) is isomorphic to the quotient F x“ (U, & V;). By Bogomolov’s
double fibration trick, we see that the definition above does not depend on the

chosen representation.

1.6.4 Equivariant self-intersection

Let 7 : Y < X be an equivariant regular embedding of G-spaces of codimension

d. The usual self-intersection formula,
i = ca(Nyyx) Na, a € A(Y)
induces a similar equivariant formula,
IiGea = Cg(./\/fy/x) Na, a € A%(Y) (1.6-1)

This follows from the fact that under the given hypotheses, the normal bun-
dle of the quotient Y5 < Xg is the quotient (NY/X)G of the normal Ny xUJX XU

Details are left for the reader.
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1.7 The line bundle of a character

We focus on the action of a torus. The lemma below is a simplified version of

the general construction of a vector bundle associated to a T-principal bundle.

1.7.1 Lemma

Let U — UJT be as before and let X be a character of T. Let ¢ : U x, C = U
be the trivial line bundle endowed with the T -action

Lo (u,v) = (L u, X(1) - v).

Then ¥ is a T-equivariant bundle and induces, passing to the quotient, a line

bundle L, — UJT.

Proof. The trivial bundle in the statement is obviously T-equivariant. We now
describe a local trivialization of the quotient £, with transition functions that
yield a line bundle on U/T. For this, let {(U;,%;;)} be a trivialization of the
T-principal bundle U — U/T'. That is, we have

U= |_|(Ui xT)/ ~

where (u,t) ~ (W,1') & u=u €U; =U;NU; and ' = ¢;;(u) - L.
This allows us to write,
Lo =0 2T %, CYyT =0 xC
The gluing in Uj; is done by first identifying representatives (u,t,v) € U;xT xC
with (u',t',v") € U; x T x C, and then passing to the quotient. Thus, we have
W =u €Uy, t' =¥;(u) -t and o' = X(¥;;(u)) - v.
Hence, {(U;, Xo¥;;)} gives a local trivialization of £, as a line bundle on U/T.

]
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1.8 Character versus Chern class

1.8.1 The multiplication by a character

Notation as in the lemma above, let X be a T-space. Form the diagram of
natural maps

XxUx,C —  Lyx, — Ly

{ { {
X xU — XxTU — U/T
where the horizontal arrows on the left are the quotient maps by the action of
T.
For each cycle a € A(X71), we write

X-a:=ca(lyx,)Na. (1.8-1)

This operation of the group T of characters of the torus 7' in A (X7) plays a

very important role.

1.8.2 Structure of Rr-module

Continuing with the above setup, the structure morphism X — pt induces a
morphism

Xr = U/T
that turns AT(X) into an Ry-module.

To have a closer look at this action of Ry in AT(X), suppose
T=C, V=CH', U=V~{0}L

The action is given by multiplication with all the weights equal to —1. As in
example (1.5.1), we have U/T = P! and A.(U/T) = A.(P'). Taking the limit
for I — oo, we see that Ry = Z[h], where h represents a hyperplane section of
some P!. The map Rr — AT(X) is simply pullback of cycles in Rr. Since in
each dimension Ry is generated by ¢;(£) N [U/T], where L is a line bundle on
U/T, we see that the multiplication

Rr x AT(X) - AT(X)
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is obtained from generators of Rt as multiplication by characters of T, in the

form described in (1.8-1).

1.8.3 The bundle Op:(a)
Assume further T'= C*, V = C*', U = V — {0} with the action on V as just
above. We get the familiar T-principal bundle ,

U — U/T
l

cH' {0} — P

The latter can be described by the usual local chart, {(U;, ¥i;)}izo... where
Ui = {[zoy...,z)] €P'| z; & 0}
and the transition functions are
iUy = C
[0, ..., &) — z/;.

Presently, every character X : T = C* — C* is of the form ¢ — t* for some

a € Z. In other words, we have an isomorphism

& —s T

a = (X:T—>0
where X, denotes the character of T', t — t*. Consider the line bundle induced
by Xa,

Lo=Ly, = U/T =P.
Recalling the recipe in the proof of (1.7.1), £, is given by transition functions

l/)” s Ui — GL1 =C
T =[z0,..,x1] = Xu(¥Py(x)) = (x;/2)"

These are precisely the transition functions of the line bundle Op:(a). It follows

that
L, =Op(a) — U/T =P (1.8-2)
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Note that the choice of the C*-action with all weights equal to -1 was done

precisely to ensure the formula above.

For a torus of arbitrary dimension g, let hy,. .., hy be a base of the group of
characters T = Z9. Take U C V as in (1.5.1) so that U/T = [1,P% Arguing
as in the previous case, it can be shown that each line bundle L, arises from
Opi;(1). The action (1.8-1) of the character h; comes from multiplication by a
hyperplane class. In other words, in the identification Ry = Z[hy, ..., hy], this
ring of polynomials can be thought of as the symmetric algebra of the group of

characters 7.

1.8.4 Divisors of eigenfunctions

Let X be a T-variety. Let f € C(X) be a nonzero rational function. Assume f
is an eigenvector of T with character X. Then the support of f is a T-invariant
divisor. Hence it defines a class divT(f) in the equivariant Chow ring AT(X).

Precisely, write the principal divisor
div(f) = EmzZ € Z2*(X),

where Z ranges through all components of the support and my denotes the

respective multiplicity. We define
div? (f) = Bmz[Z]r € AT(X), (1.8-3)

where [Z]p denotes the class (1.4.4) of the invariant subvariety Z in the 7T-
equivariant ring of X. Note that a rational function f induces a rational section
fixxu of the equivariant trivial bundle X x U x, C. Equivariance follows from

the definition of U x, C:

Jixxw(t- (x,u)) (t-x,t-u, f(L-x)
(t- xl u, X(1) - {(z))

= .Il/,f( )

This T-equivariant rational section, fixxu, passes to the quotient. More pre-

cisely, let L£,|x, be the pullback of the line bundle £, under the map X xTU —
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U/T. We have an induced rational section,
Sft X<y ... — ’CX|XT

[z, u] > [(z,u), f(2)]
1.8.5 Lemma

Notation as above, divT(f) represents in AT(X) the operator ¢;(Ly) (1.8-1)

evaluated on the fundamental class of X7 = X xT U,

div (f) = X - [X7].

Proof. In the diagram of natural maps
XxUxyC — Lyx,
] 3
X xU — XxXTU
the horizontal arrows are the quotient maps by the action of 7. The pullback
of the rational section sy is the rational section fixxy. The cycle ¢(£y) N
[X xT U] can be computed in terms of the pseudo-divisor determined by the
rational section sy (cf. [17]). The maps in sight are faithfully flat. Therefore,
the multiplicities of the components of the cycles associated to sy in X xT U

and to f in X x U coincide.

Note that, even though the class of the divisor of the rational function f is
zero in the usual Chow group, the equivariant class divT(f) is not necessarily
zero in AT(X), cf. 1.8.6.

The relation div’(f) = X - [Y]r enables us to compare the equivariant class
of Y with a class of a T-invariant divisor contained in Y. That is, given a
T-invariant subvariety Y C X, suppose that there is a rational eigenfunction f
with non trivial character X and such that f does not vanish on all of Y. Then,
inverting the character X in AT(X) if needed, we may compare the class [Y]r
with an invariant cycle with support of dimension less than dimY. This is the

key point in the proof of the localization theorem.
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1.8.6 T-invariant divisors in P”

Let T'= C* be a unidimensional torus acting diagonally on P" with weights
gy -« y Uy, 1€y Lo[To, .. x,] = [1™xg,...,1"2,]. Later on we shall describe
P2 = P* xT U as a projective variety for a suitable choice of U C V as well as

the ring AT(P™). Right now we limit ourselves to explain the computation of
aivT(f) € AT(P)

for a rational function f : P*-.. — C that is an eigenfunction with weight
a € Z, that is, f(lox) = 1" f(2) for each € P™ in the domain of f and { € T'.
For instance, if f = x;/x; then f has weight a = a; — a;. We may write

div(f) = H; — H; € Z'(P")

with Hp C P" denoting the T-invariant hyperplane given by x; = 0. Thus, we
get by 1.8-3
divi(f) = [Hilr — [Hj}r in AI(P").

The lemma 1.8.5 tells us that
div?(f) = eu(Ly) N [P7]
with X = X,. In this manner, recalling (1.8-2), we see that
[Hilr — [Hj]r = e1(Opi(a)) N [P7] = a- 10 [P7]

where, by deliberate abuse, we also write ¢ = ¢;(Opi(1)) for the pullback of the
hyperplane section of P!, In particular, we see that divT(f) is not necessarily

zero in AT(P™).

1.9 The C'-equivariant Chow ring of P”"

Let T'= C* act on P" as in the previous example. We have P"* = P(V), with
V = C"*!; the action on P™ is induced by the diagonal representation,
p:C — G Lyt
l —  diag(t®, 1™, ..., 1%).
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Thus, we get a decomposition into eigenspaces, which is customarily written as
Cr =

with weights ag, ..., a,.
We have already seen that, taking U = C*! — {0}, we get U/T = P'. The
trivial bundle U x,,C™*! — U associated to the representation p is T-equivariant

and induces, passing to the quotient, the vector bundle
UxTC* =0(a0) @ ®O(an) — P

which we shall write for short as O(a). Each eigenvector with weight a, passes
to the quotient as a section of O(a). As in example (1.4.2), it can be shown

that the quotient variety (P")z = P™ xT U is the projective bundle / P,
(P")r = P(O(a)) — P!
with fiber P™. The quotient map
UxP* — UxTP*=P(0O(a))

may be explicitly written in the following fashion. Given (u,[v]) € U xP", write
the vector v = vg + --- 4+ v, as a sum of eigenvectors. Each v; yields a class
[u,v;] € O(a;). Next, project E[u, v;] € O(a) to P(O(a)).

The Chow ring of this projective bundle is given by

A(P7) = AL(PY[R/ (p(h, 1))

where  is a generator of A'(P') (a hyperplane section of P'), h = (O (1))
and

p(h,t) = | | (R + a;t).

—.

Il
=]

3

The relation [[i—,(h + a;it) = 0 in A*(P}) can be interpreted as follows. Each
homogeneous coordinate z; is an eigenvector with weight a,. Therefore the
hyperplane H; C P" given by z; = 0 is T-invariant. The inclusion (H;)r C P%

is the inclusion of the projective subbundle over P,

P(©;£0(a;)) C P(O(a)).
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This allows us to compute [H;]7 as the zeros of a section of the line bundle
Q® Oo(&)(l)
where we have set
Q = (0(a))/(©;#0(a;)) = O(ai)
Hence, (cf. [17], 3.2.17)
[Hz]T =a;-1+ h.
Since ), H; = 0, we have (.(H;)r = { thus implying

n

H(h + ait) =0.

=0

Letting the dimension of the representation go to infinity, we see that
AT(P™) = Z[h, ] /H(h + ait).

Notice that AT(P") is a free module of rank n + 1 over Z[t], the T-equivariant
Chow ring of a point.

More generally, let X C P” be a hypersurface defined by a homogeneous
polynomial f of degree d which is an eigenfunction with weight a. Then X is
T-invariant and its equivariant class [X]r € AT(P") is equal to dh + at.

This follows from the fact that we may produce, using f, the rational func-
tion r = f/xd : P"-.. — C which is an eigenfunction with weight a — d - ao. It

is easy to see that div(r) is the cycle X — d- Hy. We have therefore
div?(r) = [X]r — d - [Holr € AT(P™).
Recalling (1.8-2), we may write
divi(r) = e1(Liamdae)) N [PH = (a —d - ag) - t - [P (1.9-1)
whence we get (suppressing the factor N[P%]),
Xlr=(a—d-ap)-t+d-(h+ap-t)=a-t—apd-t+d-h+apd-t=a-t+d-h.

We leave the following generalization as an exercise. Let X be a complete
intersection in P defined by homogeneous polynomials f; of degree d; that are

eigenfunctions with weights a;. Then, [X]r = [[(dik + a;t) € AT(P™).
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1.10 Invariant cycles suffice

We end this chapter showing that the invariant cycles are enough to handle

many interesting cases.
1.10.1 Proposition

Let T be a torus and let X be a T-space. Then the T-equivariant Chow group

AL(X) is generated as Ry-module by the T-invariant subvarieties of X.

Proof. Note that a generator for the T-equivariant Chow ring of X is given by
a T-invariant subvariety Y C X x U C X x V for a suitable choice of U C V.

Employing the isomorphism between A.(X) and A.(X x V'), we have that
Y is rationally equivalent to Y  m;(Y; x V). Using the generalization of the
theorem of Hirschowitz 1.3 to the (non necessarily projective) variety X, we
may assume that each subvariety Y; C X is T-invariant. Applying once more
the theorem, this time to X x V, we see that the rational equivalence between
Y and > m;(Y; x V) can also be achieved in a T-invariant way, namely, there
exist T-invariant subvarieties W C X x V, such that dim(W) = dim(Y) + 1

and rational eigenfunctions fy : W --- — C with characters Xw, so that

Y =) mi(Yi x V)= div(fw).

Thus, passing to the equivariant classes we have

Yl =Y mil¥ilr = Y div(fw) = Y e(Ly, ) N [Wlr =Y xw - [Wl,

where the dimension of each W is bigger than dim(Y). It follows by induction
that AT(X) is generated as Rt module by T-invariant subvarieties ¥ C X.

2 The theorem of localization

For the rest of these notes, we restrict ourselves to the case of an action of a

torus 7" on a scheme X.
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2.1 The case of a trivial action

Suppose dim T = g. We have seen in 1.5.1 that the T-equivariant Chow ring of

a point can be described as
Ry =Z[t, ..., 1]

We have on the right hand side the ring of polynomials with integer coefficients.
This ring appears in fact as the group algebra of T = Z9, the group of characters
of T'. The explicit isomorphism comes from the following recipe.

For each character X € T, consider the line bundle Ly on U/T constructed

in 1.7.1. We identify X with ¢;(£,).

2.1.1 Lemma

Notation as above, if T acts trivially on X, then

AT(X) = AuX) ® Rr.

Proof. Due to the triviality of the action of 7" on X, it follows that X xT U =
X x(U/T). Thus, choosing U so that the quotient U/T is a product of projective

spaces (cf. 1.5.1), we have the isomorphism
Al(X x (U/T)) = A(X) @ A(U/T).

Increasing the dimension of the representation we get the assertion.

Note that in general, the map of Kiinneth decomposition
A(X)® A(Y) - A(X xY)
used above, need not be an isomorphism: take for instance X = Y to be a
curve of genus > 0. If the diagonal A C X x X had an expression in the form
[A] = Bmy[pi x X]+n[X x qi], with m;,n; € Z,p;, q; € X then, for each p € X
we could write [p x p] = [p x X] N A = En,[p x ¢;]. Projecting to the second
factor, we may write [p] = Yn;[¢;]. Hence, any two points would be rationally

equivalent, a contradiction for positive genus.
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2.2 Decomposition into eigensubbundles

We still assume that the T-action on X is trivial.
Given a T-equivariant vector bundle £/ — X we get a canonical decomposi-

tion
E= @ Ex
XeT

into a direct sum of subbundles, where EX denotes the eigensubbundle consist-
ing of vectors in K on which T acts with the character X.

It follows that the T-equivariant Chern classes of £ can be expressed in
term of the classes of eigensubbundles £X. For the latter, we shall describe the
vector bundle Er on X7 induced by E = EX, noting that now Xy = X x (U/T)
by the triviality of the action on the factor X. Let us look at Er in terms of

local charts.

2.2.1 Lemma

Notation and hypotheses as above, the quotient bundle (EX)p on X x (U/T) is
isomorphic to the tensor product of the pullback of the bundle EX by the pullback
of the line bundle L, .

Proof. Choose trivializations {(U,, ¥ag)} for the T-principal bundle U — U/T
and {(Vi,¢;;)} for the equivariant bundle EX — X. Then, we have

U=| [T xT)/~, E*=||VixxC")/=
where
(u,t) ~ (W,1') & u=u €U,p:=U,NUp, t' =Pop(u)-1t

and

(z,0) = (2',0) & z=2" €V :=V,NV;, v =¢;(x) - v.

This implies

(EX)T | Uak Vi = (Ua X ‘/, XX(CT X T)/T = Ua X ‘/, X CT,
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which yields a local trivialization for (F£X)r as a vector bundle. The gluing over
(Ua x Vi) 0 (Ug x Vj)
is done by identifying representatives
Uy, x Vi x,, C" X T 3 (u,z,v,1) with (v/,2',0",1") € Us x V; x, C" xT

and then passing to the quotient. Namely, we have

v =u€&Uyp, 2’ =z€V;
and
= Ru0) o = X($aslu) - Yi(2) 0
Hence, {(Us X Vi, (Xo®ug) - i)} is a local trivialization of (EX)7 as a vector
bundle over X7 = X x U/T. Furthermore,

(F¥)r ~ BX® Ly,

where EX and L, denote the pullbacks to X x (U/T) of the “same” bundles
over X and U/T.

2.2.2 Corollary

Let X be a T-space with trivial action. Let E = EX — X be a T-equivariant
vector bundle of rank r on X such that the action of T on each fiber is given by

a character X. Then, for all i, we have

1

ci (BX) = Z <r _]> c;(EX)X'.

i —
=0 J

Proof. The assertion follows from example (3.2.2) of [17], where the (usual)
Chern class of a tensor product like (EX)y ~ EX® L, is computed.
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2.3 Fixed points locus

The following result ensures nontriviality of the weights of the normal bundle

of the locus of fixed points.

2.3.1 Lemma

If X is a smooth T-variety then the locus XT of fized points is also smooth. If
F is a component of X, then the normal bundle N x is T-equivariant over F.
Furthermore, we have (T, X)T = T,F for all x € F, and therefore the T-action

on (NF/X)I s non trivial.

Proof. See B. Iversen, [25].

2.3.2 Localize to invert

Let X be a T-variety and let ' C X7 be a component of the fixed points
locus. Let £ be an equivariant bundle on X. Taking into account that 7 acts
trivially on F', we have by 2.1.1 that A%(F) = R @ A*(F). The restriction F|p
decomposes as a sum of eigensubbundles Ele. The lemma 2.2.2 tells us that the
component of clT(Elxp) in R is given (setting j = 0) by (7)X".

Since AN(F) =0 for N > dim(F), we have that, for j > 0, the elements of
AJ(F) are nilpotent in the ring A%(F). Tt follows that clT(Ele) € (Rr® A*(F))!
is invertible if and only if its component in Ry @ A°(F) = RY is invertible.

Hence, cf(E[XF) is invertible in the localization Ry @ A*(F)[X™'].

2.3.3 Lemma

Let X be a smooth T-variely and let F' be a component of codimension d of
the fired points locus XT. Then there exist finitely many nontrivial characters

AMyoooy A such that ch(/\/F/X) becomes invertible in the ring of fractions

AL/ A, 1N
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Proof. By the previous lemma, we know that 7" acts with nontrivial weights
on the normal space (-A/F/X)x = T,X/T.F. Hence, the characters ); that
occur in the decomposition of the normal space (Np/x) into eigenbundles are
all nontrivial. By the previous remark, we see that the component of (:5(,/\/17/ x)
in Rf is nonzero. Hence, the class ¢} (Np/x) becomes invertible in the ring

AR(F)[1/Ay,. .., 1/)], as claimed.

2.4 The theorem of localization

We present in this section the version of M. Brion [7] for the theorem of local-
ization. The principal point in favor of his approach is to avoid the need of the

higher Chow groups as required in [12].

2.4.1 Lemma

Let X be an affine T-scheme. Let Y be a T-invariant subvariety. If Y is not
fized pointwise, then there exists a regular eigenfunction f on X with nontrivial

weight whose restriction fiy # 0.

Proof. Pick y € Y not in the fixed points locus X7. Hence, there exists t € T
such that toy # y. Since T is a torus, we know that the coordinates ring of
X is generated by eigenfunctions. Hence there exists an eigenfunction f, say

associated to the character X, which separates those points: f(loy) # f(y).
Hence, f(toy) = (X(t) - f)(y) # f(y). This implies at once that f(y) # 0 and
X(t) # 1.

2.4.2 Lemma

Let X an affine T-scheme. The fired points locus XT C X is an intersection

of schemes of zeros of the reqular eigenfunctions on X with nontrivial weights.
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Proof. Let = € X7, and let f be a regular eigenfunction with weight X # 1.
We have f(z) = f(tox) = X(t) - f(z), Vt € T. Hence, if X(t) # 1 then f(z) =0.
Conversely, if = ¢ X7, we apply the previous lemma with ¥ = X to conclude

that @ is not a common zero of all eigenfunctions referred to in the statement.

O
Denote by
ir: XT 5 X

the map of inclusion of the fixed points locus. We know that iz induces a

homomorphism of Rp-modules
ire : AT(XT) — AT(X)

for the T-equivariant Chow groups (cf. 1.6.1).

Recall that we have a natural isomorphism
AT(XT) ~ Rr ® A.(XT),

since the action of T in X7 is trivial.

We may at last handle the important

2.4.3 Theorem of localization

Let X be a T-space. Then the Rr-linear map
ite : AT(XT) = AXT) ® Rr — AT(X)
becomes an isomorphism after inverting finitely many nontrivial characters.

Proof. By our blanket assumption, X can be covered by finitely many 7T-
invariant affine open subsets X;.

By the previous lemma, each fixed points locus XI C X; is an intersection
of zeros of the regular functions on X; which are eigenvectors of the action
of T on X; with nontrivial weights. By quasi-compactness, we may extract a

finite intersection. That is, there exists a finite set of eigenfunctions {f;;} with
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respective weights {X;;}, all nontrivial, such that = € X; is in X7 if and only if
fij(z) =0, V5.

In order to show that i7, is surjective, we invoke the theorem 1.3: the usual
Chow ring of X is generated by the cycles of T-invariant subvarieties. An
immediate consequence is the fact that AT(X) is generated, as Rr-module, by
the cycles of the form [Y xT U] with Y C X a T-invariant closed subvariety.

Let now Y C X be a T-invariant subvariety. Suppose that Y is not pointwise
fixed by T'. Then one of the f;; defines a nonzero rational function on Y. This
rational function defines in turn a rational section of the pullback of the line
bundle £y, (1.7.1) by the map Y xT U — U/T, still denoted by L,,,.

Therefore, X;; - [Y]r = (:1(,Cxt]) [Yr = divT(fZ-j) € A;‘{"(X)7 which implies

[Y]r = x5 divT (f;;) € AT(X) ® Rr[1/xi).

Well, the support of div’(f;;) is of dimension smaller than dim(Y) and is made
up of invariant subvarieties. By noetherian induction it follows that, upon
inverting finitely many X;;’s, the induced map 7. becomes surjective.

For injectivity, notice that if X7 = X then iz, is the identity map.

Hence, we may assume that X is not fixed pointwise by T. Let Y be an
irreducible component of X that is not contained in XT. Choose fi; as before,
namely, fi;y # 0.

Denote by | D| the union of the support of the divisor of f;; in ¥ and the irre-
ducible components of X distinct from Y. Then, by construction, |D| contains
all the fixed points of X. Let ¢ : |[D] = X be the map of inclusion.

Consider the T-principal bundle U — U/T given as in 1.5.1, and let L,,; be
the line bundle on U/T associated to the weight X;;. Let p: X xT U — U/T
be the projection. We have a pseudo-divisor on X xT U (cf. [17], 2.2),

(9L, DI XU, fi)
which defines a homogeneous map of degree —1,

c AL(X) — AL(D])
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such that the composition ¢*or, is multiplication by y;;. Examining the diagram,

AT(XT) = A(XT)@ Ry % AT(X)
|| T L.
AL(XT =|DI) —  AL(ID])

we see that the map . : AT(|D|) — AT(X) becomes injective after inverting

Xij- Therefore injectivity follows using again noetherian induction.

O

Recall that the equivariant ring of a point, Ry = Z[ty,...,t,], is a ring of
polynomials. Let RF denote the multiplicative system of homogeneous elements

of positive degree. We define the ring of fractions
Rr = (Rf)™ - Rr.
Thus, in R (the image of) all nontrivial characters are invertible elements.

We get the following consequence.

2.4.4 Corollary

The map i, : A*(XT) QR — Af(X) ® Rr is an isomorphism.

2.4.5 Theorem (explicit localization).

Let X be a smooth T-variely. Let o € A%(X) @ Rr. Then
. 5o
a=)Y ip| 777—),
S (ki)

where the sum is taken over all components of XT and dg denotes the codimen-

sion of F' in X.

Proof. From the surjectivity ensured by the Localization Theorem, we may
write @ = Y ip(BF). Since the irreducible components F of X7 are disjoint,
it follows that ija = i%ir.(8F) because the remaining components of X7 do

not contribute for cycles in F. The formula of self intersection 1.6-1 yields

iyir(Br) = I (Ng/x) - Br,
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and so, by 2.3.3, we get Br = i*pa/chF(Np/X) as desired.

2.4.6 Homomorphism of integration

When X is a complete variety, the projection 7y : X — pt induces a pushfor-
ward mx. : AT(X) — Rz which is zero in AT for i > 0 and is given by the
degree of zero cycles for ¢« = 0. Tensorizing by Rr, we get the homomorphism

of integration
T X AI(X)@’RT —  Rr

@ —  Jya.
Replacing X by F, a component of X7, we have a similar map ..
Let us apply mx. to both sides in the theorem of explicit localization.

Using the fact of that mp. = mx.otp., we get the following.

2.4.7 Corollary. (Formula of integration)

Let X be a smooth and complete T-variety and let o« € A7(X) ® Q. Then
o = TF«\ T 727 ~ |>°
foo= o (i

as an element of Rr. m]

The previous corollary yields a formula of integration which is particularly
useful for elements of the usual Chow group Ag(X) of the form pullback of an

element of AT(X). More precisely, consider the commutative diagram

X S X T < XxU
O L ¥ 1 (2.4-1)
J

pl = U/T + U

Tx

where the horizontal maps on the right are the quotient maps. Note that, by
construction of the T-principal bundle, the inverse image of the point pt € U/T

in U is the orbit T'-u = T for some « € U. On the other hand, the inverse image
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in X x U is X x (T -u). The image of the latter subvariety in X7 = (X x U)/T
is isomorphic to X. Since X is smooth, we have that ¢ is a regular embedding
of codimension d = dim(U/T). Recalling the definition, we see that ¢ induces

the homomorphism,
" AT(X) = Ag(X7) — Ao(X).

2.4.8 Proposition

With the hipotheses as in the previous corollary, put
a=1ia, with o€ AT(X).

Then
(320 )
a= T | ——— ).
]X F%;T (Cgp(NF/X)
Proof. We have mx.(a) = mx.i*(a) = j*r% (o). Applying the integration

formula, the assertion follows.

2.4.9 Remark.

Let E — X be a T-equivariant vector bundle. Consider in the diagram (2.4-1),
the vector bundle £7 induced over X7. The identification of the fiber (TI'T)_lpt

with X induces the identification *(Er) = E.

2.5 Bott’s residues formula

We describe in this section an equivariant version of Bott’s formula.

Let Fy,..., E, be T-equivariant vector bundles on a smooth and complete

variety X of dimension n. Let p(z},...,z!,... 27, ...,27) be a weighted ho-

bl s
mogeneous polynomial of degree n in the variables xj—, where xi has degree
i. Denote by p(F1,..., E;) the polynomial in the Chern classes of Fy,..., F;,

obtained by substituting =% = ¢;(F;). The integration formula computes the
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degree of the zero cycle p(Ey, ..., E;) N [X] in terms of the restrictions of the
bundles E;’s to the locus X7 C X of fixed points.
Set for short

p(E) :p(Elv"'vES) and pT(E) :p(ElTv"'aEST)

the corresponding polynomial for the T-equivariant Chern classes of the bundles

K, ..., E,. Note that
p(E) N [X]=(p"(E) N [X]r).

Employing the proposition 2.4.8, we get the following.

2.6 (Bott’s residues formula)

Let X be a smooth, complete variety and let Fy, ..., I/, be T-equivariant vector

bundles over X. Then

[emnpy= ¥ (FERSTN, e

FcXT

where dr denotes the codimension of the component £ in X.

In spite of the possibly awe-inspiring appearance of the formula at first (and
perhaps even a few subsequent) sight, we hope to convince the reader that it is

in fact very efficient and rather simple to apply in practice.

2.7 Contribution of fixed points

Let X be a nonsingular T-variety and F C X7 a connected (=irreducible)
component of the fixed points locus. Write dp = codim(F).

The T-equivariant Chern classes ¢ (E|p) and ¢j_ (Ng/x) can be computed
in the equivariant Chow ring AT(F') in terms of the characters that occur in the
decomposition of £z and NF/X into eigensubbundles and of the Chern classes

of the latter.
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2.7.1 Isolated fixed points

When X7 is a finite set of points, the classes
ct(E\r) and  cf, (Nryx) = i) (TX)

can be described purely in terms of characters associated to eigenbundles. More

precisely, once we have the decomposition
- %
Bir— @B

into eigenspaces, the equivariant Chern classes of |z can be determined. In-

deed 2.2.2 yields the classes of each summand,
CZ(ETF) = (;)Xk, r = rank of E\. (2.7-1)
Note that, in the above expression, X* means the kth.-iteration of the operator
first Chern class introduced in (1.8-1). In particular, we deduce that ¢l (F|r)
is represented in the equivariant Chow ring of the fixed point F by the product of
all characters that occur in the decomposition of the fiber F|r into eigenspaces,
with their respective multiplicities. Here each character is already being con-
sidered as acting on the equivariant ring, according to (1.8-1). See the example
2.74.
For the case T'= C*, a unidimensional torus, let us have a closer look at the

replacement of Ry = Z[l] by
Rr = (Rf)™(Rr) = Qlt,¢7"].

On the right hand side of Bott’s formula (2.6-1), the numerator p’ (E|r) is a
homogeneous polynomial of degree n = dim X in as many variables as there
are characters appearing in the decomposition into eigensubbundles. Typically,
suppose that the original polynomial contains a term equal to /™2 - ¢,, while
say, I = 2X1 4+ X2. Then we have c?(E|F) = 2X1 + X3, the right side now with
the meaning of (1.8-1). Similarly, ¢ (Ejr) = X} + 2X; - X2. That term yields
at last the operator of degree n, to wit, (2X; 4+ X2)"™% - (X3 + 2X; - X3). Since
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T = C*, each character is of the form X; = t*, a; € Z. The operator induced on
Ry is a; - t, sorry for the abuse, cf. (1.9-1) where this time ¢ means a hyperplane
class! That term gets the final form (2a; + a2)""% - (a} + 2a4 - a3) - t" € Rr.
That is, the numerator and the denominator on the right hand side of (2.6-1)
are integer multiples of {". Cancelling {*, we get in this way a rational number.
So, the right hand side of (2.6-1) is a finite sum of rational numbers obtained

from the weights as described in (2.7-1).

More precisely, denote by 71 (E, F),...,7.(F, I') the weights that occur in
the decomposition of Ejr into eigensubbundles, and for each integer k > 0, let
o,(E, F) denote the k-th elementary symmetric function on these weights. We

have therefore the following corollaries.

2.7.2 Corollary

With notation as just above, we have that each equivariant Chern class c{(E”:)

is represented in the equivariant Chow ring of the fized point F by op(E, I).

2.7.3 Corollary

The equivariant top Chern class of the tangent bundle of X is given in the
equivariant Chow ring of a fized point I by the product of the weights that occur

in the decomposition of the respective tangent space.

In the next chapter we explain systematically how to apply Bott’s formula to
a few situations of interest in enumerative geometry. We can’t resist however the
compulsion to exhibit right away how the above result can be used to retrieve

the number of zeros of a vector field in P".

2.7.4 Zeros of vector fields in P™

Write F = (xg,...,z,) for the vector space of linear forms on these variables, a
choice of homogeneous coordinates for P”. Consider the action of T'= C* given

by tox; = t'z;. One sees at once that the set of fixed points in P" is formed by
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the n + 1 unitary points

Let A be the subbundle of the trivial vector bundle F with fiber over each
P € P” given by the space of linear forms that vanish at the point P. The
tangent bundle admits the expression (cf. [21], p.200)

TP" = A @ (F/A). (2.7-2)
The fiber over, say Fy, is given, with evident notation, by

(1,0, 2n)Y ® (To).

Hence, the decomposition of the tangent space into eigenspaces can be described

in symbols by
TrpP =@+ +t™) =t

(Here we have used the property that the weight of the dual (resp. of a tensor

product) is...) The product of characters that occur in the decomposition gives
& (TpP*) = (—1)*nlt",

where the term ™ now means n-iteration of hyperplane classes.

One knows that the class in the usual Chow group of the cycle of zeros of
a section of a vector bundle represents, under suitable conditions of regularity,
the top Chern class of the bundle. In particular, if the zeros of a vector field in
P are isolated, then [ ¢,(7P") N[P"] yields the number of zeros (counted with
multiplicities).

Now Bott’s formula (2.6-1) applied to the present situation displays, on its
right hand side, n + 1 terms, each equal to 1!

Indeed, each component F' is just a point P;, so that the homomorphism of
integration mp, : Rr — Ry is the identity. The numerator and denominator of

the fractions that occur in the formula are both equal to ¢Z( |”Pi). We retrieve
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in this manner the well known fact that the number of zeros of a vector field in

P*isn + 1.

Of course, the same argument shows that, in general, if X is a smooth
complete variety endowed with a C*-action with exactly N isolated fixed points,
then the Euler characteristic of X is equal to fX ¢ (TX) = N. The 1-parameter
subgroup induces, by differentiation, a vector field X — TX, z — d%(to:v)h:l,

whose set of zeros is precisely X7,

3 Applications to enumerative geometry, I

Our goal in the final two chapters is to give an idea of the usefulness of Bott’s
formula for the computation of some characteristic numbers.

We begin with rather simple examples which certainly could be handled
with more elementary, cheaper tools than explained here. The first two will
hopefully serve the purpose of acquainting the reader with the computational

gadgetry involved.

3.1 Two lines in P2

Probably one of the simplest and yet instructive problems is the counting of the
number of points of intersection of two general lines in the projective plane P2
The reader will quickly realize that the answer to our question is one. ..

Now that we know from the start the size of the answer, we may try and
mess up the discussion a little bit and go on to perform the calculation using

the usual Chow ring,

A*(P?) = Z[h]/(h?)

where h = ¢;(Op2(1)) represents the class of a line in P2 Similarly, #? is the
class of a point. Recalling that the product is induced by intersection, one sees

at once that we want to compute the degree

[ atowy
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Our familiarity with the Chow ring of P? is certainly enough to proclaim that
this degree is 1.

However, the point here is to illustrate the use of Bott’s formula. For this
end, what really matters is realizing that the cycle which solves the present
geometric question can be expressed as a polynomial function on the Chern

classes of equivariant vector bundles for a suitable action of a torus.

3.1.1 Choice of the torus

In practice, it suffices to consider actions of C*, i.e., 1-parameter subgroups
judiciously selected in T C /L3, a maximal torus acting diagonally on P2

Choosing a l-parameter subgroup C* C T is equivalent to picking a point
(wo, w1, wy) in the free group of weights Hom(C*,T) = Z3 The characters
associated to the diagonal action of C* are given by A; = ¢"i.

Henceforth we shall write T = C*, unidimensional torus acting on P% so that
the homogeneous coordinates xg, 1, x4 are eigenvectors with weights wy, wy, w;.
That is,

tox; =" - x; for all t € C.
The fixed points locus of this C*-action is given by the system of equations
To=1t" -2 o1 =1"" -3y Ty =1"?-29 VL C.
The set of solutions of this system is simply

F ={[1,0,0], [0,1,0], [0,0,1]} C P,

provided that the w;’s be chosen all distinct from each other. This will be
assumed throughout the rest of this discussion.

We shall apply at first the version of Bott’s formula for the case where the
fixed points locus is a finite set F' and the localization of the equivariant Chow

ring of a point (1.5-1) is Ry = Q[¢, 7).
3.1.2 Decomposition into eigensubbundles

Recall that each T-vector bundle E restricted to the locus of fixed points

decomposes canonically as a direct sum of subbundles @, E*, where each E*
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denotes the eigensubbundle of £ where the a action is given by the character
A

Presently, we must examine the decompositions of the tangent bundle 71?2
and the line bundle Op2(1), both after restriction to a fixed point. The latter is
the line bundle obtained by the quotient of the trivial bundle F = (2q, z1, 22)
of linear forms of P2, by the subbundle, A, with fiber over a point P € P2 given
by the space of linear forms that vanish at P. Recalling (2.7-2), we have

TP? = HOIn(.A, O]}:z(l)) =A"® 01}»2(1).
3.1.3 The Chern classes

Continuing, we must study the weights of the representations induced on the
fibers Ep for E = Opz(1) and E = TP?% at each fixed point P. Once this is
done, each Chern class I (E3) will be represented in the C*-equivariant Chow
ring of the point P, by the k-th. power of the character X, for & < rk(FE*),
cf. (2.7.2).

At the fixed point P = [1,0,0], we have Ap = (21, x3). Thus, with obvious
notation, we have Op2(1)p = (2o, x1, x2) /{21, 22) = (Tg). Here the weight is wy.

Meanwhile,
ToP? = A% @ Opa(1)p = (21,22)" ® (73)

decomposes as a direct sum of eigenspaces of dimension 1 with the C*-action

—wy

given by the characters ("~ and {"°~*2. The respective weights are wy — w;

and wy — wy. Hence, the class ¢l (TP%) is represented by the weight (wo — 1w ) -
(wo — ws) in the Chow ring AT(P) of the fixed point P = [1,0,0]. Similarly, we
see that ¢l (TpP?) is represented by the weights

(w1 —wp) - (w1 —wy) at [0,1,0] and (wy — wp) - (wy —wq) at [0,0,1].

The weights of Opz(1) at the fixed points [0,1,0] and [0,0,1] are w; and ws.
Finally, we apply Bott’s formula and to get the incredible identity

C] O]p2 m[P]T
/Pz (Or:(1))" = 3 /P I ﬂP’"’)

PeF
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_ w} L . w}
('U)o — w]).(w() — w')) (UJ] — U)()).('LU} — 'LUQ) (w2 — ‘l,U()).(’LU'Z — ’LU])
T T T
[1,0,0] [0,1,0] [0,0,1]

=1

3.2 Two lines in P?, bis

We now give an example of a simple application of the formula in the case
where the set of fixed points is infinite. This actually occurs in our treatment of
canonical curves in P? as well as in the celebrated work of M. Kontsevich [30].
This is why we think it may be helpful to see how it works in a geometrically
easier case, for which the answer is God-given.
Once again we let T = C* act diagonally on P2 with weights
we = wy = a, wy = b # a.
That is, toxg = 1% - g, toxq = 1% - &1, toxy = 1° - a5, for all t € C*. Hence, the

fixed points locus X7 C X consists of two components:
e the line ¢ given by z, = 0, and
e the point P =[0,0,1].

In the previous example, we have computed [5, ¢;(O(1))? in the case where X7

is a finite set. Now, Bott’s formula’s (2.6-1) yields

where for the second term in the sum we already know what comes out:
wy/((wy — wo) - (e — wy)) = b*/(b—a)*.

To find the contribution of the positive dimensional component £ & P!, we need
the values of ¢] (O(1)|,) and ¢] (Myp2) in the equivariant Chow ring of £. We
have Op>(1)|, = Ou(1), eigenbundle on £ of rank 1 with weight a. In view of the
lemma 2.2.2, it follows that

F(O1) = h+at € AL(D),
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where AT(0) = A.(¢) ® Rr with Ry = Z[t] and A.({) = A.(PY) = Z[R]/{h?).

2 Warning! As to the normal bundle, even though ./\Q/pz and O(1) are

isomorphic, they are not so as T — bundles: the weight this time is a — b, not

a, as we had in the previous case! In fact, let us study the natural sequence,
7"[F’1 — T]P)i‘)[ —» Ng/]pz.

We know that 7TP' = Opi(2). But here the weight is trivial, given that the
action on £ is trivial. To determine the weights of the central term at each
point Q@ = [e,3,0] € £, look at Ag = (w2, z9— ax1), the corresponding
space of linear forms. Its decomposition is t* + ¢*. The fiber ToP? is given
by Aj @ F/Aq. The decomposition into eigenespaces can now be written as
(t_b +17) - (2t 4 b — b — %) = 1= + 1. Discounting the trivial character, 1,
which comes from TP', we may conclude that the weight in Nyp2 is a — b.

Hence, again by (2.2.2) we have

e (Nyp2) = h+ (a — b)L.

/ (h + at)?
¢ h+ (a— D)t
Recalling that (a—b)t is invertible in AT (£)@ Rz and using the fact that h? = 0,

It remains to compute

we may write ( )
-1 h— (a—b)t
(h + (a — b)l) = 7( Yo b)2t2) .

This implies

(h+at)® (ht+at)’(h—(a—-b)t)
(h + (a—b)t) (a — b)*t?
Collecting the coeflicient of h we get
/ (h + at)? B _Qa(bfa)Jra2 B a272ab.
¢ h+ (a—b)t o (b—a)? o (b—a)?

Finally, enjoy another bizarre manner to find the number 1:

. 2_ar‘)—2ab b? _(b—a)Q_
/}J‘l(o(])) S T—aF B —af
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3.3 The 27 lines on a cubic surface

The next educational example will be the calculation of the number of lines
contained in a general cubic surface S C P3.

Let xq, 1,9, r3 be homogeneous coordinates in P2, Once again T = C
acts with weights (wo, wy, wy, ws), tox; =" - x;, for all t € C.

Let F = (xo, ®1, T2, x3) be the trivial vector bundle of linear forms on P?.

Denote by Gr(2,4) the Grassmann variety that parametrizes the lines in P,

It carries the tautological sequence
00— A—F —Q —0,

where the fiber of A over ¢ € Gr(2,4) is the bidimensional subspace of linear
forms that vanish on the line £.

The action of the torus in P? induces a natural action on Gr(2,4). The maps
A — Fand F — Q are equivariant.

FEach cubic surface S C P? is given as zeros of a section of the trivial sym-
metric power bundle, S3F. Composing with the quotient map Sz F —» S3Q, we
get a section s : O — S3Q over Gr(2,F). It can be easily checked that, for
each line ¢ € Gr(2,F), the section s vanishes in the fiber S3Q; if and only if
the surface S contains the line £. We see that the cycle of the sought for locus
in Gr(2,4) is given by the top Chern class of the bundle S3Q. That is, the

number we are after is the degree

/ C4($3Q) -
Gr(2,4)

We proceed to compute it using Bott’s formula.

Choosing the weights w;’s distinct, the set of fixed points F' C Gr(2,4) is

F = {(z0, 1), (%0, T2), {0, T3), {21, :c2>7 {1, T3), (22, ¥3)}

where (z;, x;) represents the line given by z; = z; = 0.
Let us study the weights of the induced representations on the fibers S3Q;
and T,Gr(2,4) for each fixed point ¢ € F.
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We recall the identification of the tangent space cf. [21],
TGr(2,4) =AY @ Q.
On the fiber over the fixed point £ = (g, z1), we have
TeGr(2,4) = (x0,21)" @ (F/{z0,21)).

This space is generated by the eigenvectors x; @ zy, 2o ® @Y, 23 @ 2,23 @ x)
whose weights are equal to wy —wg, wy — w1, w3 — Wy, w3 —w; respectively. Thus,

the equivariant Chern class ¢l (T;G7(2,4)) is represented by the weight
(TUO = ’IUQ) 2 ('U}O = 'IUS) s (’U)l == 71)2) & (‘U)l = ’103)

in the C*-equivariant Chow ring of the fixed point £ = (zg,z1) € Gr(2,4).
As to S§3Q, its fiber over the the same fixed point ¢ is the quotient space
generated by the classes
o, 5 - By, By * B, By
with respective weights

311}2’ 2'[1)2 + W3, W + 2’11)3’ 3’LU3.

Hence, the Chern class ¢l (S3Q;) is represented by the weight

3wy - (2wy + ws) - (w2 + 2w3) - 3ws

in the C*-equivariant Chow ring of the fixed point . Similarly, we can find the
weights at the other five fixed points and compute, using 2.6-1,
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ci (S5Q)e)
/;'T(ZA) Sy = %ZF /[;] cI(TGr(2,4))
wo - (2wo + wy) - (wo + 2w1) - wy
(wo — wa) - (wo — ws) - (wy — wg) (w1 — ws)
wo + (2w + ws) -
)

(’LU()—’LUI) . (wo—w3 .

+9

wo - (2wo + ws) - (wo + 2[L73) w3

+9 )
(wo - w1) : (wo - w2) w3 — wu) (LU% - ’wz)
19 wy - (2w + wy) - (w4 2wy) - w
(w1 — wo) - (w1 — w3) - (w2 — wp) - (wz — ws)
wy - (2w + ws) - (w1 + 2w3)

+9

(wl - wo) w1 - w2) .
9 - (2wy + ws) -
)

(wy — U)()) (wy — wn

+9

( .
(w3 — wp) - (w3 —wy)

After simplifications, or substitution of explicit distinct values for the w;’s, (for

instance wg = —1,w; = 0,wy; = 1, w3 = 2) we get
=90—-1/34+04+0+0+440/12) = 27.

Hence, a general cubic surface of P? contains exactly 27 lines. The role these
lines have played in the literature, both recent and classical, can hardly be

overestimated, cf. [28],[9)].

3.4 The 81 conics

Continuing the previous example, let us describe now the computation of the
number of conics in P? contained in a general cubic surface S C P? and incident
to a line in general position.

In the preceding section, the Grassmann variety Gr(2,4) served as a space
of parameters for the family of lines of P2, Thus, to start with, we need to
construct a space of parameters for the family of conics in P3. For this, let P?

be the dual projective space of planes of P2, with tautological sequence

0— Opa(—1) — F — H—=0
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where F is the vector space of linear forms in P?. The fiber Ops(—1)(—1), C F
is the subspace of multiples of an equation of the plane h € P2,

The vector bundle & = SyH is of rank 6. Its fiber over A € P? is the
space of quadratic forms in the plane h. Each point of the projective bundle
P(&) corresponds to a pair (h, K) where h € IP3 represents the supporting plane
of a conick of h. In other words, the projective bundle P(€) is the space of

parameters of the family of conics of P3. We have, by construction, a diagram

of vector bundles /P (&),

A — SyF
} }
Oc(—1) — &

The fiber of A over a point of P(£) that represents a conic K in the plane h is

the 5-dimensional space of quadrics which contain K.

3.4.1 Lemma

Let S C P? be a general cubic surface. Fiz a line { C P? and a point p € P>.
Let L C P(&) denote the subvariety of conics incident to £. Write P for the
variely of conics with supporting plane h passing through p. Finally, denote by
C the variety of conics contained in S. Then their classes in A*(P(E)) are given
by

[P] = e1(Ops(1))
[L] = 2¢1(Opa(1)) + €1(Oe(1))
(€] = er(B)
where B is the cokernel of the map induced by multiplication,

A@F — S:;F.

Proof. Let O% < F be a choice of three independent linear forms that vanish
at the point p. We have the diagram of bundles over P3,
O(-1)
X3 N

o — F —0
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The section s : O — Ops(1) induced by the slant arrow vanishes on the fiber
over h € P3 if and only if an equation of A, which is the image of the vertical
arrow, belongs to the subspace generated by equations of p, i.e., if and only if

p € h. That is, the class we are looking for is given by
[P] = e1(Ogs(1)) N ()],

To determine the class [C] in A*(P()), let o € S3F be an equation of the
cubic surface S C P3. We may construct the following diagram of bundles over
P(£),

o
ol N O
ARF — &F — B.

The section & : @ — B has a locus of zeros consisting of all conics contained in

the surface S. Therefore, the desired class is given by

A similar reasoning shows that [L] = (2¢1(Ops(1)) + c1(Oe(1))) N [P(E)].

Now for the explicit calculation employing Bott’s formula, we choose again
a T-action with distinct weights w;. The set F' C P(€) of fixed points of the
induced action is finite (#F = 4.6 = 24). Although this number is small enough
to be handled with bare hands, we introduce here the computational method
which will rescue us in the cases where such approach would be very unpleasant,
as in the examples of the final chapter. There is a script in MAPLE available
for download at [37] for the calculation of the degree of these zero-cycles. It
was adapted by the first author, profiting from P. Meurer [32]. We obtain in
particular the following table:
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0-cycle & fP(E) b))
[C]-[L] 81
[C]-[P] 27
[Z]® 92
[L]-[P] 34
L] [P]? 8
LP-[P]? 1

49

The table above tells us, for example, that a general cubic S C P? contains

J1C] - [L] = 81 conics incident to a line £ in general position.

Of course one may also retrieve these numbers recalling the classical fact

that the cubic surface of P? is a Del Pezzo surface obtained by blowing up P?

in 6 points py,..

.,pe in general position. It is embedded in P? by the linear

system of plane cubics that pass through the six points. If you are familiar with

this description (cf. [4]), you must have seen the counting of the 27 lines on the

surface. They correspond precisely to the following plane configurations:

lines passing through 2 of the six points

= (=5

conics passing through 5 of the six points

exceptional divisors

TOTAL

A similar analysis shows that the 81 conics are gotten as follow. First, note

that £N S is formed by 3 points qi, g2, g3 whose images in P? will be denoted by

the same symbols.

at the sixth point and passing through some g;

lines passing through some p; and some g; == 6-3=18
conics passing through 4 of p;’s and some g; = (i) -3 =45
cubics passing through 5 of p;’s, singular . 63=18

TOTAL

4 Enumerative applications, II

The following sections publicize applications of Bott’s formula in recent works

on smooth compactifications of parameter spaces for some families of projective
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varieties (cf. the articles [1],[2],[3], [35], [36]), [39] and [38]). The point to stress

here is that Bott’s formula essentially trivializes the difficulties for describing

the Chow ring of the spaces of parameters.

4.1 Twisted cubics in the quintic

We explain the computation of the number of twisted cubics contained in a
general quintic hypersurface S C P* This question has had great historical
importance since the pioneering paper of Clemens [8] (cf. also [27] for an update
on related topics). The answer was first found by physicists in the context
of string theory. The first mathematical confirmation was due to Ellingsrud
and Stremme [15]. In their initial approach, the norwegian team aimed at
finding that number by means of intensive use of presentation and relations for
the Chow ring of the component H of the Hilbert scheme of twisted cubics.
Quite surprisingly, the first result that they announced diverged from the one
published by the physicists. It has turned out that an error was found in the
computational script employed by the two mathematicians! It seems fair to
say that, at least in part thanks to the mistake, a vigorous activity has started
towards a better understanding of mathematical aspects of the physics involved.
See the book of D. A. Cox & S. Katz [10].

We shall describe the computation, using Bott’s formula on the variety intro-
duced in the docotoral dissertation of Fernando Xavier [39], [38]. He constructs
a smooth compactification for the space of twisted cubics that avoids the use

of Geometric Invariant Theory, a central tool in [14].

4.1.1 Idea of the compactification

We start by recalling that a twisted cubic is the image of the map

Pt — P3
[u,0] = [ud v, uv? v
for a suitable choice of homogeneous coordinates.
The principal idea of the construction rests on the following elementary fact:

for each point o € P3 not on a twisted cubic C there is a unique line £ passing
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through o that is bisecant (possibly tangent) to C.

The configuration £ U C' is a complete intersection of a pencil of quadrics. A
compactification of the space of twisted cubics that miss a point o € P? is
constructed by simply reverting the process: for each line £, one takes a pencil
m = {q1, q2) formed by the quadrics that contain the line. One obtains, at least
generically, a twisted cubic residual to the line. The point now is to solve the
indeterminacy of the cubic for the cases of special pencils. That is, we wish to
ensure that our family of twisted cubics will be complete.

This will be done step by step. First of all, one associates to each pair (¢, 7)
as above, the net of quadrics v(f,7) = (qi, ¢, ¢3) which, at least generically,
give equations for the residual twisted cubic. Next, we must resolve the in-
determinacies of the rational map v. However, the family of nets of quadrics
thus constructed is not enough to complete the desired family of twisted cu-
bics. Indeed, it is well known that there are degenerations which require cubic
equations (cf. [22], p.259). The final steps consist in resolving the locus of in-
determinacy of the rational map that associates to each net of the above type,

a 10-dimensional system of cubics.

4.1.2 First step

We need the following notation:

£ C P? denotes a line and
X =< (L) ™ = {q1,q2) is a pencil of
quadrics that contain ¢

The projection (¢,m) — (¢ exhibits X as a fibration over the grassmannian

Gr(2,4) of lines in P3 with fiber the Grassmann variety Gr(2,7) of pencils of
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quadrics that contain /.

We clearly have dim X = 4 4 10, while the family of twisted cubics is of
dimension 12. The excess of 2 is due to the oo? bisecant lines that accompany
each twisted cubic. We shall cut to size the excess on due time, restricting the
family to the Schubert subvariety in Gr(2,4) of lines passing through a point
o€ P?, fixed once and for all.

Given a pair ({,7) € X as above, let us start by making explicit the net
{q1, 42, q3) of quadrics whose base locus is equal to the residual twisted cubic,
at least generically. In concrete terms, if a line £ is given by linear forms Iy, {5,
we have ¢; = aply + aizly, © = 1,2, where the «a;; denote linear forms. The
third quadric must vanish where ¢; = ¢2 = 0, outside of £. This suggests taking
g3 = aq1as — agiae. We obtain a rational map X --- — G7(3,10) of the
variety X to the grassmannian of nets of quadrics.

The locus of indeterminacy if this rational map is the nonsingular variety
Yy C X, formed by pairs (¢,m) where 7 is a pencil of quadrics with a fixed
component h D {; the moving part of m defines a line, denoted by A in the
picture below. We pinpoint another nonsingular subvariety Y7 C X, again
formed by pairs (¢, ) where 7 is a pencil of quadrics with a fixed component h
except that now the moving part of @ contains the distinguished line /. Look
at the pictures.

A £

Blowing up Y9 C X, we get a nonsingular variety X’ together with a subbundle
A C 8 F of rank 3, and a map

v: X' — Gr(3,10) = Gr(3,85.F).
4.1.3 Production of cubics

Let F be the vector space of linear forms in the variables x,xg, x3,24. The

map of multiplication A @ F — S3F is of generic rank 10. This enables us to
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define the rational map p : X'--- — Gr(3,83F). The locus of indeterminacy
is the subscheme of Fitting Y’ C X’ defined locally by 10 x 10 minors of a local
representation of our multiplication map. One checks that Y’ is equal to the
union of two smooth components Y, and Yy, whose elements correspond to the

configurations depicted below.
=X

Ve o= p s X o=
h

The subvariety Y. is the strict transform of Y7. It is isomorphic to the

blowup of Gr(2,4) x P? along the incidence subvariety formed by pairs (¢, %)
with the line £ contained in the plane h. Thus, the point p € AN/ is always well
defined. The subvariety Y{ parametrizes the configurations (p € A C h D /).
The intersection Y7 N Y{ is isomorphic to the flag variety (p € £ C k).

4.1.4 Final blowups

Blowup first Y/ in X', thereby producing X” — X’. the strict transform
Yy € X" is now enriched by the point o € £ N A everywhere well defined. At
last, the desired compactification is X" the blowup of X" along Y{'.

The subvariety of X"’ that maps to Y consists of 3 nonsingular hypersurfaces

EY EYEY which meet transversally. Their generic members are given by

following configurations, L=

. h
Ei// = h ’E/2// = Q h ’Eé” =

C A O

On the first picture, we have a union of a conic and an incident line. In the last

two, we have a singular plane cubic €', with an embedded point x € A N A.

4.1.5 Passing to P*

We will apply Bott’s formula in a space of parameters X" for the space of
twisted cubics of P4 Tt is obtained repeating the previous construction, but

letting now P2 vary in the family of hyperplanes h = P3 C P*.
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We have to begin with a fibration X — P* with fiber over each h € P*
the variety X described above. This fibration factors as X — G — P*into a
fibration in grassmannians G — P4, with fiber G;, & G'r(2, 4), the variety of lines
contained in A = P3. The tautological vector bundles over P* and G needed in

the sequel will be denoted by
H—=C, H-»Q. (4.1-1)

Here the fiber H, is the subspace of C® corresponding to the hyperplane h and
the fiber Q) is the quotient space of Hj, by the subspace (of dimension 2)
corresponding to the line £ C h.

We perform the sequence of blowing ups
X" X" X - X

with centers varieties which are fibered over P*. Fiberwise, we have exactly the
situation considered before. Note in particular the subvarieties Ygy4, Y13 C X
with respective fibers Yy, Y7, as well as Y' = Y|, U Y/, C X" and Y}, C X", in
addition to the exceptional divisors E/”.

We have that X" is a smooth projective variety of dimension 18, whose fiber
over each h € P4 is isomorphic to the variety X" of the preceding subsection.
A general point of X", off the exceptional divisors, can be thought of as a triple
(h,£,7) where h denotes a hyperplane of P*, the line £ is contained in h and
represents a pencil of quadrics in h that contain £.

Set now F = (x1, x2, T3, T4, T5), the space of linear forms in the homogeneous
coordinates of P4 By construction, X" is endowed with a vector subbundle
C C &F. Each fiber of C is a linear system of cubics in P*, with base locus
a twisted cubic curve of P%. We have similarly a vector subbundle of SsF, of

rank (4+5) — (5 x 34 1) = 110, image of the natural map C @ S F — SsF.

4
Define the bundle € as the cokernel of the latter map. We have therefore

S F = E. (4.1-2)

Note that rank E=16. As in the case of the 27 lines (3.3), we deduce that, for

each quintic hypersurface of P*, given by a section of S5, the induced section
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of € vanishes exactly in the locus in X" formed by points whose associated

twisted cubic is contained in the quintic. We may state the following

4.2 Theorem

The number of twisted cubics contained in a general quintic hypersurface of

P* is given by the degree
/ 6’16(5) 'Cz(Q)
Xl’/
where Q denotes the quotient bundle (4.1-1).

Proof. We restrict ourseleves to the justification of the factor ¢;(Q). It is in
charge of cutting the excess of two dimensions of X"’ with respect to the effective
dimension (sixteen) of the family of twisted cubics in P% Let W be the locus
of zeros of the section of the vector bundle £ above described. We have that
W consists of a certain number, N, of disjoint subvarieties, of dimension 2, all
situated in the complement of the exceptional divisors and each one contained
in fiber of X"\ |JEY = X~ Y over P* (cf. remark below). Let Z C W be one
of those N components and let A = P? be the corresponding hyperplane. This
variety Z C X}, maps isomorphically onto the surface of Gr(2,4), still denoted
by Z, which parametrizes the chords (i.e., bisecant lines) of a twisted cubic. Let
¢t : Gr(2,4) = G be the inclusion in the fiber of G over h. The natural action of
Aut(P*) permutes these varieties of chords, thus implying the equality of cycles,
W] = N -w.[Z] in A2(G). In order to determine N, it suffices to intersect
with a suitable cycle of codimension 2. Here enters ¢;(Q). We may write
2(Q) N t]Z] = tu(*e2(Q) N [Z]) and perform this last calculation in the fiber
Gr(2,4). Now it should be easy to convince ourselves that fm(‘m) Fe(Q)N[Z]

is the number of chords passing through a general point in P3.
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4.2.1 Remark.

The locus of zeros, W, described in the above proof is pullback of the locus of
zeros of a section of a similar bundle built over the component H of the Hilbert
scheme. One knows that, for a sufficiently general choice of the quintic, this
locus of zeros is formed by a finite number of points in H, corresponding to
non degenerated twisted cubics and not contained in a same P? C P* (cf. [29]).
Hence, the inverse image of such point up on X" sits in fact in X (outside the

blowup center) and matches that surface of chords.

4.2.2 Employing Bott’s formula

We stress once again that, feasible as it might be, the computation of the degree
in 4.2 by means of the explicit structure of the Chow ring of X" is strongly
not recommended! The use of Bott’s formula allows one to perform that task
without pain.

As in the preceding cases, we start with a diagonal action of T'= C*, with
distinct weights (wq, wg, w3, ws, ws). We now examine the fixed points of the
induced actions on each of the varieties to be considered, from P* till X"

The set of fixed points in P*is F' = {21, %9, 3,24, 75}. Let us study the
fibers over each of these 3-planes.

For x5 = 0, we begin with the tangent space T,,P* = (F/(x5)) ® (x5)".

From a computational perspective, given a T-vector bundle F, it will be

very handy to write its expression as a sum of eigensubbundles,
E =@, Ex, in the “simplified” form: E=%X.

In the present case, we have, TI5P4 = X1/Xs5 + Xa/Xs + X3/X5 + Xa/X5.
We further simplify the notation just writing, henceforth, F = z; + z3 +
x3+ x4 + x5, where x; stands for both the functional that is an eigenvector and

the character X; it corresponds to.
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Similarly, we may rewrite

Tos Pt = (F/{25)) ® {as5)" =
(1t z2+zataatzs) — z5)-(2s)' =
Ty /x5 + xa/T5 + 3/ T5 + s ) T5.

Look at the fiber of X" over the 3-plane x5 = 0, taking into account the con-
struction

X" X"+ X - X~ G — P
Start with the fiber G,, = Gr(2,4) of the grassmannian of lines in this 3-plane.
The action on G,, has the fixed points

Fy = {{z1, 22), (21, 23), (21, T4), (2, T3), (22, T4), (23, 24) }

where (x;,x;) represents the line ; = z; = 0 in the 3-plane z5 = 0. For

instance, at the fixed point (z1,z2) we have

T(a:l,x2>G.z‘5 = <($1 + st as+ag)/(z + ”02)) ® (z1,z2)" =
((x1+ 22+ 23+ 24) — (21 + 72)) - ((21) 7" 4 (22)7") =

T3/x1 + Taf/21 + 23/ T2 + T4/ T2

The fiber of X over the point that represents the line (1, z5) is the grass-
mannian Gr(2, Q) of subspaces of dimension 2 of the space Q) of quadratic
forms that contain the distinguished line £ = (21, 23). We may write the de-

composition into eigenspaces

Q) =$f+$1'$2+$1'$3+$1 '$4+$§+$2-x3+:ﬂ2'x4.
One checks that G'r(2, Q) has the following set of fixed points:
FBa={{zi o5,z 2:) | L<1€r<2,5,8=1.4,1<35,7<8, & TjF Tr-Ts}

At this point we recall that the first blowup center, Y3, has as fiber over

(21, x2) the variety P((z1) 4 (22)) X G, . One sees that

Y13QF3:{<.T,'-$]',SL',’-.’E]€> |i:1,2, 1§j<k§4}
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On the other hand, the fiber of Yq; over (z,23) is the variety P(F/(xs)).
We have therefore

Y11 N Fs = {{23, 21 - x2), (21 - T2, 73), (T2 - 3, T2 - T3), (T1 - T4, T2 - T4) }

and

Y13m Yll n F3 = {(mf,xl # 33'2>7 <.Z'1 & $27$§>}.

Then, F3 has 21 fixed points, 12 of which are in Y3 N F3 and 2 belong to
(Y11 N\ Yq3) N F.

We also need to know the fibers of TX" over each fixed point.

Since X" is a blowup of X along centers that lie over Y3 U Yy, we have
that TX"” = TX restricted to X — (Y13U Y11).

Therefore, for each of the 7 fixed points

<$fa $§>7 <$%7 o - $3>7 <$;1), xo - $4>a <£L’1 © T3, ‘rg)a

<$1 * T4, ng), <331 T T3, T2 " $4>, <$1 T T4, T2 903)

the tangent space can be computed still in X. Hence, for instance, at the fixed

point {(z?,z2), we have
T2 Q) = Q! @505 © (27, 25)°

= (#1421 22t 2r T3+ 21 Ta+ 03+ 02 T3 +T224) — (21423))-((21) 7 +(22) )
= xa/x1 + x3/x1 + 2421 + T3/ T2 + Taf T2 + 21/ 22
+ag+ zafed 4 my+ wyfwd + @y - maf2d A 2y - mafad
so that, adding up tangents of fiber and base, we get
T(IS,(mM),(xf,xg))X = T1/xs5 + Ta/T5 + T3/ 25 + TafT5 + T1 /T2
+zo/21+ 2 23/T1 + 2 Taf21 + 2 T3/ T2+ 2+ T4/ T2
+xg - x3/} + wy - 2g)2? + 21 - T3+ 21 - T4 )23,

The term 2 - z;/x; means that there exist two independent eigenvectors with
the same character z;/z; in the decomposition.

We recall that the exceptional divisor E; C X’ of the blowup of X along Y3
is the projectivization ]P’(/\/Yw/x) of the normal bundle Nyls/x. The latter one
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is the quotient 7X/TY13. Hence, over each fixed point P € Y3, the fiber IE’I(P)
is the projective space P(Ny,,/x(p))-

If in the decomposition of the normal space Ny, x(p) the characters are all
distinct, then in P(Ny,,/x(p)) we get only a finite number of fixed points over
the fixed point P € Yi3, namely, the dimension of Ny, /x(p).

We may compute the normal spaces for the following fixed points over the

point that represents the line (1, 22) in the 3-plane x5 = 0,
<$%e Ty - $2>7 <I§a xy - $3>, <$§7 Ty - JC4>, <$1 tT2,T1 " $3>7
(-’131 RTES 1’4>7 <5L'1 *L3,T1 " 1’4>, (fL'1 t T2, 953)7 <l'1 IR $3>a
(21 - %3, 3 - T4}, (27, T2 - T3), (23, T2 - T4), (T2 - T3, T3 - ).
For instance, for the fixed point <:L'f, @1 - x2) that belongs to Y130 Yy; we have

+xy - w3/at + vy xa/at + x3/20 + Taf 22

Ny /X ((@3,2122)) = ( Taf/x1+ 2 z3/21 + 2 2421 + 2322 )
—(@2/21 + 23/T1 + T4/ T1 + T3/T2 + T4/ T2)
= x3/71 + xa/71 + 2222 + 2o - T3/ 22+ 2o - T4/ 22
For the fixed point (z; - 23,2, - 4) that lies in Y3\ Y;; we have
NYls/X((xrrs,m-u)) = 2 - ZL’2/.’L'1 + 1'1/1'3 + 1'2/:53 + :L'l/:L'4

+aa/zs + 23/ (21 - 23) + 23/ (21 - 74)
+ag - waf(@r - x3) + 22 w3/(21 - T4)

—(-’132/-'111 + a1 /a3 + w1 /es + x2f23 + -'E2/~'E4)
=z9/x1 + x%/(xl cx3) + @ waf(w - w3) + 353/(351 cx4) + @ - x3/(21 - T4).

Computing at the other 10 points, we see that, in fact, the C*-action induced

in X’ has only finitely many fixed points.

We now proceed to the tangent space 7Tp/X' at a fixed point P’ of the
exceptional divisor, in the fiber over P € Y.

This space is given by the decomposition

TeX' =Lp @ TpY13® Ty, P (Nywx )
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where Lp/ denotes the line represented by the point P’ in the projective space
P(Ny,/x(p))-
Thus, for instance, over the fixed point (z%, z124) belonging to Y3 for which
we have already gotten the expression
Ny /x(p) = T3/T1 + Ta/T1 + 23/ + T2 T3/23 + T2 - Taf23,
it follows that we have 5 fixed points, one for each eigenspace that appears in
this decomposition. Taking for P’ the point corresponding to the eigenspace

with character z3/x1, we get

TpX' = x1/5 + Ta/xs + x3/x5 + Taf/25 + T2/T1 + 2 x3/71
+2-z3/xy+ 2 xaf21 + 2 w420 + x3/T1 F (353/$1
+xa/T1 + x;/xf + T 353/53? + iz $4/LU% — x:&/ﬂfl) (21 /xs)
T /x5 + o /xs + v3/as + vafr5 + x2 /21 + 2 23/24
42 a3/ + 2 xa/21 + 2 xa/T2 + 3 /T1 + Taf T3
+a2/(xy - x3) + x2/T1 + T2 - s (21 - T3).

I

The reader interested in the effective calculation of all contributions may consult

the MAPLE script available for download from [37].

4.3 Canonical curves in P?

We sketch in this final section the calculation of the number of canonical curves
in P? incident to 24 lines in general position. The result can be interpreted
as a determination of an invariant of Gromov-Witten for g = 4, although the
meaning of these invariants for positive genus is not clear yet.

We shall apply Bott’s formula to a space of parameters for the family of
canonical curves in P2 described in the article of Jacqueline Rojas and the 2nd
author [35].

A variation of the method seems to work also for the case of the family of
curves in P? of genus 2 and degree 5. We hope to report on this elsewhere.
In fact, the possibility of using this approach to determine the number of such

curves contained in a general quintic of P* sounds promising.
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4.3.1 The component of Hilb

A canonical curve C' C P? is the image of a non-hyperelliptic curve of genus 4
by the canonical system. Its Hilbert polynomial is 6t + 1 — 4.

Let H be the component of the Hilbert scheme of these curves. The canonical
map embeds C' as a curve of degree 6 in P3. The divisors cut out by quadrics
on C are of degree 12. By Riemann-Roch, this linear system is of dimension
9 (=1241-4). Hence, C is contained in a unique quadric surface. Similarly, C
is contained in 5 independent cubics, 4 of which are multiples of the quadric.
We see that C is the complete intersection of the quadric and a cubic. The
dimensions of the vector spaces of forms of degrees d = 4,...,7 that vanish on

C are listed below.

d 415167
(%) —(6-d+1—-4) | 14 | 29 | 51 | 81

The normal bundle of ¢ C P?is N = O¢(2) & Oc(3). We have h°(N) =
24, K'Y (V) = 0. It follows that C' is a smooth point of H and dim H = 24.

(4.3-1)

4.3.2 Idea of the construction

The above discussion indicates how to produce a first approximation for H. Let

Yo { (as fo) f2 € P? denotes a quadric and } .

f3 is a cubic defined module f;

(4.3-2)

We have a rational map

o' X el —> H
(fa, f5) — fan fa,

whose locus of indeterminacy appears where f; and f; admit a common com-
ponent.

The main result of [35] says that there exists a sequence of 7 blowups X7 —
X6 — ... — X! — X along explicit, smooth centers, such that the rational
map

g: X" 5 H
induced by o is a birational morphism. We state it below, with the details

needed for implementing the application of Bott’s formula.
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As we explain in the sequel, for the computation of that number it will

suffice in fact to go up to X®, avoiding the last two blowups.

4.3.3 The 1st blowup

Fix homogeneous coordinates 1,2, 73, x4 for the projective space P Let
F = (21,29, x3,24) be the vector space of linear forms.
Let Y11 be the subvariety of X (4.3-2) formed by pairs (f2, f3) with a common

component, that is,
Vi1 = {(hha, higs) | by, he € P2, gy € P(So(F/(ha)))}- (4.3-3)

This is the locus where the space of quartics fy - SoF + f3 - F has dimension
less than 14. The first blowup X! — X is performed with center ¥;;. The new
variety, X1, embeds in X x Gr(14,8,F). A general member of the exceptional

divisor corresponds to the configuration indicated below.

hy
The dotted quartic passes by the 2 points determinad by hy; N Ay N ga.
By construction, X' is endowed with a vector subbundle £}* C S4F. The
fiber of £}* over a general point of X! is a linear system of quartics with base

locus a canonical curve.

4.3.4 The 2nd blowup

Here on X', the next blowup center is the subvariety Y]}, where the natural
multiplication map &4 ® F — SsF, designed to produce quintics, has rank
less than 29 (recall 4.3-1). The subvariety Y}} is contained in the exceptional
divisor and is given generically by the condition that the distinguished conic g2

(cf. picture above) contain the line hy N hy. More precisely,

Yio = {(h1ha, higa; i (S5 F) 0, 0,))
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where g, denotes the quadratic forma defining the pair of lines ¢, £5 in the plane
hy and (S3F)(g,,k,) stands for the subspace of cubic forms cutting in the plane
hs a scheme union of the line ¢ with the doublet of points given by k2 over the
line £;. The generic member of the exceptional divisor of the blowup X? — X!

along of Y} is depicted below.

h

h2

One shows that X? is endowed with a vector subbundle £2° C SsF and embeds
in X' x Gr(29,85F). The dotted curve is a quintic in the plane hy, singular at
the doublet of distinguished points ky C ¢; and contains the point ¢; N ¢3. The
canonical curve appears as the scheme union of the line ¢, and a quintic with

the two embedded points indicated by e at the two points of k.

4.3.5 The 3rd and the 4th blowups

The 2 previous blowups were meant to get a bundle of quartics and another
of quintics with correct ranks (see table (4.3-1)). Quite in contrast now, for
the locus in X? where sextics “fail”, the picture is more subtle. We find here
3 interesting subvarieties, Y@, Y4 D Z2, which will serve for the next three

blowup centers. Precisely, X* — X? is the blowup along
Zg ={(h* hga; h - Va; h - (84F),, ) }-

Here, go = f1{y corresponds to a pair of lines in the plane h. The space of

quartics is h times the space of cubics of the form
Vs = hSF + goF +(f3)

with fi = f5¢, denoting by ¢ the equation of the divisor determined by a pair of

points, p and ¢, over the line £;. The space of quintics is also h times a space
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of quartics, of the form

(84.7:) = hS;F‘l‘ (2 (83?)q

£2,q

where (S3F)q denotes the system of cubics in the plane k that vanish at the
point q. It turns out that each fiber of Z2 over h € P? is isomorphic to the
subvariety denoted by Y! in [35], corresponding to the plane configurations
given by a pair of lines ¢1,{; and a pair of points p,q such that p€ ¢; N {3 and

ly 5 q. The exceptional divisor now has the following aspect,

The canonical curve appears as the scheme union of a nonplanar structure of
degree 2 over a line £ and a plane quartic g4 (dotted in the picture above)
singular and with embedded point at the point q, e tangent to the line ¢; in the
point p. The scheme structure over the double line £; is of arithmetic genus —5.
It is given by an ideal of the form (k% hly, 03, fo), with fs = hgs + l2l,g4 where
L, € P(F/(h,t;)) marks the point p over the line ¢; and the plane quintic
g5 € P(S5(F/(h))q/(L284(F[(h))q)) vanishes at the point q and is nonzero
module ¢; times the system of plane quartics containing q.

The 4th blowup center is the strict transform Y} of Y. We proceed to

describe it. Travelling back to X' C X x Gr(14,8,F), we find the subvariety
Y= { (h27h92§h “((g3) + h - S F + g2 - .7‘-))

where F = F/{h). The fiber over each plane h € P? is isomorphic to the
variety X formed by pairs (g2, g3) as above. The latter variety® was investigated

in [35], as a first approximation for a space of parameters for the family of

2Note the subtle change of font type, X instead of X; ditto for Y’s versus Y right ahead!
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conical sextuplets. Moreover, the intersection of Y} with the current blowup
center (Y}h), yields fiberwise the first blowup center, Y, used in the strategy for
flattening that family of sextuplets. Similarly, as already mentionned above,
the fibers of the inclusion Z2 C Y} are isomorphic to Y' C X!'. Tt follows that
Y}, has fibers / P? isomorphic to X2. We perform the blowup X* — X? with

center Y. The exceptional divisor is illustrated below.

E4

I
[}

The canonical curve is generically given by a singular plane sextic with embed-

ded points at the conical sextuplet given by Z(gs,gs), indicated by e.

4.3.6 The 5th blowup

The next center is the subvariety Y3t C X* described below. It is born back
in X%, denoted YZ. Tt is actually disjoint from the blowup center Z2, whence
Y3 = Y. Now the blowup center Y% intersects Y3 in a divisor of the latter.

For this reason, we have Y3 = Yg'. The local calculations reveal at last that

Ygz = {(hlr h2=£a kZ)}

where £ denotes a line in the intersection of the planes hy, hy and ko denotes a
doublet of points on £. The embedding in X? is obtained setting f; = hiho, f3 =
hal?, fy = hilky and f5 = h1 k2. We have perpetrated the abuse of thinking of £
both as a line and as defining linear form in P(F/(h,)) and similarly for fi, fs.



66 A. MEIRELES ARAUJO 1. VAINSENCHER

The exceptional divisor of X® — X* can be pictured thus.

hy

E5

ha

The canonical curve is given by a sextic in the plane hy, with two triple and
embedded points in k9, indicated by e.

At this stage, one shows that X is endowed with a vector subbundle &' C
S¢F. The subscheme of P? defined as the base locus of any fiber of £3! is a
curve. The general such one is a canonical curve.

However, this is not a flat family yet. In fact, there exists a closed subscheme
Y3 C X° such that, for each y € Y® the subscheme of P? defined by the base
locus of (£3')y, though of dimension 1, has the wrong Hilbert polynomial (7¢—9).
One finds out that Y is a union of two smooth components, Y73, Y;%. Blowing
up first ;% and then the strict transform Y%, obtains X7. The latter variety
is endowed with a vector subbundle £8' C S;F that produces a flat, complete
family of canonical curves, as well as a birational morphism @ : X7 — H.

The last two blowups, X7 — X® — X° are in fact irrelevant for the
enumerative calculation. Indeed, let D C H be the hypersurface formed by the
points of H that correspond to canonical curves incident to a given line. We wish
to compute fH D', One shows that this number is the same as fX7(E_1 D)2+,
Now D = &~'D is the strict transform of its image D C X. Let ' : X' —
X! be the blowup map. Let D@ the strict transform of D in X*. It can
be shown that the total and strict transforms coincide at the last two stages,
D=D" = (77)"'D® and D® = (7)='DG). This is so by the simple reason
that they do not contain the blowup centers. By the projection formula we may
witite fx7 D — fX—,(W7)*(D(6))24 _ fxs(D(S))24~

This last number is the one we are able to compute using Bott’s formula. A

script in MAPLE for the explicit computation can be found in [37]
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Remark: scripts for MAPLE

There are two scripts available for download at [37]. They have been adapted
by the first author profiting from P. Meurer [32]. The first one computes the
number of conics in the cubic surface. The other one finds the number of twisted

cubics in the quintic
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