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HARMONIC MAPS INTO LIE GROUPS

Giorgio Valli

Introduction

In these lectures we describe Uhlenbeck’s results on harmonic maps 5% — U{(N).
In particular, we give two different proofs of Uhlenbeck’s factorization theo-
rem for such maps as finite products of holomorphic objects, called unttons
(essentially holomorphic subbundles).

Both in the proofs, and in side arguments, we use some elementary alge-
braic geometry. Moreover, we use the basic fact that it is possible to associate
an holomorphic map $? — QU(N) to any harmonic map §? — U(N) (here
(1U(N) is the based “loop group” of U{N'}: it is an infinite dimensional Kéhler
manifold). This comes from a construction which dates back to the theory of
solitons and Lax pairs (cf. [2-M]).

The main references we have used are Uhlenbeck’s paper (U], §1, 2, 8, 9
(1st part), 11, 12, 13, 14; then [V1] and [V2] §4,5. Segal’s approach ([S|) may
be illumninating also, but it’s completely different {cf. M. Guest’s minicourse
in this workshop). Most of this research dates back to 1984-87.

I wish to thank the University of Campinas (Brazil) for the invitation,

kind hospitality, and financial support.

1. Harmonic maps M? — U(N), and extended solutions

Let (Mf,¢) and (N,h) be two {compact) Riemannian manifolds. For any
smooth map f: M — N, the energy of [ is given by

E(f)=1/2 [ 141, (11)
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where v, is the volume element on M, and | df|? is conputed using the metrics
¢ and h. i

A smooth map f : M — N is called harmonic if it is a critical point of the
energy functional, with respect to compactly supported variations. There is
a vast literature concerning harmonic maps (¢f. (E-L 1], [E-L 2|). The main
problems generally are:

(1) Existence (and regularity) of harmonic maps in homotopy classes of

functions.

{2) Explicit description or construction of wide classes of harmonic maps.

Examples.

1) Harmonic maps S' — N are the closed geodesics, parametrized by arc-
length.

2) Harmonic maps M — IR are functions M — IR which are in the kernel of
the Laplace-Beltrani operator on M.

3) If (M,g) and (N, k) are Kihler manifolds, then any holomorphic (ot an-
tiholomorphic) map M — N is harmonic. Moreover, if M is compact, any
+ holomorphic map is an absolute minimum of the energy functional in its
homotopy class. ’

4)f:C4H~Zisha1monic<#ai;é=0.

-

The following (very well known!) theorem is a mode! for more complicated

situations (like the ones in the following sections).

Proposition. Let 1 C C be a simply connected domain. Then f: 01 — IR is
harmonie ©& 3 g: (0 — C holomorphie, Re(g) = f
Note: (ry(01) = (0] is only used to prove =}.

In the following we will take M to be a Riemann surface, mainly $%; and
N = U(N) be the unitary group in N-dimensions. The Lie group U{N) has

a left-invariant Riemannian metric, which is the left translation of the inner
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product
{A,BY=-Tr(AB) (1.2)
on the Lie algebra U(N) of ckew-hermitian N x N matrices.

On a oriented surface M = M?, the choice of a conformal structure (i.e.
the choice of a metric ¢ module conformal changes ¢ — e9g, for ¢ : M —
IR smooth) is equivalent to the choice of a complex structure. A Riemann
surface is, by definition, a surface M?, together with the choice of a conformal
structure; i.e. M? is a complex manifold of complex dimension 1.

The Hodge * (star)-operator maps 1-forms into 1 forms, and is conformally

invariant; if w is 2 1-form on M?, and if
w = wh® 4 0

is the decomposition into components of (1,0), and (0,1) type, then we have

#w =1 wh? — ¢ WO

and
Wit = - waA (+w) . (1.3)

Therefore the Riemannian norm on the space of 1-forms is conformally in-
variant as well. Let f : M? — U(N) be a smooth map and M? a Riemann

surface. Following Uhlenbeck’s notation in [U], we denote:
A=G(F4f) = A+ A (1.4)

where A., Ay are the (1,0) and (0,1) parts of 4; Az = (- A4,)".

From the above remarks, it follows that the energy of [ is:
B =3 [ 157l = +3 [ Tr(rtag asitag))
2/m 2/m

= —4;‘fM Tr(A, A Az). (1.5)

Therefore the energy of a smooth map f : M? — U(N) is invariant under

conformal changes of metrics on M = M2,
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Erercise. This is true for general target manifolds, the key point being
dim(M) = 2.

We note that A is a 1-form on M";, with matrix coefficients. We can see
A as a connection on the trivial bundle M? x C"; A is actually a unitary
connection. Since the curvature F(24) of the connection 24 (on M?* x C¥)

is 0, because 24 = f~1df, the Maurer-Cartan equation
F(24) = 4(24) + 3(24,24] = 0
implies
34, + 34z + 2[A,, A5] =0 (1.6)
where we have split the exterior differential d = 8+, with standard notation.

Let f : M? — U(N) be a smooth map and let f; : M? x (—¢,€) — U(N)

be a smooth variation of f. Then

f is harmonic & %E(j})n:o =0v¥f,; fo=f

Aad Hd',fM Tr(f dfen«f? df)i=o=0
&2 Tr((dv+ 24,0 A+A =0 Vv:M? - u(N)

e 174
where v ftafk:o

Integrating by parts of M, we get
0= 2[MTr(vf\ dx A —2u[A,+4]) = Z-IMTr{v Ad*A) Vv,
Therefore f is harmonic if and only if (A =31 df)
d+A=0

or
0A, -84z =0. (1.7)

Proposition 1.1. Let f: M*® — U(N) be a smooth map and A = Hrrdf).
Then f is harmonic if and only if

{6A,-3A;=0

BA, + 84z +2(A,, A3) = 0 (18)
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(where A= A, + As). Equivalently, f is harmonic if and only if

TuA, =8A, +|45,4,]=0. (1.9)

Proof. (1.8) is the union of (1.6) and (1.7). Adding and subtracting these

two equations, we get (1.9) and
6A1'+ [A;, A?] =0 (110}
which is the conjugate transpose of (1.9).

Note: The equations above are written in the notation of gauge theory. In-
deed, they are (locally) obtained by reducing Yang-Mills equations on IR,
with signature (+ 4+ ——), imposing independence from 2 variables. In §2 we

shall interpret (1.9) as a holomorphicity condition,

Exercise. Let M be a Riemann surface, p € M. Prove that the map f —
f18f = 3(log f) establishes a 1 — 1 correspondence hetween

A gl :
{ f:M—=5 harmomc} and

flp) =1
{holomorphic 1-forms on M, with integral periods. }

We have seen that the harmonicity equations for maps M? — U(N) are
equivalent to a system of first order, non linear equations.

The Zakharov-Shabat technique for solving a wide class of “integrable” non
linear systems in 2 veriables {originally ¢ time variable and z space variable)
consists in expressing the system as compatibility condition of an associated
linear system: or of a family of linear systems, indexed by a “spectral pa-
rameter” A € C. The Zakharov-Shabat method is a standard tool in soliton
theory.

In our case, let f: M? = U(N), A= %f’ldf = A, + Az. For A€ C" we
define:

Av=(1-2NA4,+(1-2)4z. (1.11)
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We see A, as a family of connections on the trivial bundle M? x C¥, unitary
for |A] =1.

Lemma 1.2. f: M? — U(N) ¢s harmonic & ¥ € C°, the connection A,
has curvature F(A,) =0,

Proof,
F(A;) = dA, + %[A)“A)J =

=(1-A"1)F4, + (1 -A)34: + (1 = A)(1 — A D[4, 45) =

= (1= A1)(BA, + (45, A]) + (L — A)(9Az + [A,, A5]) .

Remark. The equation F(A) = 0 is the integrability condition for the non
linear system:
do, By = dEy - ExAy =0 (1.12)

with E, : C" x M — GL(N,C). Indeed, the system (1.12) is locally solvable
on M if and only if F{4,) = 0, because

da, da, By = —F(A2)Ey .

Therefore we get the following key proposition.

Proposition 1.3.
1) Let f : M* — U(N) be an harmonic map; suppose m(M?) = (0). Then
there exists

E,:C' xM - GL(N,C) such that

i) BfYdEx = (1— A" A, + (1 - A)4s.
i) E.,=Q f Qe U(N).

i) B, = I.

iv) Ey € U(N) for | =1.

v) E; is holomorphic in A, real analytic on M.
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2) Let By : C" x M — GL(N,C) satisfying (iii) (iv) (v) ebove. Suppose that

E;'9E,
{1=2)

is independent of A. Then f = E_; : M? — U{N} s harmonic.

Proof. The existence of E) comes from understanding the previous Lemma
1.2, and the meaning of the O-curvature property as locally integrability con-
dition. When x (M) = (0), the holonomy of 4, vanishes and A4, flat implies
A, trivial. The regularity of E; comes from the analiticity of /. Moreover i)
implies dE.; = 0, therefore E, is constant on M, and by left multiplication,
we may suppose £, = I.

For |A| = 1 we have
G(ELEL) = (1 - NE>A:E; + Ex((1 = A" 1)E\A,) =0.

Similarly, we have
A(EL\E;) =0.
Therefore EsE; = K(X). Choose p € M and take E) = E;'(p)Ex. Then
E\E; = Ifor |A| =1, and E, satisfies i) iii) v) as well.
It's easy to show d(E_lf'l) = 0. Therefore we have

Ey=Qf Qe U(N).

We leave 2) as an exercise for the reader. One should first conjugate transpose,

using iv), to show that
E;'8E,
(1-a-1)

is also independent of A and then use lemma 1.2.

A map E, : C" x M? - GL{N, C), satisfying the properties listed above,
is called an extended solution for the harmonic map f.
We remark that the extended solution is not unique. Two such solutions

differ by left multiplication with a holomorphic map

R:C - GL(N,C) R(1) =1 R(S') CU(N).
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At the same time, we tend to identify two harmonic maps M? — U{N), which
differ by left multiplication with a @ € U(N). In general, extended solution

only exist locally. Since $? is simply-connected, we have:
Corollary 1.4. Any harmonte map S* — U(N) has an ertended solution.

Corollary 1.5. Let M? be a compact Riemann surface, f : M* — U(N) an

harmonte map. Suppose [ has an extended solution. Then f s unstable.

Proof. Let f, be the variation f; = E,ivem t € (—&,€), Then d%:gE(fg]h o
< 0, This follows easily by computation or by looking at the following picture
in the space of connections on M? x C", in the affine plane containing 0 (the
trivial connection), A, +A. Here the circle represents the loop of connections
Ay, for |A] = 1 and the energy of each map E,, for [A| = 1, is given by a

constant multiple of the distance between A, and 0.

A+*A

-

Figure 1: A,. = A+ (sin(s}} * A — (cos(s}) A.
2. Loop groups; unitons
We introduce now the loop group of U{¥)

QU(N)={y:5'— U(N) smooth |4(1) = I} (2.1)
Nu(N) is a Frechet Lie group. Its Lie algebra is:

Qu{N)={n:5' = U(N) smooth |p(1) =0} . {2.2)
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We may define a complex structure J on QU(V), as the left translation of the

operator
J : Qu(N) = Nu(N)
defined by:
ifn= 3 (1-2%na (2.3)
aEE"
Ji ::'Zo(l—,\“]qa—izn(l - A%) 1. (2.4)
> - 24

We can define a hermitian metric on QU{N}, by left translation of the Hilbert
norm on NU{N)

= 3 lellnal* . (2.5)

aeZ"
The basic fact is that the resulting metric is Kahler with respect to the complex

structure J {cf. [P-8), [E-L 2]}.

The associated symplectic 2-form, normalized so as to be the positive
generator of H*(QU(N),Z) = Z, is given by the left translation § of the
alternating form on IV (N}

S(n, &) = —1/4n* | Tr(n€). 2.6

(n,€) = ~1/4n* [ Tr(n€) (26)

S is an integral closed 2-form of type (1,1}. If M is a complex manifold, then
F:M — QU(N)

is holomorphic if and only if the 1-form F;'8F, extends from A € S! to
A e D ={X € C|A| < 1}, holomorphically in A.

Let e.y : QU(N) — U{N) be the evaluation map at A = —1. We can
rephrase Proposition 1.3 1).

Theorem 2.1 Let f : M? — U(N), m(M?) = (0), be an harmonic map.
Then there exists a holomorphic map F : M — QWU (N), such that the following

diagram commutes
aQuUu(N)

F/ lea (2.7)

M L uw
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Note: Here we use the convention of considering equivalence classes of hoth
harmonic maps and extended solutions, modulo left multiplication by con-
stants. If we want (2.7) to be true in a strong sense, we should take p € M,
f(p) = I, then it would be possible to choose E,(p) = I as well.

Let F : M? - QU(N), and M a compact Riemann surface. We can define
the degree of F as the degree of the induced map on second dimensional

integral cohomology. We have

— - — 1 -1 \ =13,y
deg F-szF §-—5 fww Tr(F-18F A (F13F)) =
= —if Tr(F'dF AFYdF A F7UF) (2.8)
472 Sarrxs

Theorem 2.2 Let f : M? — U(N) be harmonic, and let M? be a compact

Riemann surface. Suppose f has an extended solution E,. Then we have:
E(f) = 87 deg (E3) . (2)

In particular, the energy of harmenic maps 5° — U(N) is always an integral

multiple of 8.

Proof. We have:

deg (B) = —ﬁfmxsx Tr(E~'9E A {E-'3E) =
N ﬁ&% [Maxs. Tr((1— A" A4, A (—iX)A5) =
- ﬁfM’xS‘ Tr(-A:4z) = ‘% ors Tr(A Az) =
= -B e = LE0.

Theorem 2.2 (better called observation 2.2) has been generalized to general
compact Lie groups by Eells and Freed.

We want now to find the “simplest” harmonic maps M* — U(N), corre-
sponding to extended solutjons which are monomial in the loop variable. Let

Gi(C¥) be the Grassmannian manifold of complex k-subspaces of C¥. It is
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well known that G;(C") is a complex Kahler manifold. For each V € G¢(C")
let p=p,: C¥ - V be the hermitian projection operator onto V. Let
pL = I — p, be the projection onto (V1) € Gn_,(C").

The following is well known: it generalizes to embeddings of hermitian

symmetric spaces into their (compact) Lie groups of isometries (cf. [B-R)).

Lemma 2.3 The map G4(C") 5 U(N) defined by V ++ P, — PL is a totally

v

geodesic embedding; i induces a multiple of the standard Kéhler metric on
Gi(C™), and is called “Cartan embedding”.

We remark that ¢ identifies GR(N) = UG:(C") as the fixed set of the

involution s — s~! on U(N).

Corollary 2.4. Any harmonic map M* — G(C") induces a harmonic map
M? — U(N).
In particular, since M? and G,(C") are Kihler, any holomorphic map

M? — G,(C¥) is harmonic.
Definition. {Uhlenbeck) A i-uniton is a holomorphic map:
f=(p-p"): M~ Gy(C") 2 U(N) .
Proposition 2.5. Any I-uniton f : M® — G,(C"Y), M* Riemann surface,

defines a harmonic map M* — U(N), with extended solution E, = (p+ Ap') :
M? — QU(N).

Proof. f is holomorphic < p'dp = 0. Moreover,
E;'0E_, = (p+ A7'p*)(1 - A}8p = (1 - A)pdp
and we can now use Proposition 1.3 2).

Remark. It is easy to see that f = (p — p*) : M? — G,(C¥) is harmonic if
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and only if the equation:
|63p,p| = 0 (2.10)

is satisfled. Eq. (2.10) is an easy algebraic consequence of p*dp = 0.

The constructions above may be put in the following picture:

QU (N}
i I (2.11)
G(c") —  U(N)
where 1 is totally geodesic, and 7, defined by:
i(p=pt))=p+ap*
is holomorphic. Moreaver, j induces an isomorphism
Z = HYG(CM), Z) = HY{QU(N), Z) .

Remark. The map j constructed above is not the only possible lift of .

Indeed, for any choice of & € C, |e| < 1, we can define

A—ao T-1
(Ea()\)umh1 o (2.12)
Then a completely equivalent choice for an holomorphic j is:
i) =(p+ &r*) (2.13)

if f=p-p-

We have £ = A. The only reason for choosing & = 0 in (2.11) is that
our connection A, has poles for A = 0, oo, while (p + £.p*) € GL(N,C) for
A #a, l/a,

The chaice of a general & is anyway important when classifying the whole
set of holomorphic maps

M — QU(N)

with M compact Kéhler manifold (cf. [V2]).
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The following theorem is an adaptation of the naive idee of producing
extended solutions, by taking products of simplest ones. Unfortunately, the
pointwise product

NU(N) x QU(N) — QU(N}

is not holomorphic.

Theorem 2.6. Let f : M? — U(N) be an harmonic map, with extended
solution Ey : M2 — QU(N); and let (p — p*) : M* — U(N). Then f =
f(p — p*) is harmonic, with eztended solution E, = E,(p+ Apt) if and only

if we have:

i Lag o AF o
{ piAp+ptAzp =p*3ap =0 (2.14)

prAp=0.
Proof.

ET'3E, = (p+ A7) (1 - N As(p + Apt) + (L= A)(p+ 27"t )0p

-1
51_'3% is independent of A if and only if

(p+A"p ) Az(p + Ap*) + (p+ X 'p*)0p

is independent of A. Computing the coefficients of A~!, X, we must have
pdp+ptAzp=0
pAzp- =0.

By transposing the second equation, this system is equivalent to (2.14).

We also observe
ES'BE, = (1 — X)Az = (1 — A){(pAsp + p* Asp* + p3p) . (2.15)

We call equations (2.14) the uniton equations. We will give their geometrical
interpretation in §3. If f = f(p — p') with p satisfying the uniton equations,
we say that f has been obtained by addition of the uniton p = Im(p) to f.
Theorem 2.6 gives a recursive procedure to generate new harmonic maps
M? — U{(N) from given ones. 1t is an analogue of Bicklund transformations

in the theory of solitons.
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The aim of the next two lectures will be to prove Uhlenbeck’s theorem:
any harmenic map §* — U(N) can be obtained by K < N — 1 additions of

unitons, starting from a constant map.

3. Stable bundles and the first proof of Uhlenbeck’s
factorization theorem

We will give two different proofs of Uhlenbeck's theorem, in slightly different
versions. In this section we will give a proof which is conceptually very simple,
using some elementary algebraic geomeiry on the structure of holomorphic
vector bundle over $%. This proof is in [V1]. In section 4 we will give a
proof more in the spirit of Uhlenbeck’s original proof. Examining in detail
the extended solution, this will yield also a unicity result for the factorization
into unitons.

First, we give a geometrical interpretation of the “uniton equations” (2.14).
For any (0,1} form with matrix coefficients Az on a Riemann surface M?, the
differential operator .
Ba=08+4 Az (3.1)

defines a complex structure on the topologically trivial bundle M? x CV:
this is a special case of a theorem by Koszul & Malgrange (cf. [A-B] for an
elementary proof).

Such a complex structure is characterized by having, as local helomorphic

sections, all the maps v : M? — CV such that

We denote M? x CV, with the Koszul-Malgrange complex structure induced
by @4, as

(C¥,34) .
It is, in general, a non-trivial holomeorphic vector bundle. Given a subbundle
of constant rank F C (C",3,), then F is holomorphic if and only if we have

prasp=0 (3.2)
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where p = p(z) is the hermitian projection (CV,3,) — F.

Defnition. (cf. [H1]). Let E — M? be a holomorphic vector bundle over

the Riemann surface M?2; and let ¢ be a holomorphic section of
End (E) @ T(-l.l)][Mz) .

Then the pair (E,®) is celled a Higgs field (over M?). A holomorphic sub-
bundle F C F is called a Higgs subfield if

®(F) C F @ T;o(M?) .

It is easy to see that in this case, (¥, ®r) is also a Higgs field.

Let E — M? be a holomorphic vector bundle over a compact Riemann
surface M?; suppose ¢;(E) = 0. A Higgs field (E,®) is called semistable
(resp. stable) if, for any Higgs subfield F C E, we have ¢1{F) < 0 (resp.
e(F) < 0},

Proposition 3.1
1) Let f : M? — U(N) be a smooth map, and let

A:A,+A,é=%(f—1df] .

Then f is harmonic & ((CV,34), A.) is a Higgs field.
2) Suppose f is harmonie. Then

{unitons for f} = {Higgs subfields of ((CV,54), 4.)} .

3) Suppose f is harmonic and M*® is compact. Then the Higgs field ((CV,3.), A,)
15 not semistable if and only if there exists a uniton p for f which added to f

produces an harmonic map of strictly smaller energy.

Proof.
(1) is a rephrasing of Eq. (1.9), Proposition 1.1.



226 G. VALLI

(2) is almost obvious, from the remarks above: the uniton equations say
precisely that a uniton p = Im(p)} is a holomorphic subbundle of (C¥,8.),
and that .

A(p) Cpe T nM .

(3) is just a rephrasing, once we prove the following lemma.
Lemma 3.2. (Energy formula) Let M? be a compact RBiemann surface, f !

M?* — U(N) a harmonic map, p a uniton for f, f= f(p— p') the kermonic
map obtained by adding the uniton pto f. Then we have

AE = E(f) - E(f) = —8wcx(p} - (3.3)

Proof. (Sketch) The proof consists of 2 steps. First one shows, using Eq.
(2:15), that we have

AE =8 fM —|ptap|? + [p TP . (3.4)

This is a quite straightforward computation {ef. [V1]). Then one identifies the
right-hand side in (3.4) as a multiple of the 1st Chern class of p. The simplest
way to do it is the following: hermitian projection produces a connection B on
p, starting from the trivial one on M? x C”. We have F(B} = pdp A dp. We
conclude the proof by using the Chern-Weil formulas for characteristic classes
(cf. [0-V] §5). ’

Remark. Compare Lemma 3.2 with Theorem 2.2.

Lemma 3.3 Let (E,®) be a Higgs field over 52, ci{E) = 0. Suppose (E, @)

is semistable. Then E {s holomorphically trivial, and ® = 0,

Proof. We recall the following well-known theorems on holomorphic vector

bundles on 52.

Theorem 3.4 {cf. [A-B]).
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(1) For any k € Z, there ezists o untque holomorphic line bundle L* — §?
of 1st Chern class k, up to isomorphism;
(2) (Birkhoff-Grothendieck) any holomorphic vector bundle E — §? i5 a

direct sum of holomorphic line subbundles:

E=I"e ol k<k< <k,.

The integers {k;} are uniquely determined by E.
(3) The Harder-Narasimhan filtration

E; = GB_LH

ki

is uniquely determined by E. Indeed, each E; is spanned by the neromorphic

sections of E, of divisor order > i,

Proof of Lemma 3.3. Let (E, ®), ¢c;(E) = 0, be a semistable Higgs field over
5%, Let {E;} be the Harder-Narasinhan filtration of £ — $2. We claim that
each E; is a Higgs subfield. Indeed, & is a holomorphic section of End(E) @
T(10)(8?) and $(E;) is spanned by &() (v, where ¢ is a meromorphic section
of E;, and v meromorphic vector field. Therefore, ®(p) [v] has divisor order
> divisor order (p}-+divisor order (v) > i + 2 because ¢;,(T5%) = 2; and
therefore v has divisor order > 2. Therefore we have ®(E;) C E;y, ® T} (5%);
in particular, each E; is a Higgs subfield of positive degree, unless E; = E or
(0).

If E; = E V1, we have, by the above discussion, ® = 0, and E trivial. In

perticular, E; is a Higgs subfield of maximal degree.

Corollary 3.5 (1st version of Uhlenbeck’s theorem). Any harmonic map
[+ 8 — U(N) is obtained canonically from a constant map, by a finite

number of additions of unfions,

Proof. By Lemma 3.3 we see that it is possible to decrease the energy of f,

by adding a uniton, unless A, = 0, i.e. f is constant. Therefore, using the
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“gquantization” of the energy, we see that, if we repeat the procedure, we must
arrive to a constant map, after a finite number of steps.

Going backwards, we have produc.ed a factorization of f. Moreover, at
each step, we can choose the most energy — decreasing uniton in a canonical

way, as in the proof of Lemma 3.3.

The above version of Uhlenbeck’s theorem is not the strongest possible.

For example, the factorization is canonical, but not unique.

Corollary 3.6 Let f: M? — U(N) be a harmontc map which is a product of
unitons. Let A, = 3f718f. Then [ satisfies the “isotropicity” condition

Tr(A)* =0 Vk, (3.5)

In other words, A, is nilpotent.
Remark. For k = 2 this is equivalent to conformality of f.

Proof. From Eq. (2.15) we see that the quantities Tr{A4,)* are invariant
under addition of unitons. Therefore, if f is a product of unitons, they must

equal the quantities computed for constant maps.

In §2, we saw that the Cartan embedding:
GR(N) =|JG(C") - U(N)
k

identifies GR(N) with the set {s € U(N)[s* = I}. Indeed, s* = T = s =
p—pt. Let now f: S —» GR(N) be a harmonic map. We would like to have
a factorization
f =@ - p) (pr — p3) -

So that each particular product f; = Q(p, — pi) -+ (p — p}) has values in
GR(N) as well.

Ifg, g € U(N), ¢* = I, § = g(p — p*), then, by elementary undergraduate
algebra, we have

F=Isgp=pg.
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If f:5% - GR(N) is harmonic, 4 = 397'dg, and p is the maximal energy
decreasing uniton for f, we want to prove fp = pf. From f* = I one gets, by
differentiating,

fA+Af=0. (3.7)
Eq. (3.7) implies that f defines a holomorphic endomorphism of the Higgs
field associated to f. Therefore f preserves the Harder-Narasimhan filtration
and, being unitary, it commutes with the associated hermitian projections; so
that each term of the filtration is a uniton which, added to f, produces a new
map into GR(N). -

We have proved the following

Corollary 3.7. Let f : 5 — GR(N) = |JGi(C") be harmonic. Then f is
!

cenonically a product of unitons:
S =Qlp-p) (P = PR)
where each partial product f; = Q(py — pi) (pi — pl) is a harmonic map
5% — GR(N).
With the methods in this section, we have not been able to prove Uhlen-

beck’s estimate: number of unitons < N — 1. We will do it in §4. Meanwhile,

we prove the following.

Corollary 3.8 Let [ : S? — 5% = SU(2) be a harmonic map. Then [ is a

conformal (= holomorphic) map into some equator.
Proof. In this case the Cartan embedding restricts to
G (CH) =CP! =55 §% = SU(2) .

We have to prove that f = @ - (p — pt). Suppose we want to add a uniton to
any such f.
A= —;f'ldf, we have (C?,84) = L* @ L%, with & > 0. Since ptois

a uniton for f, we must have p' = L* (first term in the Harder-Narasimhan
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term in the Harder-Narasimhan filtration), £ = —e;(p). With respect to
this decomposition, we have A, = ( g g ), by the proof of Lemma 3.3).

Therefore the only possible uniton for f is EJ'. But, by adding BJ' to f, one
gets back @ € U(N).

4. Uniton number of harmonic maps M? — U(N); a
second proof of Uhlenbeck’s Theorem

The proof of Uhlenbeck’s factorization theorem presented in §3 uses the energy
of harmonic maps $2 — U(N) as a measure of complexity: the lesser the
energy, the simpler the map. Uhlenbeck’s original proof uses the degree, as
a polynomial in A, of the extended solution, corresponding to the number of
unitons needed for the factorization, as a measure.

Since extended solutions are defined only modulo left multiplication by
constant loops, some “canonical” normalization must be chosen. Moreover,
we need to prove this normalized extended solution is a polynomial in the loop
variable A,

The following is a key lemma: it is taken from [V2]; Uhlenbeck’s approach
in [U] is slightly different.

Lemma 4.1 Let M? be a compact Riemann surface, and let F : M? — QU(N)

be a holomorphic map (into the real-analytic loops). Then there ezists a unique
G: M* = QU(N) such that

(1) G 1dG = F~1dF for A € §! {in particular, G is holomorphic);
(2) G eztends holomorphically in X to a map

M? x D — gi(N,C)

(3) For any H : M* — QU(N) satisfying 1} and 2}, there exists ¢ €
QU(N), ¢ extendible to a holomorphic map D — g{(N,C), such that

H=¢q-G.
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Note: In [V2] G (or rather its inverse) is called the “maximal unitary ex-
pansion” of F. In [U), in the case F is an extended solution, @ is called the

“canonical normalization of the extended solution”.

Proof. Uniqueness: (This is the easy part.) Let Gy, Gy satisfy 1) 2) 3). Then
there exist loops g, r, extendible holomorphically to maps D — gl(N,C), such
that

as functions on M? x D .

Therefore 7y = qrG| = gr = I on the open dense subset of D where G| is
invertible. Hence ¢ = r~! so that ¢ € QQU(N), and q is extendible to a map
D — GL(N,C). Therefore, g is constant = I, by analytic reflection through
st

Ezistence: Let A, = Fef.lgf',.-,. Then A extends holomorphically in A to
Ay(2) = A(X,2),for A€ D= {A € C |}| < 1}, because F is holomorphic (cf.
§2).

On the topologically trivial vector bundle:
Dx M*xC?— D x M?
we consider the 3 operator

V =(8,,34,) where 3, = ;[)dx .
3

Extending ¥ to an exterior differential of @-type on forms, we have %' = 0.
By Koszul-Malgrange theorem in higher dimension, V defines a holomorphic
structure on D x M? x C¥ — D x M2 Call E the resulting holomorphic
vector bundle on D x M2,

Note: (Here we prefer to make 84, act on functions
ViDx M= CY as@uv=8v-va).

Let r : Dx M? — D be the projection. It is a proper map, because M? is com-

pact. By Grauert's direct image theorem, 7. £ is a torsion-free coherent sheaf
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of O(D)-modules over D. Because D is 1-dimensional, and any holomorphic
vector bundle over D is trivial, r. E is globally free.
Let vy, ,v, be global generatingl sections of r. E, as an O(D)-module.

IheY satis{Y
= = ¢ ViAy = 0 ' .

Put the v; together as column vectors to form K
K:Dx M- {MxN  complex matrices.}

We have M = N, and det K # 0 for |A] = 1, because on a neighbourhood of
51, a,h is trivialized by F,

We can normalize K so that K(1,z) = I, by left multlpllcat!on It is easy to
prove that det K = 0 only on a subset of D x M? of the form {ay,..., oy} x M3,
by topological reasons (cf. [V2] §4). If K is not unitary for [A| = S, we
consider p € M and K~(p) : §! = GL(N,C). By Theorem 8.1.1 in the book
of Pressley and Segal [P-S], we have:

K'p)=n-o

where 4 € IU{N), and o extends to a holomorphic map D — GL(N,C). We
have:

K'Yp)-K=+v-0-K.
Let G = ¢ - K. Then ( satisfies property 2) and
3G -GA,=0.

For |A| = 1 we have:
3K -KA =0 @ 3K -KF'9F =0 3d(KF'}=0
_ $
3K+ AK" =0 © dK - KF'9F =0 & d(KF'} =

Therefore:

JKK)=8KK + KdK = KAK' - KAK =0
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and K K" is independent of z, for A on 5!, But
GG =y K ' (p)KK'K™'(p)")v" ' .

The term inside the bracket is independent of z, but it is = / for z = p = it
is = I. Therefore, for |A| =1
GG =41y 1=
because  is unitary. Moreover, G-'8G = F~'3F for |A| = 1, by hermitian
transposing of G~*8G = F-13F.
Property 3) is an easy- congequence of the fact that the column vectors of

K (and hence of G, since det o # 0) are generating sections of 7. E.

Remark. The key point is Grauert’s theorem, and not the loop decomposi-

tion.
We may apply Lemma 4.1 to the case when F is an extended solution.

Corollary 4.2 Let M? be a compact Riemann surface, and let f : M? — U(N)
be an harmonic map admitiing an eztended solution. Then there ezists a
unique eztended solution Ex : M* — QU(N) for | with the following property:

Y g constant projection operator gFy(z) =0 = ¢ = 0.

Proof. The property above is equivalent to condition 3) in lemma 4.1. It is

also equivalent to Uhlenbeck’s condition

{Im Eo(2)},en» span CV .

We call the canonical extended solution of Corollary 4.2 normalized ex-

tended solution (or n.e.s.). At this point, the following exercise may be useful.

Exercise. Let 4 € NU(N); suppose « extends to a holomorphic map D —
gl(N,C). Then « is rational in the loop variable A. Moreover, if det 4 # 0 for
A # 0, then v is polynomial in A,
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This sort of results goes back to Potapov and Masani (cf. [M]) on infi-
nite Blaschke products, and factorization of matrix-valued functions on D, of

Hardy classes: unitons “ante litteram”.

Theorem 4.3. Let M? be a compact Riemann surface, and let Ey : M* —
QIU(N) be ¢ normalized extended solution. Then there ezists a unique factor-

tzation of B, into untlons

By = (p1+ Apy) - -(pe + Ap¥)

such that
(1) vip, N pt = (0) as holomorphic vector bundles
(2) Vg, ¢* = ¢" = ¢ constant projector, we have

glm- m)=0 = g¢g=0,

Moreover we have:
(3) k< N—1 rk{p, ) <rk(p,) ci(p) <0
{4) Any partial product

ES = (p1+ 2p7) - (i + Api)

is a normalized extended solution.

Proof. Theorem 4.3 is Uhlenbeck’s theorem in full version. We will need

some lemmas as intermediary steps.

Lemma 4.4. Let Ey : M* — QU(NY) be a n.e.s. Let Ex = T XTi(2). Then
we have: e

(1) p = ker(To} defines a uniton for Ej, with ¢, (p) >0

(2) Ex = A1Ea(p+ Apt) is a n.e.s., deg Ex < deg Ea

(3) if B\ = SXT;, we have rk(Ty) > rk(To).

Proof of Lemma 4.4.
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1) The equation 8F, — Ey Ay = 0 implies, by evaluating at A = 0, that
3Ty — ToAz = 0. Therefore

To: (CY,8,4) — (CV,9) (4.2)

is a holomorphic morphism. In particular, there exist holomorphic subbundles
Fy € (CV,84), F: € (C",3) which coincides with ker Ty, Im To, where rank
(To) is maximal, on an open dense subset. We denote F; = ker Ty Fp = Im T,
with a slight abuse of notation. We have ¢;(ker Tp) > 0, unless e;(Im Tp) = 0.
But, if this is the case, Im(75) is a trivial bundle of (C", 3), therefore constant:
but this is forbidden by the normalization of E,.
From the equation 8E = (1 — A~1) E, A, we get, expanding in power series
of A,
ThA, =0. (4.3)

Therefore A,(Ker To) C A, C Ker To; and p = Ker(Ty) is a uniton for E,.
2) Suppose g, qu = 0. Since f’u =Topt + Typ

9(Top* +Thp) =0 = qTpp* =gl =0 =q¢=0.

3) To=To + Tup = Top* + Tip.
This implies rkT, > rkT;. But we have

aTQ = Tg}lz - TIAI and [4.4)

Im (T} 4,) = Ty(Im 4,) = Ty(p) . (4.5)

Because p = ker T; = Im(4,).
Therefore, if rk(Ty) = rk(T,) we have that, by (4.4), (4.5), Im (Tp) is 2

antiholomorphic subbundle of C¥, since
HNmT)C Im Ty .

But Im(Ty) is also a holomerphic subbundle of (C™), by (4.2). Therefore, it

is constant, Arguing as in 1), this is impossible, because E, is normalized.
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We see at once that Lemma 4.4 implies that, if E, is & n.e.s., then E,
is a canonical product of at most (N — 1) unitons, by arguing on induction
on rk(T,). Indeed, rk(Ty) = 0 is impossible, because Ej is normalized; and
rk(To) = N = E,:Dx M?* — GL(N,C): and, since E, is unitary for

|A| = 1, we see that E, must be constant = I.

Definition. (Uhlenbeck) The uniton number of an extended solution

E, : M?*— QU(N)

E, T N is ne NuU{o}.
The minimal uniten number of an harmonic map f : M? — NU(N) is the
minimum of the uniton numbers of the extended solutions of f, if there exists

any.

Proposition 4.5. Let f: M? — U(N) be harmonic, admitiing an extended
solution, and let M? be compact. Then the minimal uniton number of f 13
< N — 1, and 1t 1z equal to the uniton number of its normalized extended

solution.

Proof. By the remarks after the Proof of Lemma 4.4, we see that the uniton
number must be finite, and < N — 1. Let F) be an extended solution with

minimal uniton number and let E), be the n.e.s. We have;
F,=Q(A)Ex-

with Q(A) : D — gi(N,C), holomorphic, @ € QU(N). If det Q{0) # O, then
Q = I; suppose then Q(0) is not invertible.
We have
ES' = FQ(N) . , (4.6)
By unitarity on S, the uniton number of E (or F) is equal to the order of
the pole at A =0 of E~! (or F~!). Expanding (4.6) in (finite) Laurent series

around A = 0, we easily get that

uniton number of £, € uniton number of F) .
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Problem. Describe the set of extended solutions with minimal uniton num-
ber. This problem is more interesting than it looks like, being related to the
choice of a normalization of the extended solution, and to the choice of a
“best” possible uniton to subtract. Is there something related to quantum

groups and f-matrix theory?

So far in this section, we have produced a canonical factorization of an
harmonic map f by choosing a canonical extended solution E;, and by choos-
ing Ker(E,) as uniton to subtract. By Proposition 4.5 and Lemma 4.4, this
procedure decreases the uniton number by 1, (producing a new canonical ex-
tended solution, so that we can iterate). To get a unique factorization, we

have to show how to increase the uniton number.

Lemma 4.8. Let E, : M? — QU(N) be a normalized extended solution, of
uniton n® = k. Let p be a uniton for By. Then E, = E\(p + Ap?) is a n.e.s.
of uniton number k + 1, such thot adding Ker (Ey) to E, we get back E,, if
and only if:

(1) Ker Eyn p = (0) as holomorphic vector bundies

(2) V¢, ¢" = ¢° = g constant, ¢Egp =0 = ¢ =0.

Proof.

2) Is precisely the condition for E) to be normalized, because E, = Eqp.
The condition Ker (£;) = pt is satisfied

< Ker (Epp) = p* . (4.6)

We have p' CKer (Eop) anyway. Let V € Ker (Eop). Then V = V) + 1y,
V1=V, pV; =0.

EupV = Engl + EopV-z = Eng =0.

Therefore V; € pnKer (Ep}, and Vi #£ 0 & V eKer (Eop) — p*. So, (4.6) is

equivalent to condition 1), on a open dense subset of M?Z.
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Note: We ask the reader to forgive us for having changed the notation again
from Ty to Eq.

We have now finished the proof of Theorem 4.3. Indeed, condition 4.3 1} is
equivalent to 4.6 1), by use of induction; and the iteration of 4.6 2) produces
4.3 2). The other statements have also been proved. Here the key point is
that when we have the factorization (4.1), then Ker (Ep) = pi: and this for
each k.

We have shown two proofs of Uhlenbeck’s theorem. There are other ap-

proaches on the market.

1) In [U], Uhlenbeck first proved that there exists a Laplace-type operator
L on 5% so that LE, = 0 ¥ A. From dim Ker I < oo, she deduced that E, is
polynomial in A. The unique factorization theorem then followed, as in this

section.

2) Segal’s proof ([S]) used the “Grassmannian model” of U(N) as a space
of certain Hilbert subspaces of L*{S!, C¥). Using the fact that any holomor-
phic map » : M — P(¥) M compact, ¥ Hilbert space, has a finite dimensional
image, he proved that any holomorphic map o : M — QQU(N) can be normal-
ized, to have image in the rational loops. In particular, any extended solution
is polynomial in A, modulo normalization. Then a decomposition of polyno-
mial loops as product of loops of the form p 4 Apt, eutomaticelly induces the
factorization into unitons for maps. The space of harmonic maps S — U(N)
decomposes as union of spaces of holomorphic maps $? — F,,, where F,, is
a flag manifold. We refer to M. Guest’s lectures in this workshop for more

details.

3) Wood refined the methods in [U] and {V1] to give an ezplicit construc-
tion of harmonic maps §2 — Gx(CV), §* — U(N), using Im(4,) and Ker{A,)
as simplifying unitons.

4) Burstall & Rawnsley have generalized Uhlenbeck’s theorem to compact

simple Lie groups, admitting hermitian symmetric spaces, using the method
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in §3 (cf. [B-Rl).
Concerning other generalizations of the material of these lectures, we note:
Hitchin [H2| has given a detailed analysis of harmonic maps T? — SU(2),
using a “spectral curve” constructed through the holonomy of the loop of flat
connections.

. The results do not generalize to harmonic maps M — U{N) when M
has higher dimension. They rather generalize to “pluriharmonic” maps M —
U(N), M simply connected, compact Kahler manifold (a map M —» N, M
complex manifold, N Riemannian, is called pluriharmonic if its restrictions to

germs of complex curves in M are harmonic): <f. [O-V].
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