

A MINIMAL GENERATOR OF $\pi_6(G_2)$

Alcibiades Rigas

There is a simple theorem of Elie Cartan [C-E] stating that for any symmetric pair of compact Lie groups G,H, there is a canonical embedding of G/H as a totally geodesic submanifold of G. This inclusion does not constitute a section of the homogeneous bundle in general.

In this talk I will describe an example of a non-symmetric pair $(G_2, SU(3))$ with quotient S^6 , that is included as a minimal submanifold in G_2 , the automorphism group of the Cayley algebra. The bundle

$$SU(3)$$
 ··· $G_2 \rightarrow S^6$

is the reduction of the bundle of orthonormal frames of the six-sphere and the killing form of G_2 induces a symmetric metric on S^6 , by riemannian submersion. Details of what follows will appear in [C-R].

Consider the seven-sphere of unit Cayley numbers and the map it induces on \mathbb{R}^8 by Cayley conjugation: Each α in S^7 goes to σ_{α} in SO(7) with $\sigma_{\alpha}(x) = \alpha x \overline{\alpha}$. This map $\alpha \longmapsto \sigma_{\alpha}$ generates $\pi_7 SO(7) \cong \mathbb{Z}$ and it gives rise through the property of triality to the generator of π_7 Spin (7), that sends α in S^7 to r_{α} in Spin (7) with $r_{\alpha}(x) = \alpha x \alpha^2$ [T-Y-S].

An element of S^7 , different from 1 or -1, can be written uniquely as $\alpha=\cos\theta + \sin\theta J$, where $J^2=-1$ and $0\leq\theta\leq\pi$, i.e., J lives in the equator S^6 consisting of all complex structures in S^7 .

It can be easily seen that the intersection $\sigma_{\alpha}(S^7) \cap G_2$ consists of the parallel circle $\theta = \frac{2\pi}{3}$ plus the unit element. For such α in S^7 we have $\alpha^3 = 1$ and it turns out that the map from S^6 to G_2 that sends the complex structure J to $\cos(\frac{2\pi}{3}) + \sin(\frac{2\pi}{3}) J$ is a minimal embedding [H

208 A. RIGAS

- L] that generates $\pi_6(G_2)$, which is therefore \mathbb{Z}_3 . Moreover, the image of this parallel circle is a singular orbit of the conjugate action of G_2 on itself

$$G_2 \times G_2 \longrightarrow G_2$$

 $(A , B) \longmapsto ABA^{-1}$

The other kind of non trivial singular orbit of this action is the symmetric space $G_2/_{SO(4)}$ of dimension 8.

Both these cojugate orbits are exponential images of non-trivial, singular, Adjoint orbits of G_2 on its lie algebra \hat{G}_2 . The two kinds of Adjoint orbits now are ten dimensional and moreover they have the same cell structure as follows from a theorem of R. Bott [B]. They are, however, not homotopy equivalent: Each is the quotient of G_2 by a different subgroup isomorphic to U(2).

These two Adjoint orbits differ in their third homotopy group, which is zero for one and \mathbb{Z}_3 (again) for the other. Starting from the fact that $\pi_6 G_2 \cong \mathbb{Z}_3$ one can show that $\pi_6 SU(3) \cong \mathbb{Z}_6$ and $\pi_8 SU(2) \cong \mathbb{Z}_{12}$, using the system of principal bundles over the seven sphere. Traditionally one uses the opposite route [M].

One of the reasons for looking for algebraically explicit expressions representing generators of homotopy groups of the spaces involved in the classical bundles over the seven-sphere is related to the following problem $[R_1]$; $[R_2]$

Classify the differentiable structures on the seven - sphere by the (exotic) free actions of SU(2) on $S^7 \times SU(2)$ or of SO(7) on SO(8).

In our case one is looking for an expression for the generator of $\pi_7 Sp(2) \cong \mathbb{Z}$. In this line, a generator of $\pi_7 SU(4)$ can be written by using the Bott periodicity theorem and successive projections $[R_8]$, [D-F-N], [H]. This procedure however does not put in evidence the relations between the various geometries involved in the problem.

References

[B] R. Bott: An application of Morse theory to the topology of Lie groups,

- Bull. Soc. Math. France 84 (1956) 251-281.
- [C-E] J. Cheeger and D.G. Ebin: Comparison Theorems in Riemannian Geometry, North-Holland, N. Y., 1975.
- [C-R] L. M. Chaves and A. Rigas: On a conjugate orbit of G_2 , to appear in Jour. Math. Okayama Univ.
- [D-F-N] B. A. Dubrovin, A. T. Fomenko and S. P. Novikov: Modern Geometry; Methods and applications (vol III), Springer (1984).
- [H] D. Hakon: Lecture, 6th Brazilian Topology Meeting, Unicamp, August 1988.
- [H-L] Wu Yi Hsiang and H. B. Lawson: Minimal Submanifolds of low co-homogeneity, Jour. Diff Geom. (1971) 1-38.
- [M] M. Mimura: The homotopy groups of Lie groups of low rank, Jour Math. Kyoto Univ. G - 2 (1967) 131-176.
- [R_1] A. Rigas: S^3 bundles and exotic actions, Bull. Soc. Math. France 112 (1984) 69-92.
- [R₂] ——: On the bundle of frames of seven spheres, preprint, Unicamp (1991).
- [R₃] ——: Some interesting generators of homotopy groups, preprint, Unicamp (1991).

IMECC- UNICAMP, C.P. 6065 13081, Campinas, S. P. Brazil