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ELLIPTIC BOUNDARY VALUE PROBLEMS FOR
CONNECTIONS
A NON-LINEAR HODGE THEORY

Antonella Marini ®

0. Introduction and statement of the result

We define some elliptic boundary value problems for connection one-forms.
The equations in the interior are the Yang-Mills equations. These problems
arise in a natural way, via a variational principle, as explained in §2. They do
not arise immediately as elliptic problems. In fact, the solutions of the systems
considered are geometrical objects. They are acted upon by a symmetry
group, that does not leave ellipticity invariant. This constitutes a source of
complexity in the study of boundery value problems for connections. The
problems that we define should be viewed as the most natural generalization
of linear Hodge theory for forms, to a non-linear Hodge theory.

The main tesults could be exemplified as follows.

Theorem 1. Given a,, a smooth connection at M, there exists e smooth
solution of the Dirichlet problem, defined in §2.

When studying the Neumann problem, in order to avoid ending up with a
trivial solution, we need to put a topological obstruction on the bundles where
the minimizing procedure takes place. This obstruction is defined via Céch
cohomology and is the second Stieffel Whittney class if the structure group in
the theory is S0(3). This obstruction had been already intreduced for finding
Yang-Mills connections on a compact Riemannian four-dimensional manifold,

" [7]. The result for the Neumann problem is stated as follows.
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Theorem 3. There exists a smooth solution A for the Neumann problem,
defined in §2, with given obstruction n € H*(M, m ).

In the next section, we give a simplified description of the the geometrical

objects involved in the theory.

1. Brief geometrical description

We consider a principal bundle P, over a compact Riemannian manifold M,
of dimension four with boundary @M. We take the structure group of the
bundle to be G = SO(t). {Most of the interesting analysis can be carried
out on M = B*, the four-dimensional disk, and on the trivial bundle, P =
B* x §0O({)). We cover M with neighborhoods of type

UM = {z = (2, ..., z") such that |z| < 1}
in the interior, and
U = {z = (2, ....2") = (', ") s.t. |z} < 1,z" > 0}

at the boundary.

We consider connection one-forms on P, i.e. differential one-forms valued
in the Lie algebra of SO(l), described in coordi nates by A(z) = ¥; Ai(z) dz',
(the Ajs are matrices in so({)), that can be gauge-transformed in the following
way, .

d .
A; Hg'lA.-ngg"ggf, ¥i=1,..n.
'+

The ¢'s above are maps from the manifold into the Lie group SO({). The
curvature of A is
d4; 34

== + [4i, Af]

F =3 F,dz' Adr!, where F; = 9 B

if
and, under gauge transformations, Fj; — ¢ 'F;¢. Various types of action
could be considered. We restrict our attention to the pure Yang-Mills func-

tional,

Y.M.(A) E‘/};‘traceF A *F EL‘IFP.



ELLIPTIC BOUNDARY VALUE PROBLEMS FOR CONNECTIONS 197

2. Definition of the Dirichlet and Neumann boundary
value problems

Two boundary value problems arise from the Yang-Mills functional, via the
calculus of variations. One of them requires fixing the tangential part of the
connection A on the bundle restricted to M. If 8M is locally described as
{z* = 0}, this amounts to prescribing A,(z) dz' + Ay(z) dz? + As(z)dz® on
@M. The connection is fixed in the sense that a particular choice is fixed in the
gauge-equivalence class of A on the boundary. The equations in the interior
are the Yang-Mills equatidns. This corresponds to the Dirichlet problem, i.e.
to the following system of equations,
D {D*FEd*F+[A,*F]=0 on M
A= a; on M i=1,.,n-1.

In the Neumann problem, A is free at the boundary, but the normal part
of the curvature is set equal to zero. The Neumann problem is obtained by
imposing that the variation with respect to A of the Yang-mills functional be
equal to zero with no constraints, and corresponds to the following system

N {D*FEd*F+[A,*F]:O on M
Fu=0 on M i=1,.,n-1l.
The Neumnann problem is meant in a weak sense, or for smooth solutions. For
the Dirichlet problem, we need some admissibility conditions, when prescrib-

ing a, [8].

Comments: The Neumann problem presents itself as a natural problem from
all points of view (analytical, geometrical, physical). It arises naturally from
the energy functional, as a consequence, it is gauge invariant. It could be done
completely by reflecting the manifold across the boundary, hence it could be
transformed into an interior problem.

To make the Dirichlet problem gauge invariant, we need to allow gauge
transformations at the boundary that extend to the interior. The Dirichlet
problem cannot be done completely by doubling the manifold, because the

doubling that would be required does not work geometrically to define a new
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bundle on a compact manifold. The Dirichlet problem is non-homogeneous,
to allow non-trivial solutions.

We should think of the above problems as problems for A. In fact the
differential operators that we are considering depend upon the connection.
The above systems are non-linear and second order for A. They are not
elliptic, also {but not only) because we need to prescribe more boundary
conditions {only “half” boundary condition has been prescribed) [2]. We
use the gauge invariance of connections to find extra interior equations and
boundary conditions to add to the systems above. Under a suitable gauge
transformation we gain ellipticity.

Sections 3. and 5. illustrate these remarks and relate these problems to

the linear theory for forms.

3. Boundary value problems for differential forms

Let us consider a differential operator which is formally self-adjoint and elliptic
of order o, say Q. At first, let us define N for functions. We start with
@ = A?, the square of the Laplace operator and o=4. Following the variational
approach, by imposing

6 [ 1677 =0

with no constraints on ¢, we obtain the classical Neumann problem

ZAf=0 atdM

{Azfzo on’ M
Af=0 at M.

Notice that there are two boundary conditions, that is “half” the order of A%,

Next, let us consider the Clifford algebra of differential forms of all degrees
on a smooth n-dimensional manifold, A{M) = TF_, A*T*M and let us take
@ =d# d. Then @ has order o= 1. The following systems of equations
represent well posed boundary value problems for # € A(M):

N

{(a‘+d‘)9=0 on M D

(d+d')8=0 on M
“(+0) =0  at aM,

(0)=0 at OM,
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where {* :  A*T'M — A*T*(8M) is the pull back of the inclusion map, * is
the Hodge operator.

In coordinates, close to dM we can write
A(M) = A{BM) x A(BM) ® dv and 6 =10 +8; ndv

Using this notation, the boundary condition for D is #, = 0, and for N is
8, = 0. These are also called relative and absolute boundary conditions,
respectively. The dimension of the fiber is 2" for the vector bundle A(M) and
2"=! for A(OM), thus also in this case we are prescribing “half” boundary
conditions. We refer to [2] for a more formal exposition.

The Hodge operator takes one problem into the other and makes them
“isomorphic”. More specifically, let us consider the following de Rham com-

plexes with added relative and absolute boundary conditions,

D ACPAL) SR S el

N CW{AQM] - Cw(Aubs ) £ CN{A.:IB:!] "y
and corresponding cohomology groups,

ker d kerd"
r:l(M (D) —{ )r:l and aba(M m} (W}ah’
The de Rham theory for manifolds with boundary gives the following isomor-

phisms:
HI,(M;C) ~ H'(M,0M;€C)  and  Hj, (M;C) ~ H (M;C).

Clearly Hodge duality, that transforms P inte N, translates into Lefschetz
duality. On the de Rham theory on manifolds with boundary see [1]. The
Hodge decomposition theorem for manifolds with boundary gives a formal
motivation to the definition of 2 and N above. In fact, this theorem implies
existence and uniqueness of a solution to D and X in H,(M; Q) = (berd)

imd

and Hi,,(M; €) = (42£) ,,, respectively. For a precise statement of Hodge
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decomposition theorem for manifolds with boundary see [6]. Notice that both
problems are defined in the homogeneous case.

Unfortunately, the non-linear thec;ry does not have such a good geometrical
description. If there were a more general theory of boundary value problems
for non-linear equations, the problems for connections defined in §2 would
fit into it very naturally. Non-linear Hodge theory is more natural for one-
forms, neverthelesss the Yang-Mills equation and the Bianchi identity for the
curvature form F{A) seem to be a natural extension. In the case the structure
group in the gauge-theory is abelian, A transforms like a differential form
(A — A+ du), D = d, and our results are contained in the Hodge theory for

manifolds with boundary.

4. Existence theory: the minimizing procedure

Existence of a solution for the Dirichlet and Neumann boundary value prob-
lems in §2 is found via a minimizing procedure, analogous to the one used
in [7] on a closed manifold. Here we examine the Dirichlet problem. The

Neumann problem is done in similar fashion.

Let us define

m(a,) = min Y .M(A),
A

where 4 = { connections 4 on G-bundles on.M st Arlsar = a,}. Let {4}
be a smooth minimizing sequence for ¥ .M., 4; € A. Then (cfr [4]),

(1) there exists a subsequence weakly convergent in L? to a connection A on
M, except at most for a finite number of points.

{2) the limiting A satisfies D, (cfr §2)

(3) A is smooth up to AM

(4) point singularities can be removed (also at the boundary).

By a counting argument, if M is 4-dimensional, it can be covered by neigh-

borhoods of type one and two with eventually small energy for the sequence.
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Applying the good gauge theorems (cfr. §5 estimate {*)), (1) is obtained by
means of weak compactness. The dimension n = 4 is crucial in this argument.
In dimension n > 4 singularities of Hausdorff codimension four arise. The di-
mension four is a border line case, in which isolated singularities might occur
apriori. (In [3] there is an example of what can happen if the structure group
is simply connected, (f.e., with zero obstruction n). Here M is a compact
manifold, M = §*, and a sequence of connections {A,} with fixed energy is
given. The energy is prescribed to be equal to the topological minimum for
the bundle where all the 4,’s live. By means of weak-compactness of LI, there
is always a limiting connection, but the limit could be flat and an instanton

come out at a point of the manifold.)

At this point, two type of questions need to be analysed. One of them is
of local nature and very important from the analytical point of view. It is
discussed in the next section. The other is of global nature and is related to
the geometrical picture. It is the problem of patching the local solutions to
form a global solution on a reasonably smooth bundle. This can be done if the
base manifold considered is of dimension n < 4. If the dimension is 5 or more,
Sobolev embeddings and multiplication theorems used in the 4—dimensional

case do not work any more to give a global solution.

5. Ellipticity: choice of gauge

What are the right boundary conditions to add to systems D and N in §2, in

order to make them elliptic?

The problem of making the equations elliptic is already encountered in
the interior case, it is more involved in the case a boundary is present. The
interior problem is done by [9], by finding a gauge transformation g such that
d+(g-'dg +g'Ag) = d x A = 0. This is called the Hodge gauge, or Lorentz
gauge, by the physicists. This problem is similar to finding harmonic maps

from the manifold M to the Lie group SO(!). The newly obtained connection
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satisfies the estimate
*)  NAllz < const - [|F|,.

This estimate is essential to the existence and regularity theory. Observe that
in the Abelian case A satisfies AA = d"F + dd"A = 0.
The boundary case is done in (4], by proving new good gauge theorems.

In these good gauges, the new potential 4 satisfies

(a) d, A, =0o0n8(V)={z"=0}
D: (b) A.=00n&l)={z|=1}
(c) dA=0onU,

in the Dirichlet case;

(a))  A,=0o0n8(U)={z"=0}
N (b)) A, =00nd,(U) = (=l =1)
() dA=0onUl,

in the Neumann case.
Notice that in D the boundary condition on 8(I/) = d;(U) U,(U) is non-
homogeneous in rank. In some sense, conditions (a) and (c) introduce a Neu-
mann condition 32 A, = 0, on 8,(U), as a hidden boundary condition, that
will be essential later to perform reflections; and prove regularity.
The proofs of the new good gauge theorems do not come as straight-forward
consequence of the old ones. These theorems make estimate (+) available, also
for boundary value problems,

The Neumann case looks like the interior case, eccept for the corners in

the domain.

6. Boundary regularity

The problem of interior regularity has been solved by K. Uhlenbeck in (9] and
[10].
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For the proof of boundary regularity, i.e. on neighborhoods of type two, see
[4]. An outline of the method used for the Dirichlet problem is the following.

We extend a, to a smooth one-form a on U in a suitable way, We define a
one-form H = A — a. After some easy computation, using the field equations
and the “good gauge”, we show that this form satisfies the following boundary
value problem:

L(H) = Ap(H) + *pd(+ — #£)d(H) + Q(H) = a(a,A) in U
{ H,=0 “d [ =9 at 9,U,
(H € Li(U)), where Q(H) = «p(1/2d"[H, A| + [H,+F(A)]), Ar is the flat
Laplace operator on forms, and a(a, A) is a one-form in L2. The operator Q
has been introduced to take care of the non-linearity of the problem. To study
this system, we double the neighborhood U in the ¢i; metric. We call U the
doubled neighborhood (this will have a metric that is only Lipschitz bounded)
and define an operator L : AY({7)®g — A! (U)®g¢ whose coefficients extend the
coefficients of L, in such a way that Lr* = r*I. The coefficients of L present
a jump discontinuity at 9,U, because of characteristic functions appearing in
the definition. We will overcome this obstacle by showing that the double of
the flat Laplace operator on U is the flat Laplace operator on I}, and that
the difference I — Ap is small in some sense. The first thing to show is an
easy computation. We also extend the one-form o, to the one-form & defined
on U that satisfies &(2',3") = —r*&(z',z"). Let now H be the odd extension
of H; i.e. such that r*H = —H. Given the boundary conditions that we
are considering, the extended form H, also belongs to L3(U). The one-form
He LI(U) satisfies L(H) =& in U. After carrying out all the estimates, we
reduce the problem to studying regularity of the following system of equations,
$: { Lw=+v on U
w=0 at &U;

where yeL? and we LI{D).

To show regularity of the solution, we make a dilation from the ball of size
o, ffa, to the ball of size one I}I. In the new coordinates, we need to show that

the operator L — Ap is small.
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Very schematically, we proceed as follows. We start from system §. The
right hand side is in L”, for p < 4. The flat Laplace operator has a bounded
inverse that goes from L?, to L} and L — Ap is small. Therefore also L has a
bounded inverse. This gives H € Lfforp < 4 in a smaller neighborhood. Now
we can take the non-linear terms to the right hand side and get something in
L? for p < 4. Iterating the procedure used before, we prove that H € L§.
We can now start taking derivatives. Regularity is proven first for tangential
derivatives, then the equations relate them to normal derivatives and standard
techniques show smoothness of the solution.

As stated in §4, isolated singularities might occur on a 4-dimensional mani-
fold as a result of the minimizing procedure, A removable singularities theorem

for boundary points is in [4].
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