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GAUGE THEORY AND THE TOPOLOGY OF
4-MANIFOLDS

J. D. S. Jones

Introduction

In these notes I will outline some of the key ideas in Donaldson’s work concern-
ing the question of which symmetric unimodular forms over the integers can
arise as the intersection forms of smooth closed 4-manifclds. The original pa-
pers are [3, 4, 5] and the results are also proved in the book by Donaldson and
Kronheimer (6). I will also discuss how some of the results can be interpereted
in homotopy theoretic terms, more precisely in terms of the cohomology of
mapping space:.

The first section contains a summary of results on the classification of 4-
manifolds. I have not tried to make this a complete survey of the subject:
rather my aim has been to state some of Donaldson's theorems and to set
them in context. The articles |14, 9] are more thorough surveys of the theory
of 4-manifolds; see also [6, Chapter 1].

The second section contains an outline of some of the essential background
from gauge theory. This material is by now well-understood and details can
be found in the main references (3, 4, 5, 6, 7, 13, 19] and the discussion here
is very brief.

In [3] Donaldson proves that if the intersection form of a smooth 4-manifold
is definite then it is diagonal. In [4] he goes on to study the question of which
indefinite forms can arise as the intersection forms of smooth 4-manifold. The
known results concerning this question are described in §1 but the complete

answer is not known; there is a conjectural answer, stated in §1, but as yet
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this conjecture has not been settled. In §3 and §4 I will give an outline of
Donaldson’s argument which proves the best non-existence results which are
currently known. The basic argument. is very geometrical; it depends in a
subtle way on the structure of the ends of the moduli spaces of anti-self-
dual connections and therefore on Uhlenbeck’s weak compactness theorem
and Taubes’s gluing construction for anti-self-dual connections. The methods
described in §3 and §4 are important techniques, used by Donaldson, for doing
computations.

The arguments in §3 and §4 are based on a study of the relation between
the cohomology of the various moduli spaces which arise in gauge theory and
the cohomology of mapping spaces. In §5 I will describe some of the results
due to Masbaum [15] and Mietke [16] on the cohomology of the appropriate
mapping spaces. In addition §5 contains a discussion of how the results of §3
can be re-interpreted in terms of the cohomology of mapping spaces and how
the cohomology of these mapping spaces is related to the cohomology of the
moduli spaces.

These notes are based on a series of lectures given at the workshop on the
geometry and topology of gauge flelds held at Campinas in April 1991, It
is a great pleasure to thank the organisers of this meeting, in particular A.
Rigas, F. Mercuri, and C. Negreiros for their hospitality and for creating such

a stimulating atmosphere.

1. 4-manifolds

Throughout the term closed manifold will mean one which is cempact and
has no boundary. Let X be a simply-connected, closed, oriented 4-manifold;
the term simply-connected 4-manifold will, unless specified otherwise, mean
a 4-manifold which satisfies these hypotheses. Associated to X is a basic

invariant, its intersection form

Q=QxZHz(X;Z} X HQ(X,Z) — 2,
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This is a bilinear form defined over Z which is symmetric and unimodular:
symmetric means that Q(z,y) = Q(y,z) for all z,y < H:(X;Z) and uni-
modular means that if we choose a basis ey, ..., €, for the free abelian group

H;(X; Z) and express Q as the symmetric matrix

A = (ay), ai; = Qlei,e;)

then det A = £1. The fact that Hy(X; Z) is a free abelian group follows from
the hypotheses on X and Poincaré duality shows that ¢ is unimodular.

Two natural questions immediately present themselves:

The Realisation Question Given a symmetric unimodular form @Q is it the

intersection form of some simply connected 4-manifold?

The Classification Question Classify 4-manifolds with given intersection

form.
The first classification theorem is the following result of [17].

Theorem 1.1 Let X and Y be simply-connected §-manifolds. Then {f Qx =
Qv it follows that X and Y are homotopy equivalent,

This is the crudest possible classification of 4-manifolds and we would like
more refined results which classify topological 4-manifolds up to homeomor-
phism and smoot.h 4-manifolds up to diffeomorphism. It is interesting to see
that Milnor points out in [17] that there are significant differences between
the classification of 4-manifolds and the analogous classification problem in
higher dimensions.

Let us briefly digress to introduce some of the terminology of bilinear forms

¢ over Z and their invariants. More details can be found in [18] and [22]

(1) The rank of ¢ is the rank of the group on which Q is defined. In terms

of a matrix representation of @ it is the size of the matrix.
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(2) The form @ can be diagonalised over R and we define " = 6*(Q) to be
the number of positive entries which occur when @ is diagonalised over

R and b~ = b~(Q) to be the number of negative entries.
(3) The signature of Q is defined by

o(@Q)=0b6"-b".

(4) The type of @ is defined as follows: Q has type I, or is even, if Q(z,x)

is always even; otherwise Q has type I, or is odd.

{5) If Q(z,z) > O for all z, and Q(z,x) =0 if and only if = =0, we say that
Q is positive definite; @ is negative definite if —} is positive definite; Q@

is definite if it is either positive definite or negative definite.
There is a basic algebraic fact about even definite forms, see [18] or [22].

Lemma 1.2 Suppose Q is an even definite symmetrie unimodular form over
Z; then o(Q) is divisible by &.

There is an even definite symmetric unimodular form over Z with signature

8: this is the form Ej defined by the following matrix

21000000
12100000
01210000
00121000
00012110
00001200
00001021
0000001 2/

The form Eg has rank 8 and signature 8. It cannot be diagonalised over the
integers, see for example [18, 19, 22|.
The second classical theorem about the intersection forms of 4-manifolds

is Rohlin’s theorem.
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Theorem 1.3 Let X be a smooth simply connected {-manifold; then o(Qx)
15 divistble by 16.

This is first proved in [20] see also [8]. Rohlin’s theorem shows that there
are genuine restrictions on the intersection forms of smooth 4-manifolds. For
example Eg cannot be the intersection form of a smooth simply connected
4-manifold. The significance of Rohlin's theorem for the classification of 4-
manifolds is discussed in Milnor’s paper [17]. In particular Milnor points out
that even though Rohlin’s theorem shows there is no smooth 4-manifold with
intersection form Eg there could possibly be a topological 4-manifold with
intersection form E,.

Before describing some of answers to the general realisation and classi-
fication proble ns let us discuss other classical invariants of smooth simply
connected 4-manifolds. Since we are now assuming the manifold is smooth
the other source of invariants of X is the tangent bundle T and, in particu-
lar, its characteristic classes. The tangent bundle has two basic characteristic

classes, the Stiefel-Whitney class
we € H¥} (X, Z/2)

and the Pontryagin class
m € HY(X;2).

These can be computed from Qx as follows.
Let us continue to write x for the intersection form on H?(X;Z/2),

cohomology module 2. Then the function
HYX:Z/2) = Z/2, z v Qx(z,z)
is linear and so, by the unimodularity of Q, it is given by
z — Qx(c,z) mod 2
for some ¢ € H*(X;Z/2). Then it is easy to check that

c =
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Note that this shows that X is spin, that is w, = 0, if and only if the inter-
section form Qx is even,

By applying the Hirzebruch signature theorem we deduce that
{py, [X]) = 3(b* - b7)

where {,} is the pairing between cohomology and homology and [X] € H*(X; Z)
is the fundamental class of the oriented 4-manifold X. Since H*(X;Z) is iso-
morphic to Z and the isomorphism is given by z +— (z,[X]} it follows that p;
is determined by the intersection form.

Thus we see that the classical invariants of X are all determined by the
intersection form and if we follow the analogy with the classification of man-
ifolds of dimension 5 or more it should now follow that the intersection form
of X essentially determines X. Indeed if we classify 4-manifolds up to home-
omorphism this is indeed true. The main theorem in the purely topological
study of simply connected 4-manifolds is the following result due to Freedman
[10].

Theorem 1.4

(1) Suppose X and ¥ are smooth 4-manifolds such that @x = Qy; then X

and Y are homeomorphic.

(2} Let Q be a symmetric unimodular form over Z; then there is a topological
4-mantfold X with @x = Q.

(3) Suppose X and Y are topological 4-manifolds with Qx = Qy = Q. [f
Q has type II then X and Y are homeomorphic. If Q@ has type [ then
there are precisely two topolegical manifolds, up to homeomorphism, with

intersection form Q.

In part (3) of Freedman’s theorem the two manifolds with the same in-
tersection form are distinguished by their Kirby-Siebenmann invariant; this is
an invariant k(X) € Z/2 and it vanishes if and only if X x $* has 2 smooth
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structure. In particular if X is smooth k(X) = 0 and we see the relation
between part (1) and part (3). This result completely settles the realisation
and classification questions for simply connected topological 4-manifolds up

to homeomorphism.

Let us now turn to smooth manifolds and, therefore, to Donaldson’s the-

orems. I will divide Donaldson’s work into three parts.

Definite forms. Donaldson proves the following theorem which gives very
dramatic restrictions on the possible definite forms which arise as the inter-

section forms of simply-connected smooth 4-manifolds.

Theorem 1.5 Suppose that X is a smooth simply connected 4-manifold such
that Qx is definite; then Qy is diagonal.

The original reference is [3] and the theorem is discussed, very carefully,
in [6]. It should he contrasted with Freedman’s theorem which tells us that,
given a symmetric unimodular form defined over Z, there always exists a
simply-connected topological 4-manifold with this intersection form. Don-
aldson’s theorem tells us that if the form is definite and not diagonal then
the manifold given by Freedman’s theorem cannot be smooth. The theory
of definite symmetric unimodular forms is a difficult part of classical number
theory, see for example [18] and [22] but Donaldson’s theorem tells us that
none of these forms, apart from the simple diagonal forms, can occur as the
intersection forms of smooth 4-manifolds.

One of the consequences of the combination of Donaldson’s theorem (1.5)
and Freedman’s theorem (1.4) is that there must exist a fake R* - this is a
smooth manifold which is homeomorphic to R* but not diffeomorphic to R*.
Two different ways of proving there exists a fake R* are described in [7] and
(13). It is proved in [11] that there are at least 3 fake R*'s. It is now known
that there are uncountable families of fake R*’s see [12], [24]. The existence

of fake R*’s is proved by an implicit argument - the only way to account for
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the fact that Freedman’s methods must break down in the smooth category
is that there is a fake R* — and there is no known way of constructing a fake
RY directly. .

Donaldson’s theorem proves, for example, that
nEy =Es@-- @ Ep

(where there are n-summands) cannot be the intersection form of a smooth
simply connected 4-manifold. Note that if n is odd then this also follows from
Rohlin's theorem.

Now let A be the K3 surface

K= {[20,21,22,23] H Z; +Z; +Z; +Z; 20} c CP?

where [0, 21, 22, 25| are the homogeneous coordinates of a point in 3-dimensienal
complex projective space CP3. Then K is a smooth 4-manifold; Milnor shows

in [17] that K is simply-connected and

_ _ 01 0 1 01
Qx = —Es & Esee(l O)e(l 0)@(1 0).

On the other hand we know from Donaldson’s theorem (1.5) that — Ey @ — F,
cannot be the intersection form of a smooth simply-connected 4-manifold. It
is natural to look for the dividing line between the non-existence results and

the intersection form of K. For this we need to study indefinite forms.

Indefinite forms. There iz a classification of indefinite symmetric unimod-
ular forms over Z given for example in (18, 22]. Such forms are classified by
their rank r = b* + b, signature ¢ = bt — b, and type. There are three
building blocks,

(1), H, Es.

The first of these three is the 1 x 1 matrix (1), the second is
01
=(1a)
and the third is the matrix Ey given above. Every indefinite form fits in to

one of three distinct families:
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(1) type I,
n(1) ® m(-1), n,m>1

where, r=n+m,c=n—m,b* =n, b~ =m;

(2) type I, ¢ <0
—nEs @ mH, n>0m>1

where, r = 8n +2m,0=-8n,bt =m,b” =8n+my

(3) typell, o > 0
nk; @ mH, nm>1

where, r =8n+2m, 0 =8n, b* =8n+m, b~ =m.

By —nEs; we mean the direct sum of n copies of —E5. Note that H = - H
over Z and so —H never occurs in this list. The assumptions on n and m
ensure that the forms are indefinite.

For our purposes the distinction between type I, 0 < 0 and type Il, 0 > 0
is one of orientation convention. It fits best with the natural orientations of
4-manifolds like the K3 surface K if we arrange conventions in the type Il case
so that o < 0.

Each of the type I forms is the intersection form of a smooth 4-manifold.
The intersection form of CP? with it usual orientation is just {1) and the in-
tersection form of 6?2, by which we mean CP? with the opposite orientation,
is (—1). Now by taking the connected sum of n copies of CP? with m copies
of CP’ we get intersection form n(1) ® m(~1).

We are left to deal with the type II forms. The case mH is easy to handle.
Let S be the product §2 x §? so that

Qs =H.

By taking the connected sum of m copies of § we can realise mH as the
intersection form of a smooth 4-manifold. The cases —nEz; @ mH are more

subtle however.
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Theorem 1.8 Suppose X is a simply-connected smooth {-manifold with even

indefinite intersection form; then

b* =1 = Qx=H
bt =2 — QX:HGBH

The original reference is [4] and the theorem is discussed in careful detail
in [8]. Thus it follows, by combining this theorem with Rohlin’s theorem, that
in the family of forms —nEs ® mH, n,m > 1 the minimal, in the obvious
sense, form with non-zero n which can occur as the intersection form of a

smooth simply-connected 4-manifold is
Qg- = *-2Ea @ 3F

Thus K is indecomposable and it is tempting to believe it is one of the basic
building blocks of smooth 4-manifolds in the sense of the following conjecture;

compare [9].

Conjecture 1.7 The only even indefinite unimodular forms defined over Z
which can be the tntersection forms of smooth simply-connecied 4-manifolds

are

PRy @ 9Qs.

If this conjecture is true then we get a complete answer to the realisation
question for smooth simply-connected 4-manifolds. There are four indecom-
posable pieces

s, Ccp?, TP, K

and every smooth 4-manifold is homeomorphic to a connected sum of these
indecomposable pieces. The only intersection forms which can occur are given

by direct sums of

QS: QCPQ! Q‘c?’s QK'
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It is a very pleasant exercise to use Freedman’s theorem (1.4) and the classi-
fication of indefinite forms to find relations amongst the 4-manifolds formed
by taking connected sums of the four indecomposable pieces. Now let us
turn our attention to the classification question for smooth simply-connected

4-manifolds.

Polsrnomial Invariants. The classification question for smooth 4-manifolds
is to classify smooth 4-manifolds up to diffeomorphism. We will see that it is
considerably more complicated than the classification up to homeomorphism
given by Freedman'’s theorem. Indeed one of the conclusions of Donaldson
theory is that in many cases there are an infinite number of smooth mani-
folds with a fixed intersection form. In view of Freedman’s theorem we can
express this by saying that in many cases there are an infinite number of
smooth manifolds within each homeomorphism class. To distinguish between
these smooth manifolds we need more invariants and these are provided by
Donaldson’s polynomial invariants.

These polynomial invariants are defined for any smooth, oriented, simply-
connected, 4-manifold X with #* odd and 8* > 3. The invariants are multi-

linear functions
O = B (X) : Ha(X3Z) x ... x Hy(X;Z) > Z

where there are
_ 36T +1)
2

factors Hy(X;Z}. They are defined for sufficiently large k. To say that they

d =4k

are invariants means that if f : X — Y is an orientation preserving diffeomor-

phism and

ot Ho( X, Z) — Ho(Y;Z)

is the induced isomorphism on homology, then

O (Y)(ful21)s - oy fu{24)) = Be(X) (21, s 2a)-
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Theorem 1.8 Suppose that X = X)#X, is a smooth oriented connected
sum where 8 (X)), 0% (X2) > 0 end b*(X) = bH(X)) + bH(X)) is odd; then
&, (X) =0 for all sufficiently large k.’

Theorem 1.9 If Z is an algebraic surface with b* odd and b+ > 3; then, for
sufficently large k, ®x(Z) 5 non-zero.

The original reference is [5] and the construction of the polynomial invari-
ants and the proof of these theorems is very carefully discussed in [6].

Here is an example. Let S, be a2 smooth algebraic surface in CP® of degree
d. So 54 is the zero set of a homogeneous polynomial in 4 variables of degree
d. Then by repeating the method Milnor used to compute the intersection

form of the K3 surface X we deduce

b =ay=1i(d-1){d-2){d-3)
b~ =4 =3(d—1)(2d — 4d + 3).

If d is odd it follows that the intersection form of Sz has type I. Thus if d is
large enough it follows that the form is indefinite and type I and so, by the

classification of such forms, it must be isomorphic to
aq(1) ® Ba(-1).

By using the Lefshetz Hyperplane Theorem it follows that S is simply con-
nected and so by Freedman’s Theorem (1.4), it follows that S; is homeomor-
phic to a connected sum of a4 copies of CP? and fy copies of CP’. By
Theorem (1.8}, provided d is large enough, all the polynomial invariants of
this connected sum vanish. Since Sy is an algebraic surface, Theorem (1.9),
shows the polynomial invariants of 5; do not all vanish. Therefore it follows
that S4 cannot be diffeomorphic to a connected sum of «y copies of CP? and
B4 copies of CP’. This shows that, provided d is large enough, there are at

least two smooth manifolds with intersection form

Ccd(].) B ﬁd(‘-].).
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In fact it can be shown that, up to diffeomorphism, there are an infinite
number of smooth manifolds homeomeorphic to a connected sum of one copy
of CP? and nine copies of CP". This result is discussed in [6] which contains

the references to the original papers.

2. Gauge theory

The theme running through Donaldson’s work is to use the spaces of solutions
of the Yang-Mills equations to construct invariants of the underlying smooth
4-manifold X. From now on we will assume that X is a smooth simply-
connected 4-manifold equipped with 2 Riemannian metric.

Let P be a principal SU(2) bundle over X. Such principal bundles are
classified by their Chern class ¢3(P) € H*(X). In this section HP will denote
integral homology. Since X is closed and oriented, H*(X) = Z so we can

identify the Chern class ¢;(P) with an integer. Thus we write
k = k(P) = (ez(P), [X])

where [X] € H,(X) is the fundamental class. Now let P, be a bundle with
Chern class k. Let A be a connection on P,. Thus locally, on an open set U

in X on which the bundle is trivialised, such a connection is given by
Ay = A(z)dzy + Az(z)dzz + As(z)dzs + Al(z)dzy

where the A; are functions on U/ which take their values in su(2), the Lie
algebra of SU(2). The Lie algebra su{2) is the space of skew-adjoint 2 x 2
complex matrices with trace zero and so the A; are matrix valued functions.

OnUnNV, Ay and Ay are related by
Ay = g ' Ayg + g Mdg

where ¢ : U NV — SU(2) is the transition function of the bundle P,. To
make sense of this equation remember that both g and the A, are matrix

valued functions.
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Let A, be the space of connections on P, and let G, be the group of
automorphisms of Py which cover the identity on the base space X. This
group Gy is the group of gauge transformations of P; and it acts on A, by

pull-back of connections
G x A= A, (9, 4) = ¢'(A)
Locally this is given by
g'(A) =g 'Ag+g 'dg

where, since we are working locally, the gauge transformation ¢ becomes a
function with values in SU(2).
Let A be a connection on P, and let T 4 be the isotropy group of the action
of G on A,
Ta={g€8i:9'(4) = A).
Then 'y always contains the constant gauge transformations +1. Recall that

a connection on P is irreducible if and only if
FA = {ﬂ:l}

If A is reducible then T4 is isomorphic to a circle. We would like to form

the quotient space of the action of §, on A, but the presence of the reducible

connections causes difficulties. There are two ways around this problem.
The first is to consider the space A} of irreducible connections on F; and

then form the quotient
By = A/ Gk
The action has local slices and the projection
A, — B,

is a locally trivial principal budle with group

G = G/ {£1}.
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The second is to work instead with the subgroup &7 of gauge transformations
which are the identity at a chosen base point in X. Now the group §? acts

freely and the action has local slices and so we can form the quotient
B = A/ G}.

This time the projection
qu - BE

is a locally trivial principle bundle with group G§.

Now we introduce the self-duality equations and the Yang-Mills mod-
uli space. Given a connection A on P, we can form the curvature F, €
0%(X;su(P)). Here 0%(X;su(Py)) is the space of 2-forms on X with values in
the bundle su(P,) defined by

su(Py) = Pe Xsu(2) ou(2)

where 5U(2) acts on au(2) by the adjoint representation. Locally the curvature
is given by the formula
Fa=dA+ AN A,

In this local formula remember that A is a matrix of 1-forms so dA is the
matrix of 2-forms obtained by applying the exterior derivative d to each of the
entries of A, and AA A is defined by the combination of matrix multiplication
and the exterior product of forms.

Now suppose that X has a metric. Then the metric and the orientation

define the Hodge star operator
+ 3 (X5 0m(Py)) — QX 0u(Fy)).
On R* with its usual metric and orientation * is given by
*{dz; Adz;) = 2dzy, A dy

where {1,7,k.l} = {1,2,3,4} and the sign is +1 if (1,2,3,4) — (i,5,k,1) is

an even permutation and —1 if it is odd. This operator is extended to matrix
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valued forms by applying it to each entry of the matrix. The Yang-Mills

equations are as follows.

The self-duality equations.

*FA:FA

The anti-self-duality equations.
*FA = _FA

To understand these equations better it is a very good exercise work them
out explicit]y in terms of the above local description of connections, curvature,
and the Hodge star operator. They are first order non-linear equations for the
connection A. It is straightforward to check that if A satisfies one of these
equations then so does g"(A) where g € §,. Self-duality or anti-self-duality
is a matter of orientation conventions. Here 1 will follow Donaldson and
concentrate on the ASD (anti-self-dual) equations and refer to a connection
whose curvature satisfies the ASD equations as an ASD connection. Now we
define the moduli space of ASD connections

ASD connections

i

We use the obvious notation M; for the moduli space of irreducible ASD

Mk=

connections and M} for the quotient of the space of ASD connections by the

group G2.

The structure of the modull spaces. In general there are singularities
in My corresponding to reducible ASD connections. However it is possible to
analyse the local structure of M, in a neighbourhood of these singularities,
see [6, 7|, and [13]. There are two important special cases where there are no
reducible: ASD connections. For the proof of the following theorem see [6] or
[5] and also |7, 13, 19].

Theorem 2.1 Suppose that either
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(1) the intersection form Qx is indefinite, or
(2) @x is even and k = 1.

Then for a generic metrie on X, there are no reducible ASD connections on

X and My is @ smooth manifold of dimengion

8k — 3(1 + b*).

This gives us a complete description of the local structure of M, so we
now look at its global structure. The moduli space M; is not compact so we
should analyse what happens as we “go off to infinity” in M,. To deal with

this precisely, following (6], introduce the following definition.

Deflnition 2.2 An ideal ASD connection with Chern number & consists of
a pair

([Al: {z1,...,z})

where [4] € M;_; and {z;,...,2} is an unordered I-tuple of points in X. The

curvature of the ideal connection ([A]; {z,,...,%}) is the measure

!
|Fal? + 87° E s,

i=1

where |F4|? is the pointwise norm of the curvature Fy.

Here |F4|* + 87% T 6, is the measure which, for any continuous function f

on X, gives the integral

1
[ S1FaPd + 877 3 £z,

i=1
where dy is the measure on X defined by the metric. Note that we allow the
possibility that { = 0, in which case we have a genuine ASD connection. We
also allow the possibility { = k, in which case we have a flat connection on the

product bundle on X and a set of k points in X; since X is simply connected
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it must follow that the flat connection is the trivial connection and we simply

identify the ideal ASD connection with the set of points {z1,...,2z}.

Definition 2.3 A sequence of ASD connections [A,] converges weakly to the
ideal ASD connection ([A];{z,...,z}) if

{1) The sequence |Fa,|? converges to |Fa|* + 87% I 6;, as measures.

(2) There are bundle isomorphisms

Po  Bilxy = Pilxa

where Xo = X\{zy,..., &1}, such that the sequence of cornections p, A,

converges to A in the C* topology on compact sets.

Here part (1) means that for each continuous function f on X

!
[ A1Fa b = [ FIFAPd+ 8103 F ().

i=1

Now we have the following version of Uhlenbeck’s weak compactness theorem.

Theorem 2.4 Let [A,] be o sequence of ASD connections. Then there is ¢
subsequence which converges weakly to an tdeal ASD connection.

The proof of this theorem is given in each of the main references. There is
a very simple analogy which may help to understand ideal ASD connections
and the weak compactness theorem. Let Rat, be the space of meromorphic
functions of degree k on the Riemann sphere 5% = C U oo; equivalently the
space of holomorphic maps §% — 5%, Then such a function is completely de-
termined, up to a constant, by its zeroes {zy,..., 2} and its poles {p1, ..., pe}.
We can examine the behaviour of a sequence of sut_:h functions f, where the.
poles {p1,...,px} Temain constant, one zero, say 2z;{a), converges to one of
the poles, say p,, and the other zeroes {z;,...,2} remain constant. Then

this sequence does not converge to an element of Rat,; rather it converges
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-1
[+1]

weakly, in exactly the sense described above, to the “ideal rational function”

(f;{p1}) where the zeroes and poles of f are

{Zg,...,Zk}, {P!v"'rpk}'

Here the role of the curvature is played by the energy density |df|.

. The weak compactness theorem is used in many places in the theory. One
immediate application is that it gives a compactification of the moduli spaces
My as follows, Define SP'(X), the I-th symmetric product of X, to be the
space

SP(X) = X'/%,
where X! is the {-fold Cartesian product of X and the symmetric group I acts
on X' by permuting factors. Now define the space of ideal ASD connections
to be .
IMy = My x SP(X)

i=0
topologised so that sequences converge if and only if they converge weakly in

the sense of the above definition. The weak compactness theorem tells us that
the space I M, is compact. Now define the compactified moduli space M, to
be the closure of M; in I M,.

3. Connections, mapping spaces, and cohomology

Now we start to analyse the relation between the cohomology of the Yang-Mills
moduli space My and the cohomology of the space B; of all connections modulo
gauge equivalence. The first step in this process is to understand the homotopy

type of the space BY of connections modulo pointed gauge transformations.
Theorem 3.1 There is a homotopy equivalence

By ~ Map)(X, HP>).

In the statement of the lemma HP* is infinite dimensional quaternionic

projective space and Mapj means the space of base point preserving maps
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f:+ X — HP* such that the induced homomorphism
fot Hy(X)=2Z - H{HP®) = Z

is multiplication by &. For a proof see [1].

There is a natural principal SU(2)-bundle
P — 8

defined as follows. The group GP acts freely on Ajy; it also acts on P, since,
by definition it is a group of automorphisms of F.. Thus we may form the
quotient

P = Ax Xg-i- Fy.

Since Py is a principal SU(2) bundle over X it follows that P, is a principal
S5U(2) bundle over
ﬂk Xgl; X = B.E x X

where the last equality follows from the fact that G acts trivially on X.
In terms of mapping spaces we can describe this bundle P as follows.

There is a natural evaluation map
Map}(X,HP®) x X — HP*®

and 5 is the bundle over B x X =~ Map,(X,HP*) x X induced from the
universal principal SU(2) bundle over HP* .by this map.
Now let
¢ = c{Pe) € HY(8] x X)

be the second Chern class of P,. We can use the Kiinneth theorem (together

with our standing hypotheses on X) to decompose H*(8{ x X} as
HO(B) @ H'(X) @ H'(B)) ® H*(X) & H*(8)) ® H(X).
With respect to this decomposition write

e*? € H*(89) ® H(X)
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for the appropriate component of c. Now we use ¢*? to define a homomorphism
po 2 Ho(X) — H*(BY)
in the natural way. There is a pairing
HY(X)oHy(X) - Z
and this gives a pairing
H*(8]) ® HY(X) ® Hy(X) — H*(8)

which we denote by {,}. Then yuq is defined by

In fact this homomorphism pp descends to a homomorphism
u: Hy(X) — HY(B;)

The relation between By and 8; is as follows. By definition B, is a subspace

of B and 8, is the total space of a principal SO(3) bundle over B,
50(3) — 8;° = B;.

By arguing directly with this bundle it is possible to prove that there is a
commutative diagram

Hy(X) -+~ H(8D)
al l

H(8) T HY(8),
compare [6].
Now we can compose the maps p and gy with the homoemorphism of co-
homology induced by the inclusion of the moduli spaces to get corresponding

homomorphisms

Mot Ha(X) — H*(M]), p: Hy(X) — HY(My).
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These are very important ingredients in the theory.

To simplify matters let us assume for the rest of this section that the
hypotheses of Theorem (2.1) are sat.isﬁed and we have chosen a generic metric
on X. Thus there are no reducible ASD connections, My = M}, and M; is a
smooth manifold. Since our main objective is to discuss the proof of Theorem
(1.6) there is no loss in this assumption.

Now we look for geometric representatives for the cohomology classes
ulv) € H¥(M:). Recall that, geometrically, p-dimensional closed submani-
folds of a manifold A define p-dimensional homology classes in M. On the
other hand, codimension ¢ submanifolds, which must have no boundary but
need not be compact, define ¢-dimensional cohomology classes in M. Each
2 dimensional homology class u in the 4-manifold X can be represented by
a 2-dimensional surface I, C X and we now describe how to represent the
cohomology class u(u) € H?*(M;) by a codimension 2 submanifold V, C M;
and how this submanifold V, is related to £,. The following result is one of

the main techniques for computing with the map u.

Theorem 3.2 Let © C X be a compact orientable surface with no boundary
and let v € Ha(X) be the homology class represented by $. Let Ny be a
sufficiently small tubular neighbourhood of T. Then, for k > 1, we can find a

smooth codimension 2 submanifold Vsm C My with the following properties:

(1) The submanifold Vz(k] C My represents the cohomology class p(u) €
H¥{( My).

(2) Given surfaces L.,...,I, C X in general position, the submanifolds

Vz(f) C My are in general position.

(3) Let [A,] be a sequence of connections in V¥ which converges to an ideal
connection ([Al;{z1,...,m}). Then either one of the points x; must lie
in the tubular neighbourhood Ny or the connection [A| lies in VE(H) C
Mt
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This result is proved in [4] and [6]. Note how it relates the homomorphism
# to Uhlenbeck’s weak compactness theoremn, Theorem (2.4). We now go on
to outline the proof of Theorem (1.6) using Theorem (3.2) to do computations

with the homomorphism .

4. Even intersection forms

Let X be a smooth, simply connected 4-manifold with even intersection form

Qx. We now describe how to prove the following results.
(4.1) If Qx is definite then H,{X) = 0.

(4.2) If Qx is indefinite and 6™ = 1; then
01
Qx = ( 1 0 ) \
(4.3) If Qx is indefinite and & = 2; then

01 01
=(10)e(10)
Notice how (4.1) is implied by Donaldson’s theorem (1.5) on definite inter-
section forms; the form is definite so by (1.5) it must be diagonal, however it

is even and there are no non-trivial even diagonal forms. Note also that (4.2)

and (4.3) are restatements of Theorem {1.6).

Proof of (4.1) Our assumptions are that Qyx is definite and even. By chang-
ing the orientation of X if necessary we can assume that the intersection form
of X is negative definite and so b* = 0. Then, for a generic metric on X, there
are no irreducible ASD connections and so the moduli space M; is a smooth
5-dimensional manifold.

Pick two surfaces £;,E; € X in general position which represent homology
classes uy,u; & Hy(X). Pick suitably small tubular neighbourhoods IV; of the

surfaces Z;. Now by Theorem (3.2) we can find codimension 2 submanifolds
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V1,V € M; which represent the classes pu(u,),pu{uz) € H?*(M,) and are in
general position. Let
L=VinV,

so, since V; and V; are both 3-dimensional submanifolds of a 5-dimensional
manifold, it follows that L has dimension 1. Now we count the number of
ends of L.

Recall the definition of an end of a topological space Y. Intuitively the
ends of ¥ are the components of ¥ \ C where C is a sufficiently large compact
set. The precise definition is as follows. If C, D are compact sets with P ¢ C
we get an inclusion

Y\CcY\D

and this inclusion induces a map
Y\C —Y\D.

The number of ends of ¥ is the inverse limit

@WO[Y \C)

and an end of ¥ is a component of the topological space

lim¥ \ C.

If we take a sequence [A,| of connectionsin L which converges to an ideal
connection then, since & = 1, the only possibility is that it converges to the
ideal connection given by the trivial connection on the product bundle and &
single point in X. In view of part (3} of Theorem (3.2) this point must lie in

Ny Nz, Now a direct construction proves the following lemma.
Lemma 4.4 There is precisely one end of L for each component of Nyn N;.

To prove this lemma, more generally to analyse the ends of the moduli
spaces My, it is necessary to use the glueing construction due to Taubes. We

will not go into this construction in detail, see Taubes’s paper [23] and the
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basic references [6, 7], and (13] for details. The proof of the above Lemma
(4.4) is given in [4] and [6)].

Let us now complete the proof of {4.1). The surfaces £,,L; C X are in
general position so they meet in a finite number of points. Since &; represents
u; € H2(X) it follows that

Qx(ui,12) = |, NE;] med 2

where |Z; N I,/ is the number of points in the finite set £y N T,. The neigh-
bourhoods N; and N; can be chosen small enough so that the number of
components of N; N NV, is equal to the number of points of intersection of
L, and ;. The number of components of Ny N N, is equal to the number
of ends of L and since L is 1-dimensional it must have an even number of
ends. Putting these facts together leads to the following conclusion: for all
up, up € H2(X)
@x(uj,u3) =0 mod 2.

Notice that the assumption is that Qx is even, that is
Qx(u,u) = 0 mod 2, for all v € H*(X),
and the conclusion is that
Qx(u1,2) =0 mod 2, for all uy,u; € H3(X).

Now suppose that H3(X) # 0 and pick a non-zero v € Hz(X). Then since
@x is unimodular there must exist another element v € H:(X) such that
@x(u,v) = 1. But we have just established that Qx(u,v) is even and this
contradiction shows that H:(X)} = 0.

Notice how the above argument contains three main steps:

(1) Use the given information about Qx to determine the structure of the

moduli space.

(2) Now look at the intersection L of codimension 2 submanifolds of the form

Vs and count the number of ends of L geometrically.
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(3) Finally count the number of ends of L algebraically.

There is a certain amount of fine tuning involved in choosing which moduli
space to use and the number of codimension 2 submanifolds. We now outline

how to prove (4.2) by repeating the above steps.

Proof of (4.2) We are now assuming that Qx is even and indefinite, and
b* = 1. In this case we use M,, which is a smooth manifold of dimension
10, and consider the intersections of codimension 2 submanifolds Vi. The
contradiction comes from looking at four surfaces £y, Z;, 3, B4 € X in general
position and the corresponding codimension 2 submanifolds Vi, V3, Va, Vy, € M,

in general position. So we analyse the ends of
L=V1DV2I“WV3|"|V§.

Let [A,| be a sequence of connections in L which converges to an ideal con-
nection. Since k = 2 there are two possibilities to consider:

(1) The limit ideal ASD connection is of the form ([A]; {z}) with [4] € M,
and r € X.

(2) The limit is the product connection on the trivial bundle and a set two
points z,y € X,

We now use part (3) of Theorem (3.2) to show that the first case cannot
happen. Since the surfaces E; are in general position no three of thém intersect
and we can assume that the tubular neighbourhoods N; are chosen sufficiently
small so that no three of the V; intersect. Thus the point z can lie in at most
two of the N;. For convenience let us suppose that = does not lie in N, nor in
Ng. Now part (3) Theorem (3.2) shows that, using the obvious notation, the

connection [A] must lie in
Vsll) A V‘(l) c M,

But now we count dimensions; the dimension of M; is 2 and se Vam and

V" are codimension 2 submanifolds of a 2-dimensional manifold which are in
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general position. Therefore
VJ(I) A V‘(l) =0

and so the first possibility cannot happen.

Thus the sequence [A,] must converge to a pair of points z,y € X, Where
can the points z,y lie? Since the surfaces are in general position no three
of them intersect. We can suppose the neighbourhoods #; are chosen small
enough so that no three of them intersect and, for i # j, the number of
components of N; N N, is the same as the number of points of intersection of
L;and T;. In this case Theorem (3.2) shows that each of the N; must contain
one of the points and we have just shown that the intersection of any three of
the N; must be empty. We can assume, by interchanging = and y if necessary,
that z € N; and then one of the following possibilities must hold:

(Mze NyNnNy, y e Na N Ny

(2)ze N\N Ny, ye Nan N,

(3)ze NyNN,, ye N2 O N;.

Note that from the choice of the neighbourhoods N; it follows that there

are exactly
|21 N Zg| |E5 N Zyf + [Z1 N Zgf [E2 N Dy + 2y N Iy [Z2 0 g

such possibilities. Next we must prove that each of these possibilities does in
fact occur and so we must analyse the ends of L geometrically. The following
lemma is the analogue of Lemma (4.4) in the present situation and the proof

is very similar; see [6].

Lemma 4.5 There is precisely one end of L for each (unordered) pair {C, D}
where C is a component of N; " N;, I} {s a component of N, N Ny, and
{i,7,k,1} = {1,2,3,4}. Furthermore there is o compact set ){ C L and a
homeomorphism

LNK = (0,1) x [T Aco
where the disjoint union 1s taken over all {unordered) pairs {C, D} and each

Acp is a compact I-manifold.
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Now we need a result, proved in [6], which allows us to compute the number

of ends of L homologically.
Lemma 4.8 There is a cohomology class wy; € H'(My; 2/2) such that
{(w, [Acp]) =1

where Ac p is as in Lemma (4.5) and [Ac p| 15 the homology class defined by

the compact 1-manifold Acp.

Now using Lemma (4.5) we can truncate the space L by removing open
cylinders around the ends Acp to produce a compact 2-mamnifold N with

boundary such that
aN = H Acp.

Thus our geometric analysis shows two things:

(1) The number of ends of L is equal, modulo 2, to

Qux (11, u2) Qx(usy 1) + Qx{ur, u3)Qux (2, us) + Qx (ur, g} Qx(ti2, us)

where u; € H;(X) is the homology class represented by the surface I; C X.
(2) There is a cohomology class wy € H'(My; Z/2) such that

{w,8N) = {wy,[Acp)}

and thus {w;, 8N} is equal, modula 2, to the number of ends of L.
The first of these follows from Lemma (4.5) and the second from Lemma
(4.6). But, necessarily,
{w;,8N} =0

and so we conclude that
Qux{w1,u2)Qx (uz, ua) +Qux (1, us) Qux (2, ug) +Qx (U1, 4e) @x (02, us) = 0 mod 2.

Now suppose that Qy has rank r > 2. Qur hypothesis is that Qx is

indefinite and even and it follows that we can find elements Uy, Uy, Us, Uy €
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Hj(X) such that
Qx(u1,uz) = Qx(uz u,) =1 mod 2
Q«\'(ul! "'3] = QX("'hud = Qx(ul,tu} = Qx(uz,u3) =0 mod 2

One (rather crude) way to see this is to use the classification of even indefinite
forms. Another, more direct, way is to work modulo 2 and prove that any

non-singular symmetric bilinear form Q over Z/2 must have even rank, say

2r, over Z /2 and we can choose a basis «;,...,ar, f1,...,5 such that
Q[aisﬁjl = 6;
Q(Cﬁ,&j] =0
Q(6:,8;) =0

where 6! is the Kronecker &.
Thus if the rank of Qx is different from 2 we have a contradiction and,

since ) x is even and indefinite it follows that
01
Qx = ( 10 ) .
This proves the result in the case 4% = 1.

Notice how the basic argument shows that if we had used five surfaces

then, using obvious notation,
ViaVanVanV,nv,

has no ends. Therefore this intersection is a compact 0-dimensional submani-
fold of M; and so consists of a finite number of points. This fact leads to the
definition of the Donaldson polynomials.

The proof of {4.3) is a similar; b* = 2 and we argue with the & = 3 moduli
space and six codimension 2 submanifolds Vy. If we now try the argument
in the case &% = 3 with the & = 4 moduli space and eight codimension
2 submanifolds Vg the argument breaks down. In this case, if we take a
sequence of connections [A,] in L, the intersection of the eight codimension 2
submanifolds, which converges to an ideal ASD connection we can no longer

conclude that the only possibility is that the limiting ideal ASD connection
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consists of four points in X and the trivial flat connection on the product
bundle. Of course the argument must break down because of the existence of
the K3 surface K described in §1.

Donaldson points out in [4] that even though the argument breaks down
in the case b = 3 and we use eight codimension 2 submanifolds of M, it
is still possible to extract some information form this case. This suggestion
is followed up by Ruan, [21], who shows that the argument gives a relation

between Donaldson polynomials modulo 2.

5 The cohomology of mapping spaces

In Donaldson’s use of gauge theory to prove theorems about 4-manifolds the
map p : Ha{X) — H*(B;) plays 2 critical role. In the proof of Theorem (1.6}
outlined in the previous section we have seen the main techniques Donaldson
uses to calculate with this map. Motivated by this we now begin to study this
map and the spaces involved in more detail using techniques from algebraic
topology. From the point of view of algebraic topology it is more convenient

to have base point conditions and so we study the spaces
B = Mapl(X,HP®)
and the moduli spaces
M} C 8] ~ Map{(X,HP™).
For the rest of this section we use the notation
Map®(Y) = Map®(Y, HP™)

for the based mapping space.

To study Map®(X) recall that up to homotopy
X=Wuy; el
Here W is X with an open disc removed and therefore

W~ \/8?
1
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where r = rank H,(X; Z). The homotopy class of the attaching map
[:S3 W82
1

is determined by the following procedure. Pick a basis o), ..., &, for H;(X;Z);
this determines a homotopy equivalence

a: W —\fs%
1

Now recall that 73(V]5?) is the free abelian group generated by homotopy

classes

1A

s 1 ;Sr

Wy, 1<i<i<r.

1A

To describe these homotopy classes explicitly let ¢ : S — V] S? be the
inclusion of the i-th factor and let n : $% — 52 be the Hopf map; then

7=t on, wii = (4, 4]

where [,| is the Whitehead product. Now using the chosen basis ay,..., 0,

for Hy(X;Z) we can represent the intersection form Qx of X by a matrix of

integers
(0i5) = (Qx (e, a;))
and then

r
f = Z Qgith + z @il .
=1

1<igj<r
Note how we have essentially proved the Theorem (1.1).

Now consider the cofibration sequence
5 —W X 51
Applying Map® to this sequence gives a fibration sequence

Map®(8*%) — Map®(X) — Map®(W) — Map®(5*);
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The term fibration sequence means that any three consecutive maps form a
fibration. Now
Map®(8?) ~ nN§°

and using the homotopy equivalence o : W — V1 52 we get a map
a : Map®(X) — Map®(W) =~ [] 5%
1
The cohomology of 152 is well-known;

Z
0.

H™(NS* Z)
H2n+l(ns3= z]

Write a, for the generator of H?"{115%, Z) and then products are given by

(n + m)!

Tl = '
n!m!

Gnt-m-

Thus H*(1253%; Z) is a divided power algebra. More generally
H ([[ 0s% 2) = T(H*( X, Z))
1

is the divided power algebra generated by H*(X; Z) and we identifly H%(X;Z)
with a subspace of H*(J] 5% Z) using this isomorphism. Now we get a ho-

momorphism
H(X;7) ¢ N[ 08% 2) =+ H* (Map®(X); Z).
1
It is straighforward to check that the composite
Hy(X;2Z) = H¥X; Z) — H*(Map®(X); Z)

is u® where the first isomorphism is given by Poincaré duality.
The cohomology of Map®(X) has been studied first by Masbaum |15 and
later by Mielke [16] using standard spectral sequences. Masbaum uses the

Serre spectral sequence of the fibration

Map®(S*) — Map(X) — Map’(¥)
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and Mielke studies the Eilenberg-Moore spectral sequence of the fibration
Map®(X) — Map®(W) — Map®(5?).

Masbaum gets results for any X and cohomology with coefficients in Z/p where
p is an odd prime. In the case of Z/2-cohomology he gets results provided
the intersection form of X is even. By using the Eilenberg-Moore spectral
sequence Mielke is able to complete the computations of the cohomology of
Map®(X) by computing Z/2-cohomology in the case where the intersection
form of X is odd. For the precise statements of the general results see [15],
[18].

The case which occurs in §4 is when X is a spin manifold and cohomology

has Z/2-coefficients. In this case the Serre spectral sequence of the fibration
Map®(5) — Map?(X) — Map®(W) ~ ]_f_[ﬂ.‘j'3
1
collapses at the E; term and there is an isomorphism
H (Map®(X);2/2) = H*(1°5%Z/2) ® ® H (NS% Z/2).
i=1

Now suppose X is a smooth spin manifold and let M be the moduli space

of ASD connections on X. Instead of compactifying M as in §4 we form the

truncated moduli space Nf given by removing a small neighbourhood of the

ends of MJ. Since it is a subspace of BY we get a map
iet NP — Map®(X).

using the equivalence of B8 with the mapping space. The truncated mod-
uli space N is a smooth manifold with boundary and we can consider the
homology class

i.[@M] € H (Map(X)).

This homology class is zero since it is obviously a boundary. However in
favourable circumstances we can explicitly compute this homology class, or at

least enough of it, to get non-trivial conclusions from the fact that it is zero.
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A systematic homotopy theoretic analysis of the homology classes i.[8N}) is
work in progress and more details will be given in future publications. For the
moment however we can at least rephfase the the results of the computations
of the previous section in these terms.

First consider the case where X is spin and has definite intersection form.
Then N{ has dimension 8 and its boundary has dimension 7. Then it can be
proved that there is a class ya.e H3(1%5% Z/2) such that

(i1 (yag122),dN}) = @x(a1,¢2) mod 2
for ay,as € H*(X;Z/2). Here we are using the above isomorphism

H*(Map®(X); 2/2) = H*(0°5%2/2) @ @ H' (5%, 2/2).

i=1

and the identifcation of H%(X;Z/2) with a subspace of
HY([[ns%2/2) = @ H' (NS 2/2).

Notice how the fact that [@ N0] = 0 shows that is must follow that H,(X;Z/2) =
0.

Now consider the case where X is spin, its intersection form is indefinite,
and b* = 1. In this case N has dimension 13 and its boundary has dimension
12. This time we can find a 4-dimensional class vy € H*(N1®5%; Z/2) such that

(i1 (y1a1050504), 3NT) = le(agra‘h%s“d mod 2
where a1, a3, a3,a, € H*(X;2/2). In this formula
Q¥ (ar, a3,85,00) = Qx(a182)Q@x(asa4) + Qx (01, 25) Qx(az,04)
+ Qxl(ey,24)Qx{az,as).

More generally it is possible to push these computations to get some informa-
tion in the case where X is spin, its intersection form is indefinite, 6* = k-1
and we consider the truncated moduli space Ny which has dimension 5k + 3.
In this case there is a class yz.3 € H*+3(0%5%,Z/2) such that, modulo 2

(x(Vrs30y 1 azk), AN = (Q;‘}(al,az,as,a‘;){al, -+, 6z¢), [ X]}+ other terms.
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Here QE-;} is the obvious extension of Qf,?}. This is of course related to the fact
that the argument outlined in §4 allows us to calculate the number of ends of
the intersection I of 2k codimension 2 submanifolds in M, which correspond
to sequences of connections converging to an ideal ASD connection of the form
([A],{=1,...,z2x}), where A is the product connection on the trivial bundle.
In the cases k = 1,2,3 these are the only ends of L and there are no other
terms. In the general case there must be other ends and correspondingly there
must be other terms. In [21] Ruan shows how these extra terms can be used to
find relations modulo 2 between Donaldson polynomials. In general it seems
that the extra terms will involve Q‘({;) for § < k& and Donaldson polynomials
but the full formula is not known.

Since we are discussing the relation between the homology of the space
Map®(X) and the homology of the moduli space it is worth mentioning the
conjecture from [1] which has come to be known as the Atiyah-Jones conjec-

ture,
Conjecture, For any closed 4-manifold X the map
ik s M) — Mapl(X)
tnduces an isomorphism in homology
(8r)- « Ho(My; Z) — Ho(Map}(X); Z)
provided g < q(k) where g(k) — o0 as k — co.

A limiting form of this conjecture is proved in [24]. The full conjecture has
been recently proved by Boyer, Hurtubise, Mann, and Milgram [2] in the case
where X = S%, There is some hope of extending their methods to 4-manifolds
like 5% x T, where T, is 2 Riemann surface of genus g; more generally to ruled
algebraic surfaces. It is clear that these results on the homology of mapping

spaces have some genuine relevance to this conjecture,
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