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INSTANTONS, RATIONAL MAPS, AND
HARMONIC MAPS

Martin. A. Guest

In these lectures I shall discuss the space Hol{S?, F;) of holomorphic maps
from the Riemann sphere 5% to the space Fi, where F is a certain compact
(singular) projective variety. Such holomorphic maps are automatically “ra-
tional”. The spaces Fj are subvarieties of the infinite dimensional manifold
U, the loop group of the unitary group. In fact they form a filtration of
the space of algebraic loops, the “Mitchell-Segal filtration”. Because of this,
it turns out that Hol($%, Fy) plays a role in problems of gauge theory and
topology.

Lecture I is a brief survey of the problems in Yang-Mills theory and the
theory of harmonic maps which motivate the discussion of Hol(S?, Fy). Lec-
ture II gives some basic properties of F, and Hol(S%, F.). Applications to
instantons are presented in Lecture ITI, and to harmonic maps in Lecture IV.

In Lecture III I shall show that the space Hol($Z%, F}) is a “good approxi-
mation” to the space Map(5?, F;) of continuous maps from $? to F, (at least
in the case n = 2, and for basepoint preserving maps of a fixed degree). By
a correspondence of M. F. Atiyah and S. K. Donaldson, this result may be
translated into an approximation theorem for instantons, and in fact re-proves
and extends an earlier result of M. F. Atiyah and J. D. S. Jones.

In lecture IV I shall discuss harmonic maps from 5% to U,, which, via a
formulation of K. Uhlenbeck and G. Segal, correspond to certain holomorphic
maps from 52 to F,. I shall show how the natural action of the (complex) loop
group on such harmonic maps agrees with an apparently more complicated
action, the “dressing action”, which arose earlier from the theory of integrable

systems, Combining this with some ideas from elementary Morse Theory, one
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can obtain nontrivial deformations of harmonic maps. I shall illustrate this
by giving a simple proof that the space of harmonic maps from 5% to 5t of
fixed energy is a path connected space.

In describing the spaces F, I am reporting on work of S. Mitchell, A.
Pressley, W, Richter, and G. Segal. My interest in Hol(S2, F;) owes much
to discussions with A. Pressley. The results on the dressing action in Lecture
IV are joint work with Y. Ohnita, and the idea of using the dressing action
to obtain results on the connectivity of spaces of harmonic maps came from
discussions with N. Ejiri and M. Kotani. This work was supported by the
Japan Society for the Promotion of Science and the U.S, National Science
Foundation. I am very grateful to the faculty, staff, and students of Tokyo
Metropolitan University for their kind assistance during the academic year
1990/1991.

Lecture I: Instantons, rational maps, and harmonic maps

§1.1 The moduli epace of instantons.

Let P — 5% be a principal G-bundle, with co(P) = —d, where G is a
compact simple Lie group and d is a nonnegative integer. Let 44 be the space
of (smooth) connections V in P — S* The Yang-Mills functional is defined
by

YM:4; >R, YM(V)= fs IF(9)?

where F(V) is the curvature of V. The critica) points of Y M (“Yang-Mills

connections”) are the solutions of the equation
d&"F(V) =0. (1)

It is not easy to find solutions to this equation. However, the critical points
of Y'M which are absolute minima (“Yang-Mills instantons”) turn out to be

the solutions of the simpler equation

+ F(V) = F(9). (2)
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Let 1; be the subset of A; consisting of solutions to (2). The “based gauge
group” § is the group of all automorphisms of P — S* which are the identity
over oo € S4. This acts freely on A; and on Iy, and the submanifold M, =
Isf§ of Cy = Ay/G is called the moduli space of (framed) G-instantons of
charge d over §4,

~ All these concepts extend to principal G-bundles P — M* where M! is
a compact oriented Riemannian manifold of dimension 4. Since the work of
Donaldson in 1984 we know that the corresponding moduli space M {M*,G)
is a fundamental object which reflects deep properties of M* and G. However,
in these lectures, we shall be concerned mainly with the simplest case M* =
5% G = SUy; even in this case the moduli space My = My4(S4, SU,) is quite

nontrivial!

§1.2 Basic properties of the moduli space of instantons.

The first interesting examples of $U;-instantons on §* were obtained by
the 't Hooft construction” {around 1977): given a collection {gi,..., g4}
of distinct points in R*, it is possible to write down an explicit solution of
(2). Shortly afterwards, Atiyah, Hitchin and Singer showed that M.(S*,G)
is a finite dimensional manifold, and computed its dimension. For example,
dimMg4(S4, SU,) = 4nd. Then Atiyah, Drinfeld, Hitchin and Manin gave a
linear algebraic description of all the solutions to (2) (the “ADHM construc-
tion”), for the compact simple classical groups.

What can be said about the space M;? For d = 1, it is known that there

is a diffeornorphism
My =803 x {zeR"| ||z|| < 1}.
For d = 2 (see [Hal|,(Hh],|Au]} there is a homotopy equivalence
M/ 50, = Gry(RF).

(In general, G acts on Mu(M*, G), although the action is not usually free.)

For any d, it is known that M, is connected (see [Tal]), and it is known that
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mMy = Z/2Z (see [Hel]). However, it is not very easy to get this kind of
explicit topological (or geometrical) information about My from the ADHM

construction.

§1.3 Morse theoretic principles.

A different way of obtaining topological information about M is suggested
by Morse theory, We have a functional YM : {; — R, whose critical points
are the Yang-Mills connections, and for which My is the set of absolute minima.
This can be compared with another, simpler, situation. If P, Q are two points
of a Riemannian manifold M, we have the energy functional £ : M — R
on (a component of) the set of smooth paths from P te Q. The critical
points of E are the geodesics connecting P and @, and of course the shortest
geodesics constitute the absolute minima of E. It is a classical fact that Morse
theory applies to E. A simple consequence of Morse theory is that if Mo,
denotes the set of shortest geodesics (in a fixed component), then the induced
maps ;M — H: QM in homology, and mM,.,, — =.IM in homotopy, are
isomorphisms for { < n, where n + 1 is a lower bound for the index of any

nonminimal critical point.

For example, if M = $™ and P, are the north and south poles of the
n-sphere, then (57)n, = $™ ! and we obtain an inclusion $"~! — 15" which
induces isomorphisms in dimensions less than 2n—3. This is the “Freudenthal
Buspension Theorem”. A direct generalization of this example can be made
when M is a compact symmetric space: M., is also a compact symmetric
space (for suitable P,Q), and in 1958 Bott used the equivalence mM, i —

mi(IM to obtain his famous “Periodicity Theorem™.

Now, the classical Morse theory does not apply to Y M in the same way
that it applies to E, but there are some formal analogics betwen the two
situations. In the version of the Yang-Mills equations for a principal G-bundle
P — M?, where M? is a compact oriented Riemann surface, Atiyah and Bott

made this analogy very precise. This suggests the first basic principle:
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APPROXIMATION PRINCIPLE: M,{M?, G) should approximate C,(M*,G) in

homology and homotopy, up to some dimension which increases with d.

In the case of E : 1M — R, this approximation principle is valid and it
allows one to study 1M by studying the simpler space M,.,.. In the case of
Y M : C4(M*,G) - R the emphasis is switched, as it is C4(M*, G) which is
simpler than M4(5*, G). In fact:

Proposition [AJ]. The space C4{M?1,G) has the hemotopy type of N3G =
Map, (52, G),

Here, Map;(5®, G) denotes the set of smooth (or continuous) maps f: S —
G such that f(oo) = e (the identity element of &), and such that in m3G =
Z the class [f] corresponds to d. Note that 113G is connected, and that
m3St, = m,SU, = mS? = Z/2Z, so the approximation principle is at

least consistent with the information given earlier on Mg4.

The second basie principle (again from the analogy with geodesics) is:

LOWEST INDEX PRINCIPLE: The space M (M?*, G) of minimal (index zero)

Yang-Mills connections should “generate” all Yang-Mills connections in € (M*

This was shown to hold for the Yang-Mills problem over 2 Riemann surface,
in the work of Atiyah and Bott just mentioned. For the Yang-Mills problem
over M4, very little is known about nonminimal Yang-Mills connections; in
fact, existence of such connections for Mt = $*, G = SU, was proved only
recently, by Sibner, Sibner, and Uhlenbeck and by Sadun and Segert, as well

as by Parker in the case of a perturbed metric.

§1.4 The Atiyah-Jones theorem on instantons.

The first work on the approximation principle for §Us-instantons on 5% was

done by Atiyah and Jones [AJ]. They established a homotopy commutative
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diagram

Tt : H7

Co(RY) £ nist
where [ is the natural inclusion and T is the inclusion of the 't Hooft instan-
tons. The map E is the “electric field map”, well known to topologists. The
map H is the composition N135* = QIHP! — NIHP® = MBS = N38% It
is elementary that H induces a surjection in homology groups H;, and it is
a well known theorem in topology that E induces an isomorphism in H; for

t << d. Hence (from the diagram):

Theorem [AJ]. The map I : Mgy — Cq induces a surjection in homology
groups H; for i << d.

Thus, the philosophy of the proof is to identify a subset C4(R*) of My whose
topological behaviour is better understood.

Atiyah and Jones conjectured that in fact the map I induces isomorphisms
in H; and 7; (for 7 in some computable range), in particular that the approx-
imation principle holds for SUj-instantons on §%. (It should be noted, how-
ever, that the above diagram gives no information about homotopy groups, as
m1Cq = Z/2Z whereas m;Cy(R?) is the symmetric group on d letters.) At the
time of writing, this conjecture has still not been proved. However, it has al-
most acquired the status of a “folk theorem” | as substantial progress has been
made both via analysis and via topology. The analytical approach is due to
Taubes, who has established the “stable” approximation principle for any M*
and G (see [Ta2| for a precise statement of this). The topological approach
depends on a reformulation of the problem, which will be described in the
next section. Using this approach, Graveson |Gr| has also proved the stable
approximation principle, in the case M* = S%. In the case M* = §¢,G = SU,,
the “expected” range of isomorphisms is i < d. The main evidence for this
was provided by Boyer and Mann |BM]|, who showed that H. M, has a prod-

uct structure, which permits the construction of various nonzero homology
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classes. As a consequence, the approximation principle cannot be valid in

general beyond i = d.

§1.5 Reformulation of instantons in terms of rational maps.
Atiyah [At1] and Donaldson [Dol] obtained the following remarkable de-
scription of the map F : My(S* G) — C4(5% G} (at least for G a compact

simple elassical Lie group):

Theorem [Atl],[Dol). The map I : My(5*,G) — Cu(S*, G) is homotopy
equivalent to the natural inclusion J : Hol}{S?,NG) — Map;(S?, NG).

Here we use the notation Map,(5% N1G) for the space of smooth maps f :
§% — QG such that [f] € mNG = 713G = Z corresponds to d, and Map;(§%,1G)
for the subspace consisting of maps which satisfy in addition the basepoint
condition f{co) = §, where ¢ is a fixed basepeint in NG. Similar definitions
apply to Hols(52,12G) and Hol}(S?, N1G), using holomorphic maps instead of
smooth maps; the complex structure of {1G being used here will be explained
later. The identification of C4{S*, G) = N3G with Map}(5?,N1G) = N4(NG)
is elementary, but the identification of Ma(5*,G) with Hol}(52, 1G) uses the
twistor description of instantons as holomorphic bundles.

This reformulation is useful only if one has a good understanding of N1G,
of course. Fortunately, the theory of loop groups (see [PS]) provides such an
understanding. Surprisingly, {1G behaves very much like a compact complex
manifeld; it is closely analogous to the familiar finite dimensional “generalized
flag manifolds” such as CP",Gr,(C™) or a complex flag manifold. In particu-
lar, holomorphic maps 5% — QG are, in a certain sense (see lecture IV), given

by rational functions.

§1.8 A related example: harmonic maps.
The two Morse theoretic principles of 1.3 are supported by evidence both
from physics and mathematics, not merely by comparison with the energy

function £ : NM — R. A significant piece of mathematical evidence comes
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from the theory of harmonic maps of a Riemann surface M? into a compact
Kéhler homogeneous space G/H (see [EL1],|EL2|). One has an energy func-
tional E : Map(M?,G/H) = R, f — = ||df||?, whose critical points are by
definition the harmonic maps M? — G/H, and for which the absolute minima
(in a suitable connected component of Map(M?,G/H)) are the holomorphic
maps. A comparison of the harmonic maps problem with the Yang-Mills prob-
lem is given in [Bo], which illustrates why the former may be considered as
a simple “mode!” of the latter. From our point of view, the most compelling
evidence is this: for many spaces G/H, both Morse theoretic principles are
valid. In the case G/H = CP", the approximation principle is justified by

the following theorem of Segal:

Theorem [Sel].. The inclusion Holy{5?,CP") — Mapy(S5?, CP") induces
isomorphisms in homology groups H; and homotopy groups m; for ¢ < (2rn—-1)d,

and a surjection for i = (2n — 1)d.

The lowest index principle in the case G/H = CP? is justified by the
well known “classification theorem” for harmonic maps, which describes how
Hol(S?%, CP") generates all harmonic maps by asequence of simple operations
(differentiation and orthogonalization). For the history and precise statement
of this theorem we refer to [EL2).

Regarding compact Kahler manifolds G/H other than CP", progress has
been made essentially on a case by case basis. See [CM],[CS],|Gul],[Ki],[MM1],
[MM2] for the approximation principle, and [BR],(EL2] (and the references

therein) for the lowest index principle.

§1.7 Reformulation of harmonic maps in terms of rational maps.
Since complex Grassmannians and projective spaces can be embedded to-
tally geodesically in I/,, harmonic maps §? — Gr(C") can be regarded as ex-
amples of harmonic maps §? — U,. So the study of harmonic maps §* — U,
may be regarded as a generalization of the problem considered in 1.6. As in

the case of instantons, there is an (equally remarkable) reformulation in terms
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of holomorphic maps §* — QU,, due to Uhlenbeck |Uh| {see also [ZM],[ZS)

for earlier work in this direction).

Definition. An extended solution is a map f : 5 — U, which satisfies the

conditions

f_laf 1 16}'

(z,4) = (1--)A() 755

for some functions A, B. (Here, z € § = C U oo is the domain parameter,

A) = I—J\}B()

and A € S§! is the loop parameter.)

An extended solution is automatically holomorphic, for a map f is holomor-
phic if and only if the “tangent vectors” f~!8f/3z, f~18f/9z belong respec-
tively to Map(5?,T;,00,), Map(5?% T101U,); it can be shown that this is
so if and only if they extend respectively to the discs 0o > |A| > 1,0 < |A| €1,

as holomorphic matrix valued functions in the interiors of the discs.

Theorem [Uh]. Let ¢ : 57 — U, be harmonic. Let v € NU,. Then there
exists a unique estended solution ® : §% — U, such that &(z,—~1) = ¢(2)
Jor all z € 52, and ®{oo, ) = 4(}) fer all X € S'. Conversely, if & is an
extended solution, then the map ¢ defined by ¢(z) = ®(2,—1) is harmonie.

(This result carries over to any compact Lie group G, in fact.)

§1.8 The Uhlenbeck theorems on harmonic maps.

Uhlenbeck proved a “finiteness” theorem for extended solutions: given
any extended solution &, there is a loop ~ such that ~® is of the form
Tr . Ai(z)), ie is polynomial in X, A"l. The least such value of m is
called the minimal uniton number of ®. An extended solution of minimal
uniton number m is called an m-uniton, She gave two applications of this,

which we shall now review.

Theorem A. Any eztended solution may be factored as a product & = v®,...&,,,
where v € U, and each ®; 15 of the form ®,(2,1) = Py + .\Pj;(z} for some
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map f; into o complez Grassmannian.

It is easy to check that a map of the form P+ )«Pf‘ is an extended solution if
and only if f is holomorphic. However, it is not true in general that each factor
®; in the theorem is itself an extended solution. All that can be said is that
each subproduct &,...®,, 1 <{ < m, is an extended solution. Nevertheless,
it is still true that the theorem expresses a general harmonic map in terms of
“holomorphic data” (see [Wo]), so it can be regarded as a demonstration of
the lowest index principle, at least for harmonic maps into Grassmannians.

The second application concerns the so called “dressing action” of loops
~ € MU, on extended solutions ®. The definition of this action, which comes
from the theory of integrable systems (see [ZM],[ZS],|Wi]) is unfortunately
rather complicated. Suppose that the loop ~ is the restriction of a holomorphic
GIn{C)-valued function on a region containing the two small discs Dy, D,
given respectively by |A] < ¢,|A| > 1/e. Suppose that & is the restriction of a
holomorphic map A — QU,, where A is the annulus given by ¢ < [A| < 1/e.
Consider the function v& : Cy U C,, — (U, obtained by restricting v, & to
the pair of circles Co UCy» = AN (Dy U Do) Assume that this admits a
factorization ¥® = &9, of the same kind but in “reverse order”, i.e. where
&, extends to to A and &, extends to Dy U D,. Then we define the action of
~ on ¢ by

Yo = &,

It can be shown that v+® is also an extended solution.

The biggest problem with this definition is that it is not clear when the
required factorization can be performed (i.e,, when the Riemann-Hilbert prob-
lem can be solved), However, Uhlenbeck showed that it can be done in the

following situation:

Theorem B. Let y be the restriction of a Gl.(C)-velued rational function on
C U o0, which is nonsingular on Dy U Dy,. Let & be en extended solution.
Then vod is well defined.
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The proof uses a factorization theorem for “rational loops”, analagous to
theorem A. It can be shown by direct calculation that the action of each
factor is well defined, from which the theorem follows.

One might hope that this theorem could be used to give information about
the space of harmonic maps §* — U/, {sometimes referred to as the “moduli
space” of harmonic maps). The definition of the action is rather difficult to

work with, however, as the author discovered to his chagrin in [BG].

§1.9 Further remarks.

There is in fact an explicit (if superficial) connection between the Yang-
Mills problem and the harmonic maps problem, at least at the level of in-
stantons. Atiyah [Atl] shows that “axially symmetric G-instantons” on S*
correspond to holomorphic maps §2 — G/H, where G/H is a generalized flag
manifold embedded in G (determined by the choice of axis).

Another related example — the Yang-Mills-Higgs problem—should be
mentioned here. This leads to very interesting mathematics, although we
shall not pursue it in these notes. The monopoles of the Yang-Mills-Higgs
problem (analogous to the instantons of the Yang-Mills problem) are known
to correspond to holomorphic maps from §2 to a generalized flag manifold (see
{Do3],[Hu2|,[HM]). In this case, the Morse theory has been studied by Taubes
[Ta3] and found to be better behaved than in the Yang-Mills situation. For ex-
ample, in the case of SU;-monopoles, which correspond to holomorphic maps
from 5% to 82, he was able to obtain a proof of the theorem of Segal described
above in 1.6.

As a general survey on the material of this lecture, as well as on monopoles,

we recommend the article of Donaldson (Do2].

Lecture II: The Mitchell-Segal filtration

§2.1 The Grassmannian model of au,.
Let e1,...,e, be an orthonormal basis of C*. Let & be the Hilbert space
LHSYHCr) = (Xe; |t € Z, j = 1,...,n}, and let H, be the subspace
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(Me; |1 >0, 7 =1,...,n). The group U, acts naturally on H by mul
tiplication, and we have a map from U, to the Grassmannian Grass(H) of
all closed linear subspaces of H, given by v = vH, = {+f | f € H.}. Tt is

easy to see that this map is injective. Regarding the image, one has:

Theorem [PS]. The image of the map U, — Grass(H) {s the subspace
Greo(H) of Grass(H) consisting of linear subspaces W which satisfy
(1) \W C W,
{2) the orthogonal projections W — H, and W — (H.)* are respectively
Fredholm and Hilbert Schmidt, and
{8) the images of the orthogonal projections Wt — H, and W — (H,)*
constst of smooth functions.
Moreover, if v € QU, and W = vH,, then deg( dety) fs minus the inder of

the orthogonal projection operator W — H,.

This is known as the “Grassmannian model of 1U,,”. (Similar models exist
for other differentiability classes of loops — see [PS].) This theorem is proved
by showing that the (unbased) loop group AU, = Map(S5t,U,) acts transi-
tively on Gro(H), with isotropy subgroup U,. It follows easily from this that
the complex group AGIL,(C) also acts transitively; the isotropy subgroup is
the subgroup A*G!,(C) consisting of loops which are the boundary values of
holomorphic maps {A | || < 1} — GI,(C). Thus

U, = AULJU, = AGI{C)/AY GL,(C).

This is analogous to the description of the ordinary Grassmannian Gry(C")
as a homogeneous space either of U, or of GI,(C). Hence, like Grz(C"), the
loop group MU, acquires a natural complex structure (as a quotient of two
complex Lie groups),

The “algebraic loop group” is defined by:

Definition. ..U, = {7 € U, | 7(1) is polynomial in AT
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The following Grassmannian model for ﬂa]gU,. may be deduced from the

theorem (see [Pr] for a self-contained exposition of this):

Corollary. Under the mep QU, — Grass(H), the image of Q_; U, is the
subspace G"alg(H) of Grass(H) consisting of linear subspaces W which satisfy
{1) \W CW and
{2) 2*H, CW C A %H, for some k.
Moreover, ify € NapgUn and W = yH,, then deg( dety) = j( dimA™*H, /W —
dimW/MH,).

alg

If we define
AalgGlﬂ(C) = {7 € AGL,(C) | 4(A),¥(2)"! are polynomial in X, A"'}
then we obtain the identifications

NalgUn = AglgUn/Un = AgigGin(C) /A7) Gli(CY,

where A_;, U, AY, GI.(C) are defined in the obvious way.

ﬂ.lg a]g

The importance of nalgU,, is that is a “good approximation” to U, in
particular it is homotopy equivalent to U, (see [Pr],[PS|,[Mi2]), yet it is much
simpler, being the union of a sequence of finite dimensional complez projective

varieties (indexed by k). A similar statement holds for nalgsv,, and 11SU,.

§2.2 The Mitchell-Segal filtration.
Mitchell [Mil] and Segal [Se2] introduced the following subspaces of
G?‘alg(H), nalgU":

Definition.
(1) Fu = {W € Grass(H) | H, CW C A~ H,, AW CW, dimW/H, — k}
(2) My = {v € QU, | 7(2) is polynomial in A~!, deg( dety) = —k}

From the theorem, it is easy to see that F; is mapped diffeomorphically to
M, under the identification QU/, — Gr&lg(H). But one should not use this
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identification too casually, as Fy and M, reflect quite different properties of
the loop group.

As ﬂa]gS Uy is equal to the identity component of na.lgUm it is clear that

NatgSUn = |J A*Mp.
k20
We call this the Mitehell-Segal filtration.

Usually we shall work with F,, converting to My only when it is convenient
to do so. From the definition, we see that F} is an algebraic subvariety of
the Grassmannian Gri(C*"). More precisely, if we make the identification
C™ = A*H, /H. = (A7 ¢ | 1<i<k,j=1,...,n), then

F, = {E € Gr,(C*) | NE C B},

where IV is the nilpotent operator on C*" given by multiplication by A. Ob-
viously Fy is a point, and F; = CP*1. But for k > 2, F, is a singular
variety. Varieties of this type have been studied from the point of view of al-
gebraic geometry, and have various njce properties. For example, they admit
a Schubert cell decomposition analogous to the Schubert cell decomposition
of a Grassmannian (see [HS) and §3 of (GP| for this, and for further refer-
ences). On the other hand, the Grassmannians Gralg(H), Groo(H) also admit
cell decompositions of the Schubert type (see [PS])— and it turns out that
the intersections of these with F; give the Schubert cell decomposition of 7.
Mitchell [Mi1] used this in order to relate the homology of F to that of the
loop group.

The group Glin(C) acts transitively on Gry(C*"). Its subgroup
Gr={X € Gl,(C) | XN = NX},

consisting of transformations which commute with N , acts on F,. Although
Gy does not act transitively on F%, it has one open dense orbit. The orbits
may be described using the Jordan Normal Form of a nilpotent transformation
(on a finite dimensional complex vector space): recall that this expresses the

transformation (up to similarity) as a sum of cyclic transformations, of lengths
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kiy..., k.. Moreover, the invariants k,,...,k, determine the transformation,

up to similarity.

Proposition. Two elements E,E' € F are in the same Gy-orbit if and only

if the nilpotent transformations N|g, N|p have the same invariants.

Proof: If Njg, N|g have the same invariants k,,...,k,, we can choose bases
{Nig;},{N'zi} of E\E' with 1 < j <r,0< i< k; = 1. These may be
extended to bases {N'y;}, {N'y} of C*" with1<j<n,0<i<k-1. (This
is elementary; see the proof of lemme 4.3 of [GP].) The linear transformation
defined by X(N'y;) = N'y is then an element of G, taking E to E'. Con-
versely, if E and E' are in the same Gy-orbit, it is obvious that N|g and N|g

have the same invariants. -

The proposition was first noted by Mitchell [Mi1], in the following form.
We have C*" = A-*H, /H,, which has the structure of an Ai-module of
rank n, where A; is the truncated polynomial ring C[A]/(A¥) (a principle
ideal domain). An element F ¢ F, defines a submodule of AkH,/H,. The
fundamental theorem on finitely generated modules over a P.LD. says that ¥
decomposes into a sum of cyclic modules, and that the isomorphism class of
E is determined by the “type” of this decomposition. The group Gln(Akjlacts
naturally on A=*H,/H,, and the orbits of this action give the decomposition

of F;, into isomorphism clasnen of Ay-modules.

It is well known that the Schubert cell decomposition of Gri{CF") arises
from a Morse function. The decomponition of F, also has a Morse theoretic
interpretation: it arises from tnking the i ntemection with Fy of a decomposi-
tion of Gri(C*") given by n certaln Morme Boll function. For the details of

this we refer to [Ri]; see alno |Ko).
Turning now to M}, we shall soe that €hin In uneful in situations where the
group structure (of the loop group) play s n 1ole. For example, M, has the

following simple description:
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Proposition [Se2). Any v € M, hes a factorization into loops of the form
4 (A) = P§ + APy, where V is a subspace of C" and Py, Py denote the
orthogonal projections onte V,V<L. "That is, qiven =, there exzist subspaces
Vireoo, Vi of C™ with 4(X) = (P, + A"1Py,) ... (P& + ALPy).

Since deg( det P§ + A"'Py) = — dimV, we must have &{_; dimV; = k, so
[ <k

This factorization may be proved directly, by an induction argument (see
[Cr]}, but it is instructive to give a proof using F}, as in (Se2]. Suppose we
have a flag

H, C V) € Vi CATFHL

with AV C V) for e = 1,2. By the Grassmannian model, we have Viyy = v H,
for some +; € My, where k; = dimVy;)/H,. Since A induces a nilpotent

transformation of V{z)/V{1), we must have A"V{z) C V3 for some r.

Lemma [Se3). Flags Hy C Vi) C Viz) © A7*H, with Vi) € F, are in one to

one correspondence with factorizations 4 = 116 with 4 € Mg,

Proof: It is clear that a factorization gives rise to a flag. Conversely, given a
flag of the above type, we have My, H, C 1y H, C v.H,. From this it follows

that '1{113 must be polynomial in A~! of degree less than ar equal to I. [ |

More generally, this shows that factorizations 5 = 7 ...~ with each ~; linear
in A~! correspond to flags H. C Wyyy... C Wy = W = yH, with AW, C
Wiy for all ¢, where Wiy = 71 ... 7.

Given W € F, it is easy to produce such a flag (and hence complete the

proof of the proposition). We shall make the following choice:

Definition. The canonical flag of W € F is the flag

Hy CM'"W+H, CAN"W+H, C...CM\W+H, CWCA*H,.

(It is obvious that this flag has the required properties.) We shall refer to the
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corresponding factorization of -y as the canonical factorization.

Another manifestation of the group structure is the natural map
My x My — M,

given simply by multiplication of loops. We shall regard this in the following
way: each point of M;_; determines an embedding of M; in M,. Given é €
M,_;, we have the embedding 6 : M; — M;, v — §~. The corresponding
multiplication Fi_; x F; — F, will be written (V,W) — V.W. For V € F,_,,
the subspace V.F; of Fy is given by V.F; = {W € F, | V C W}. (Thisis a
direct consequence of the lemma.)

Observe that the embedding AfM; C M;. ., which appears in the Mitchell-
Segal filtration, corresponds to the embedding C'™.F; C F,;, where C'" =
Ker N7,

§2.3 Further properties of the Mitchell-Segal filiration.

We shall give some further information on the spaces F. From now on
{until lecture IV), hawever, we shall assume that n = 2. Analogous properties
hold for arbitrary n, but are a little more complicated.

Throughout this section we shall consider Fi to be the set of N-invariant
elements of Gr,{C*), where C* is identified with A"*H_/H,, and where
N is given by multiplication by A. The canonical flag of E € F} is given by
{0} C N*IEC N*?E C...C NE C E. Unless stated otheruise, we shall

assume that k Is even.

Lemma. The canonical flag of E is of the form
{0}CECE,C...CECECEL,,C...CE.,CE=E

for some ¢, where dimE; =7j.

Proof: Since N is nilpotent and Ker ¥ = C? = {A~1e;, A~ley) has dimension

2, we have dim N'E = dim N*-1E —¢t, wheret =1if C2* ¢ N"-'Eandt =2
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if C* € N-E. If C* C N'E for some ¢, then we have C? C N'E for all
R [ ]
The (even) integer 7 in the canonical flag of E above will be called the height
of E.

Definition. Let F,E‘} denote the subset of F, consisting of elements of height <.

By Mitchell’s observation, F,f” constitutes a single G.-orbit. It consists of
those elements £ of Fy for which C*~' C E,C*-+? ¢ E, where C’ denotes
Ker Ni/2, The space F,E‘) has the structure of a complex vector bundle of
rank ¢ — 1 over CP!, the projection map being given by £ — FE,. We have
Fo=FPUCLR, {disjoint union).

From these remarks it should be clear that Fj is closely analogous to
CP*, which has a similar algebraic/Morse theoretic decomposition. In fact
Fy and CP* have isomorphic cohomology groups, but their cohomology rings
differ. As noted in [Mil], Fy is the 2k-skeleton of NSU/;, whereas CP* is the
2k-skeleton of CP*. Despite this analogy, Hol,(S%,015U,) behaves rather
differently to Hol}(5%, CP>). For example, from 1.2 and 1.5 we see that the
former is a manifold of (real) dimension Bd; on the other hand it is easy to

see that the latier is infinite dimensional!

§2.4 The space Holy(S?, F;).

From our remarks on the topology of Fy, ;t follows that my F), = 7,050, =
Z (for k # 0). So the components of Mapy(S?, Fy) are indexed by the “degree”
[f] € maFi = Z of a map f € Mapy(5?, Fy). We denote the d-th component
by Map,(S? Fi). Similarly, Holy(S? F}) is the space of holomorphic maps
of degree d.

Let £k be the tautologous k-plane bundle on F. For f € Hols(52, F), let
F=fé

Definition. The canonical flag of f € Holy(§% Fy) is the sequence {0} C
NF1FC N7 C .. .CNFC7.
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A priori, N'F defines a bundle only over a dense open subset of S?, as
dim V' f(2) is not necessarily independent of z. However, because f is holo-
morphic, and its domein is 5%, the bundle may in fact be extended to a
holomorphic bundle on 52. The notation N'F refers to this extended bundle.
Thus N'f(z) C (Nt¥F)(z), with equality except possibly for a finite number of
points z € §2,

By the lemma of 2.3, the cancnical flag of 7 is of the form

{O}CAHACHRC...CRUCHCFLC . . CHhaCHR=F

for some i, where 7 has rank j. As in 2.3, we call { the height (of 7, or of f).

Definition. Let Hol)($2, F,) denote the subset of Holy(S2, ) consisting

of elements of height 1.

The degree d of f € Holy(S?, F,) may be interpreted as —c¢;(F), and it is
necessarily nonnegative, as ¥ is a holomorphic subbundle of the trivial bundle

5% x C*, Extending this, we have:

Definition. Let {#} be the canonical flag of f € Hol}(S?, F,). We define
dj = —cy(%) (2 0),and e; = d; — d,_, (with dg = 0,d; — d).

Thus, Holg)[S’, Fi) may be decomposed according to the multidegree (dy,.. ., d;)

of fe Hol&i](S‘,Fk). (This is not a decomposition into path components.)
The next lemma, concerning the bundle N=17,/7;, will be crucial for our

results on Holy(S?, ) in the next lecture. Note that this bundle is trivial as

a smooth bundle, as multiplication by f;* gives an isomorphism N~' %/ 7 —

N-'H,/H,, where %(z) = f;(2)H..

Lemma, Let f ¢ Holg)(S’,Fk). For 1 <j €7-1 we have ¢; < €j44, and
there is @ holomorphic splitting N7 7, /7, = L @ L', where L = N™'F_,/F; =
Oles), L' = O(-¢;).

Proof: We proceed by induction on f, using the exact sequences
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{0} - Fina/F = N5/ % = N7 5/ Fir — {0} (1)
{0} > N7'%_4/%H - N7'%/% - NT'F /N5, — {0}. (2)

Since N~17;/7; is topologically trivial for all 7, we have F./F = O(—ej+1),
N='%/Fis1 = O(eja1), and N7UFy /%= Ofej), NT /N7 550 = 0(—ey).
For j = 1, sequence (2) is {0} — O(di) —+ N'R/FH — O{-d1) — {0},
and this splits holomorphically es the extension group is H*(0(—2d,—2})) = 0.
From sequence (1) we see that N~15 /7 (= Ofe;) @ O(—e1)) has a subbundle
5/ A = O(—ez), which is possible only if e; > e;. This starts the induction.
Now assume that the lemma holds for 1,...,7—1. The extension group for
sequence (2) is H°(C(—2¢; — 2)), which is zero as we are assuming 0 < g; <
... < g;. So sequence (2) splits holomorphically. From sequence (1), we see
that N71%/7 (= 0(—¢;) & O(—e,)) has a subbundle %1/ % (= O(—e;41)),
which is possible only if ¢; < ¢,41. This completes the inductive step. n

Thus, the integers ey,...,e; satisfy the conditions 0 < ¢; < ... < ¢ and
Zj:l e_f = d

Lecture III: The approximation principle for rational
maps and instantons

In this lecture we shall see how the approximation principle for maps §* —
CP" (see 1.6) may be extended to the case of maps §? — F,. The method
of (Sel] is somewhat mysterious (especially from the point of view of Morse
theory), so we shall begin in 3.1 By reviewing it in some detail. We shall do so

in such a way that the generalization to maps §* — F; will appear naturally.

§3.1 The approximation principle for Hol,(S?, CP").
Recall the theorem of Segal, which was stated in 1.6:

Theorem. The inclusion Iy : Hol}{$* CP") — Map}(5%, CP") induces

isomorphisms in homology groups H; and homotopy groups m; fori < (2n—1)d,
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and an tsomarphism for i = (2n—1)d, where % indicates any basepoint in CP"

It suffices to prove the theorem for a single basepoint, because CP" is a
complex homogeneous space. Let us choose a basepoint of the form [2o;...; z,],
where z; # 0 for all i. Then a based holomorphic map of degree d may be
represented uniquely by a sequence of monic polynomials pg,...,p, of degree
d, which have no common root. In fact, we can say that Hol;(5%, CP™) is
biholomorphically equivalent to the manifold QL"](C] consisting of sequences
of positive divisors ay, ..., a, of degree d in C, which have no common point.

The first step in the proof is to establish the “approximation principle” for

the fundamental groups:

Proposition 1. Ford > 1, the inclusion I;: Hol3(5%, CP") — Map;(5%, CP")
induces an tsomorphism on fundamental groups, both of which are {somorphie
toZ (ifn=1}orto0 {if n > 1), Moreover, in the case n = 1, the action of
my on the homology group H; of the universal covering space of Holj(S?,CP™)

is nilpotent for i < (2n — 1)d.

Sketch proof: Only the statements concerning Hol}(S?, CP"} are not obvi-
ous. The space QE"]{C) is obtained from C*"+1) by removing a closed subva-
riety of complex codimension ., hence 1@ (C) = mCU™*) = 0if n > 1. If
n = 1, the resultant gives a map R : Q&"](C) — C' which induces an isomor-
phism on m (a result of Jones, see [Sel]}, so rrng")(C) = Z. The universal
covering space of Qﬁ”){C) may be described as the subset of C x QL"](C) con-
sisting of pairs (z, (p,q)) with e*R(p,q) = 1. The action of QM (C) on the
homology of this space may be described explicitly, and shown to be nilpotent

(up to dimension (2n — 1)d). [ |

This will allow the approximation principle in homotopy to be deduced from
the approximation principle in homology, to which we now turn.
The idea of the proof is to relate the inclusion map Ij : Qf,"].(C) -

Map;(S?,CP") to a more geometrical “scanning map”, to which standard
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methods of configuration space theory can be applied. This is done by replac-
ing CP" by a homotopy equivalent but “fattened up” space. Let X be any
open subset of C. Let F(X) be the set of maps X — CP" which extend to
holomorphie maps 5% — CP", with no coordinate polynomial identically zero.
The space CP™ will be replaced by the space F(U), where U is the open unit
disc in C. The map e : F(U} — CP”" given by evaluation at 0 is a homotopy
equivalence, but there is an important difference between the two spaces: the
natural action of (C*)" given by (u1,...,un).[20}...120] = [Zoita21}. .. Un24]
is free in the case of F'(I). The quotient map p: F(U} — F(U}/(C*)" assigns
to a map f = gly the corresponding sequence [g] of divisors obtained from g.

Fix some ¢ > 0. There is a2 natural map F(C) — Map(C, F(U)) which
assigns to a map p € F(C) and a point z € C the map w — plew + z). (In
other words, trke the restriction of p to the open disc D(z,¢) of radius ¢ and
centre z, then identify D(z,¢) with U in the canonical way.} The standard
metric on C is used here, so that from the point of view of the standard metric
on §7 = C U {oo}, the disc D(z,¢) shrinks to a point as z — oo. Hence, this

natural map extends to a map
F(C) — Map'(5%, F(U))

where the basepoint of F(U) is taken as the constant function given by the’
basepoint of CP". On restricting to Q{¥(C) C F(C), one obtains a map

s¢: QV(C) — Map;y(5% F(U)).
The inclusion f4 is evidently the composition
QY(C) 4 Mapy(5%, F(U)) &% Map(5?,CP").

This factorization of the inclusion map suggests the following construction.
If X is any subspace of §2 = C U co, and Y is a closed subspace of X, let
Q"(X,Y) denote the set of sequences (ay,...,a,) of positive divisors in X,
modulo the equivalence relation which identifies two sequences if they agree
on X — Y. There is a map Q{"(C) — Map(C, Q™ (52, c0)) defined by
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“scanning”: given (og,...,an) in QE,“}{C} and z € C, one obtains an element
of Q5% 00) by taking those points of (co, ..., a,) which lie in D{z, ¢); this
defines an element of Q™ (D(z,¢),dD(z,€)} = Q{(52,00). Moreover, this

map extends to a map
$4: QY (C) » Mapy(5?, Q™ (S, 00))

where the basepoint of Q"!(5% co) is given by the sequence of empty divi-
sors. (The suffix d indicates the component of Map'(5?, Q{52 00)) which
contains the image of Sd'.) It is easy to verify that this scanning map S; is the

composition
QI (C) 25 Map;(S%, F(U)/(C)") =5 Map;y(s%,Q™(S% 0))

where 54 is the map induced by s4, and where u assigns to the sequence of
divisors [g] € F(U}/(C")" its intersection with U. We therefore have the
following commutative diagram, by means of which the inclusion map I (the

top row) is related to the scanning map S, (the bottom row):

Plo) 2% MapyshF(U) 5 Mapy(st,CPT)
=| Ppl
n « An 2y . n
QfNC) & Mapy(S%F(U)/(C)™) ©%  Mapy(S*, Q(5?,00))
We are aiming to show that the inclusion I, = (01%) o sy is a homology

equivalence up to dimension (2n —1)d. Now, it is straightforward to show that
N%e, N%p, and N%u are homotopy equivalences. Hence it suffices to show that
the scanning map S; = ((%u) o 34 is a homology equivalence up to dimension
(2n - 1)d

The method proceeds in two stages. First one defines a “stabilized” map
S = limg.x S, and shows that this is 2 homotopy equivalence (proposition 2
below}. Then one shows that S, approximates S in homology up to dimension
(2n — 1)d (proposition 3).

To define the stabilized space, replace QL“J(C) by the homeomorphic sub-

space QY = QI™({ Rez < d}) consisting of sequences of divisors, all of
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whose points satisfy the condition Rez < d. On choosing fixed distinct

points z8*1,..., z2*! in the region d £ Rez < d + 1, one obtains an inclusion
i 0 Q) - Q) by adding zi*',...,2¢*! to the divisors ag,...,a,. The

direct limit limy_ QL"} is then defined, and may be identified with the space
@(“’ consisting of sequences ay,...,a, of positive divisors of infinite degree,
with deg(o; — &%, zf) finite for all {. The component of O consisting of
those sequences with deg(oy — 252, z¢) = 0 for all ¢ will be denoted by o,
There are maps ju : Mapy(5?,Q™(5%, 00)) — Mapy,, (52, Q1(8?, 00)) such

that the following diagram commutes up to homotopy:

oo ]
I, | Tar |

Map; (52, Q) (5%, 00)) 24 Mapj,, (5%, QM (S?,00))

In the limit ¢ — oo one obtains (up to homotopy) & map § : Qg") —
Mapy(S?, Q(5?, 00)).

Proposition 2. S is a homotopy equivalence.

Sketch proof: Let B be the unit square in R*(= C) given by 0 < z < 1,
0 <y < 1. Let (n,...,7,) be a fixed (n + 1)-tuple of positive divisors
in B which have no common point, each of which converges to (‘._1.,0) as
d — oo. Then the stabilization O (B) of Q{)(B) may be defined with
respect to (1g,...,7,), and QE,")(B) =~ Qﬂ”], Q" (B) =~ @1, One also has
Q@"(B,3B) = @"}{52,00). (To simplify notation we shall in future write
Q" X,8X) instead of Q"(X,8X).)

The scanning map § may be decomposed into a composition of “hor-
izontal” and “vertical” scanning maps S# and S, each of which will be
shown to be a homotopy equivalence. In order to define ¥ and 8§V, let
{Vs | 0 < ¢ < 1} be the family of “vertical” rectangles in B defined by
t— ¢ <'z<t+e;,0<y< 1, where ¢, >0 and g —- 0O ast — 0 or as
t — 1. Let {H; | 0 < ¢ < 1} be the family of “horizontal” rectangles in B
defined by 0 < z < 1,¢ — ¢, < y <t + ¢. For any rectangle X we shall use
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the notation ¢ X to denote the union of the sides of X which are parallel to
the y-axis.

The map § is determined {up to homotopy) by the stabilization of the
map QU(B) x (0,1) x (0,1) — QF{(B,8B), (C,t1,t:) — C NV, N H, €
Q(Vi,NHy,,8(Vi,NHy,)) = Q©(B,3B). Let $¥ : Q(B) — nQ™"(B,0B)
be the map determined by (C,t) — C NV € QW (V,oV,) = Q(B,cB).
Similarly let SV : QU)(B,o0B) — NQM(B,3B) be the map determined by
(C,t) » CnHy € Q"(Bn H,8(BnH,)) = Q" (B,3B). It suffices to show
that §¥ and the stabilization of $¥ are homotopy equivalences.

We begin with S¥. Up to homotopy this may be defined by {(C,t} — CNB,,
where B; is the square given by 0 < 2 < 1, 2t — 1 < y < 2¢t. Let B* be the
rectangle given by 0 < z < 1, —1 < y < 2. Consider the following two

“restriction” maps:

(1) Qi (B°,28°) — QIN(B,8B" U B) = Q*")(B,8B) x Q"(B,0B)
(2) Map([o, 1),Q1(B, 2B)) — Map({0,1},Q""(B,3B)) = Q)(B,3B) x Q"/(B.4B).

The first is a quasifibration, as one sees from the criterion of Dold and Thom.
It is elementary that the second is a fibration. Moreover, thete is a fibre
preserving homotopy equivalence Q™(B*,8B*) — Map([0,1],Q""(B,dB))
defined by scanning.. Our map 5 is just the restriction of this map to the fibre
over the configuration of empty divisors, hence it is a homotopy equivalence,
as required.

The case of §F is similar. This is homotopic to the map determined by
(C,t)— Cn B,, where B, is the square given by 2t — 1 <z < 2,0 <y < 1.
Let B* be the rectangle given by —1 < z < 2,0 < y < 1. Then we have

restriction maps as follows:
(3) Q"N B, 0B") —» Q™(B,¢B' v B) = Q©!(B,¢B) x QU"(B,08)

(4)  Map(0,1},Q")(B,0B)) — Map({0,1}, Q" (B,0 b)) = Q")(B,¢B) x Q"(B,cB).

where Qi) (B-,0B") denotes the subset of Q) (B*, 0 B*) consisting of divisors

whose intersections with B have degree d. Again we have a fibre preserving
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map from (3) to (4), and our map S¥ is the restriction of this to the fibre
over the configuration of empty divisors. After stabilization, (3) becomes a
quasifibration, and the fibre preserving map becomes a homotopy equivalence,

so the result follows. |

This completes the first stage. Now we come to the second stage, which

involves showing that §; approximates S in homology up to dimension (2r —
1)d.

Proposition 3. The inclusion Q(d"] — Q&':,)l induces an isomorphism in ko-

mology groups H, for i < (2n — 1)d, and @ surjection for ¢ = (2n — 1)d.

Sketch proof: Denote the statement of the proposition by (A4). It will be
proved by induction on d. Certainly (Agp)} holds, so the induction begins. Let
us assume (A.) for 0 < ¢ < d, and attempt to prove (A4). Define Pﬂ) to be
the set of (n + 1)-tuples of divisors of degree d, all of whose points satisfy the
condition Rez < d, and such that the divisors have gt least & common points.
Let Xft"f = PJ;} - Pj;)ﬂ = Qf;i’,, x C*. By Poincaré duality the statement

(Ag4-x) is equivalent to

HiXY) - Hg‘*"‘“Xg:’,_,, is an isomorphism for j > 34 — k,

and a surjection for j = 3d — &, (Ba-e)

the map being that induced by the restriction to XE:L) of the open embedding

P}_'L] xWx...xV, - P}f_’lrk, where each V; is a small open neighbourhood of

z3*!. A subsidiary induction on k may new be carried out, to prove
H{Pﬂ} — Hg”"‘”P}:)L,, is an isomorphism forj > 3d — k,

and a surjection for § = 3d - k. (Ce)

The induction starts with & = d, as Py = C% and Pj:]l'd is"of dimension

2(d + n + 1). The inductive step uses the diagram
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i—1 gin) {4 il n ;
HUPRG = HIXD) - iRl o wmiet), - Hivxlh)

! i i

HPNUPR — HEMXE, o HENPGL, o RIEEL,, - miSeixt)
where the horizontal sequences are the exact sequences in cohomology with
compact supports for the pairs (Pd["} PIi o1 (Pd+1 k!Pd-i-l p+1)> 2nd the verti-
cal maps are those induced by the open embeddings already described, with
N = dimVg x ... x ¥V, = 2n + 2. If (Ciy1) is true, then by (By_;) and the
five lemma, we obt.a.in.(Ck]. Hence, by downwards induction, we arrive at
(C1). For k = 0, the map is an isomorphism for all § > 0, as P};']J = Clnriie,
Finally, as P[") 5';) = Q("), the desired statement (A4) follows by one more

application of the five lemma. =

It follows from this (and the definition of S) that S; approximates § up

to dimension (2n — 1)d. This completes the second stage of the proof.

§3.2 The approximation principle for Hol;(52, F}).
In this section we shall indicate the proof of the following approximation

theorem for maps S* — Fj.

Theorem.  The inclusion Holy(S? F,) — Map)(S? F,) induces isomor-
phisms in homology groups H; and homotopy groups m; for i < d, and an

isomorphism for i = d, where * indicates any basepoint in F“‘].

The restriction on the type of basepoint comes from the fact that Fy is
not homogeneous. In Segal's theorem, for CP", the choice of basepoint is
irrelevant because Gl,,;(C) acts transitively on CP™; this also implies that
the theorem for based maps is equivalent to the corresponding theorem for
unbased maps. For F;, we have seen that G}, acts transitively only on F,EH, so
the above theorem does not immediately imply the corresponding statement
for maps with other basepoints, nor does it imply the corresponding statement

for unbased maps.
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Sketch proof: The proof rests upon an identification of Hol,(5%, F}) with a
certain space of divisors, generalizing. the earlier identification Holy(S%, CP") =
Q(C).

Given f € Holy(S?, F;), consider the canonical flag {#}. Because of the
basepoint condition, f is necessarily of height k, so we have 1 < ¢ < k.
Thus Holy(S?, Fy) can be identified with the space of flags /; C ... C % of
holomorphic bundles, which satisfy:

1) rank F =1+

) NECFH,

3) %i(oo) = E; (where {E£;} is the canonical flag of the basepoint E)

4) 1 Fp = —d.

We claim that such a flag may be represented by a sequence (a1, B1)s- .- (ax, Be),
where (o, 8} is a pair of disjoint divisors in C. For by the lemma of 2.4, 7.,
is specified relative to #,..., % by a (based) holomorphic line subbundle of
the bundle N1 /7, We may define oy.q, Bis1 respectively to be the divisors
of points in C at which %.,/7 agrees with N"'%_, /%, N"\F/FoN-"'F /7.
(With a suitable choice of the basepoint E, aiy1 and By are always fi-
nite divisors. This is analogous to choosing a basepoint [205...32,] in CP"
with all coordinates nonzero.) By the lemma, we have dege; = ¢ + ey,
degfi; = e; —e;_;, where 0< e; < ... < e, and TF_, ¢, = d.

Let Q%(C]) be the set of all sequences (e1,51), ..., (e, B:) arising in this
way. Then we have a bijection Hol;(S?, Fy) — Q%(C). This is a homeomor-
phism if the natural topology of @%(C) is modified so that a point of o is
allowed to “coalesce” with a point of f;, whence they give a (new) double
point of Fi.i.

Propoesitions 1,2 and 3 may now be generalized to the case of F,. We shall

list below the (few) new features that arise.

(1) For k > 2 and d > 2, the fundamental group of Hol}(S?, Fy) is Z/2Z.
This may be deduced from Jones’ result (see [Sel]} that 7, Q{V(C) = Z, a

generator being given by a loop {ay, §;) which “moves a point of o once around
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a point of Bo". Let §%(C) denote the subset of Q%(C) given by the conditions
that ay,...,ax-; and By, ..., fx- are all empty. Then @4(C) = Q\"(C), and
the inclusion map @{)(C) = @4(C) — QX(C) is surjective on fundamental
groups, as (by Jones’ method) any loop in Q%(C) is homotopic to a loop in
Q%(C). Consider a generator (ay, 3) of m;G%(C). From the coalescing rule,
it follows that 2({c, £,) is zero in m@%(C), at least if & > 2 and d > 2, since a
double point of B¢ may be separated into a pair of distinct points of a,_; and
Ox-1. As (e, 5t) is not itself zero in mQ_{j[C}, we deduce that m,Q%(C)=Z/2Z.

One has 2 scanning map S; : Q5(C) — Map}(S5?,Q¥(5?,00)), which is
related to the inclusion map I; : Q5(C) — Map;{52%, F;) as in the case of
CP". To stabilize Q5(C) we may replace it by Q% = Q%({ Rez < d}), and
then define an inclusion Q% — Q%, | by adding fixed (distinct) points T441, Yt
{in the region d < Rez < d+1) to the divisors ey, §;. We obtain a stabilized
space Q* and a map S : Q¥ — Map; (52, Q*(5?, 00)).

The analogues of propositions 2 and 3 are:

(2) S is a homotopy equivalence,

This is proved in just the same way as proposition 2.

(3) The inclusion @% — Q¥,, induces an isomorphism in homelogy groups H,
for { < d, and a surjection for { = d.

This is proved by the method of proposition 3. The only difference is that
Q%(C) is not in general a manifold, so one must use a more general version of

Poincaré duality. That this can be done is an observation of A. Kozlowski. m
Full details of the above proof will appear elsewhere.

§3.3 The theorem of Ativah-Jones re-visited
The theorem we have just described gives immediately another proof of
the theorem of [AJ] on §U,-instantons on S*. In fact, we obtain a result

in homotopy as well as homology, and the range of dimensions can be made

precise:
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Theorem. The map I : My — C; induces a surjection in homology groups H;

and homotopy groups m; for 1 < d.

Proof: Consider the following commutative diagram, in which all maps are
the natural inclusions:
Holy(8%,Q5U,) — Map;(8%,0SU;)
1

1
Hol}(52, Fy) —_ Map;(S?, F)

The right hand vertical map is an equivalence in homology and homotopy up
to dimension 2k — 2, as F; is the 2k-skeleton of SU,. We have just proved
that the lower horizontal map is an equivalence up to dimension 4. Hence, by
taking & large, we see that the upper horizontal map is surjective in homology

and homotopy up to dimension d. [ |

The diagram used here should be compared to that used by Atiyah and
Jones (see 1.4). It is a refinement of that diagram because Holy(S?, F) is
evidently a closer approximation to Hol;(5?,015U;) than the configuration
space Cy(RY). In particular, Hol}(S? F,) has the “correct” fundamental
group, Z/2Z, whereas m Cy(R*Y) = 5,

A similar phenomenon occurs in the case of maps from $% to §2. There
is an inclusion E : Cy4(R?*) — Map}(5?,5?) (the two dimensional “electric
field map”) which induces a homology equivalence up to dimension |d/2]. On
fundamental groups, however, this map induces a surjection from the braid
group on d strings to the group Z. If C;(R?) is replaced by Holy{5?, 52), Se-
gal’s theorem says that we get a closer approximation, namely an equivalence
in homology and homotopy up to dimension d.

In order to obtain the isomorphisms conjectured by Ativah and Jones
{rather than surjections), it is necessary to study Hol}(5?, (1S5U;) rather than
Ho];[ﬂalgSUg). The main problem is to obtain a description of the space
Hol3(5%,0SU,) in terms of divisors. Our description of Hol&(S’,ﬂalgSU,)
was based on the canonical flag, or canonical factorization, of a holomorphic

map §% — nalgSU" In 4.2 of the next lecture we shall see that there is a
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similar flag or factorization for a holomorphic map §% — NSV,, and it seems

likely that this will give an approach to the Atiyah-Jones conjecture.

Lecture 1V: Applications to harmonic maps

In this lecture we shall denote Fy, M, and G, by Fue Mpy and Gy, as we

‘'shall need to distinguish different values of n.

§4.1 Harmonic maps and the Grassmannian model.

The Grassmannian model provides a natural context for the theorems
of Uhlenbeck on harmonic maps, as was pointed out by Segal [Se2|. Let
® : S — U, be a smooth map. By the Grassmannian model, this may
be identified with a map W : 52 — Gr(H), where W(z) = ®(z)H.. The
conditions for € to be an extended solution are

a%w Cc W, %W C A w
The first is simply the condition that & is holomorphic; the second is a kind of
“horizontality” condition, Segal’s main result can be stated in the following

form:

Theorem [Se2]. Let & : §? — (W, be holomorphic. Then there ezists some
loop v € U, and some complez polynomial p such that

H,CW Cp(A)'H,

where W = dH, and & = 7.

Moreover, if @ is an extended solution, v can be chosen so that p(A) = am
for some nonnegative integer m. This gives another proof of the finiteness
theorem of Uhlenbeck. If mg is the minimal uniton number of ®, we have
me < m. (Segal showed that m < n— 1, hence n — 1 is an upper bound for
the minimal uniton number, a result which was also obtained by Uhlenbeck).

There are two basic integers associated with the extended solution ®, in
addition to mg. First, the degree d = deg ® of & (i.e. the class [®] € w000, =
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Z) is known to be (up to normalization) the energy of the corresponding
harmonic map. (This is a result of Valli [Val|; see also [Se2]). Second, the
component of N1V, containing the image of & (i.e. the class [&(z)] € mf2U/, =
Z) is given by k = dimW /H_. One has the relation m < k < mn.

§4.2 Factorization theorems.

The factorization theorem for extended solutions (theorem A of 1.8) is
an immediate consequence of Segal’s theorem in 4.1 and the description of
Foi Indeed, Segal's theorem tells us that an extended solution ¢ may be
renormalized as ® = v, with ‘i’(Sz) C Fux, where k = dim W/H.. Hence,
by 2.2, the canonical flag ﬁ’m c...C W[!] = W defines a factorization
$ =9,...3, where &,(z,A) is of the form P;I;(‘) + A~'Pyy;), and each V; is a
map from 52 to a Grassmannian,

It is clear that each subproduct ®,...®; is an extended solution. For this
subproduct corresponds to ﬁ’(,-}, which is (by definition) M=, and the ex-
tended solution conditions for W imply those for A=W, since 8/0z commutes
with multiplication by A.

In fact, Segal’s theorem gives a factorization theorem for general holo-
morphic maps ® : §* — U, by a similar argument. Again, ® can be
renormalized as & = &, where H, C W C plA)~'H.. After choosing an
ordering of the roots of p, we obtain a canonical flag

-

Hy =p\W Cpa (W)W C...Cp(N)WCW

where p; divides p;y;, degp,+; = 1+ degp,, and p = p;. This corresponds
to a factorization ® = ¢,... 3, where each ®; is a “linear fractional trans-
formation” in A. Such a factorization was first obtained by Valli [Va2], using
an extension of Uhlenbeck’s approach. A similar result was proved by Beggs
[Be], also using a Grassmannian model. The case where @ is independent of z
is essentially the factorization result for rational functions, used by Uhlenbeck
in the proof of theorem B of 1.8.

It follows from the last paragraph and 1.5 that one has a factorization
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theorem for instantons.

§4.3 The dressing action.

We have seen in 2.1 that the loop group 11U, may be identified with the
quotient AGL.(C)/ATGL,(C). This implies that any ~ € AGI,(C) can be
written as 4 = 4,74+, where v, € U, v+ € AYGI[,(C). The natural action
of AG!,(C) on the coset space AGL,(C)/A*Gl.{C) = QU, can be written in
terms of this: if v € AGL.(C) and § € QU,, then the coset of 46 corresponds
to the element (v4), of NU,..

If v € AGI,(C) and & : §* — QU, is an extended solution, we shall write

7°® = ('\'q))u-

It is clear from the extended solution condition that vo® is also an extended
solution, for yo® corresponds to yW, and 8/82(4W) = 48/8:W C AW =
AW, It turns out that this action o ts essentially the same as the “dressing

action” o which was described tn 1.8:

Theorem. Let v € AYGI,(C), Define @ map 5 : Do U Dy — Gl,(C) by:
F(A) = v(A) for A € Dy, %(A) = [y(A~1)"| "' for A € D,. Let & be a normalized
extended solution. Then ~oP = 40D,

(Strictly speaking, we defined ¢ only for “loops which extend to DU D", It is
clear, though, that the definition makes sense for maps v: DoU D — Gl,(C),
regardless of whether - is defined on the circle || = 1. Thus, 4® should be
interpreted this way.)

Sketch proof: We have to find a factorization v® = $,®;, as described in 1.8,
with @, = (y®),. For this to be a valid choice of &,, we need to know that it
extends to the annulus A; in fact, it follows from the construction of extended
solutions that a normalized extended solution extends holomorphically to the
region 0 < |A| < co. We must find a function ®,, which extends to Dy U D,
which satisfies
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HA)2(A) = (v@)u(A)22(2) (+)
on Co U Cqx. On Cp we can take ®; = (4®);. This certainly extends to
Dy and satisfies (#) on Co. On Cw we can take ®3{A) = [(v®)+(A~!)]"!
This extends to D, and also satisfies () on C,,, as one sees by applying the

transformation X(2) — [X(A77)"]"! to the equation () on Cp. [

From this one sees that the tricky factorization {or Riemann-Hilbert prob-
lem) needed in the definition of o is in fact incorporated in the Grassmannian
model of NU,. Thus, the “hidden symmetry group” AGL(C), for harmonic
maps §? —+ U,,, is revealed naturally by the Grassmannian model formulation.
It is now rmuch easier to establish general properties of the action.

First, we see that
(i) the action of A*GI,(C) (and, indeed, an action of AGI,(C)) is always well
defined.

Next, as AT G1,(C) is connected, it follows that

(ii) the integer k = — deg det® is preserved by the action of A*Gl,{C).
Because AGI,{C) acts by diffeomorphisms on QU,,

(iii) the degree d of ¢ (or, the energy of the corresponding harmonic map), is
preserved by the action AG!,(C).

Finally, because A*GI,{C) is (by definition) the isotropy subgroup of H,,
(iv) the minimal uniton number mg is preserved by the action of A*GI,(C).
This also shows that the action of ATGI,(C) on m-unitons reduces to the
action of the finite dimensional group Gn..

Although the action < of A*Gl,,(C) appears to give only a special case of
the action o defined in 1.8, it can be shown that the effective action on m-
unitons agrees with the effective action of A*GI,(C). In particular, this gives
another proof of theorem B of 1.8, that the action of Uhlenbeck’s rational
functions is always defined.

The action of G, on extended solutions is a natural generalization of
an action of G!,(C) on harmonic maps §* — CP"! which was introduced

in [Gu2]. By the classification theorem, such harmonic maps are of the form
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¢ =nod, where ® : §? — F,,,(C") is a holomorphic map which is horizontal
with respect to the projection « : F,,,,(C") — CP""'. Here, F,,.1(C") is
the space of flags of the form {0} C E, C E,;; € C®. If the flag corresponding
to ®(z) is denoted by {0} C W,(z) C W,,,(2) C C™, then the holomorphicity

condition is

a a
_Wr c Wrs s Vr c r+
3z "= gz 1 & Went

and the horizontality condition is

W, € Wi,

From this one sees that the natural action of Gi,(C) on F,,,;(C") preserves
both holomorphicity and horizontality. Hence if X € Gi,,(C), we obtain a new
harmonic map Xo¢ = x(X.$). More generally, this phenomenon occurs for
the “twistor fibration™ (in the sense of [BR|} of any compact inner symmetric
space G/H.

Just as the factorization theorem for extended solutions was a special case
of a factorization theoram for general holomorphic maps 52 — U, the action
of AG!L(C) on extended solutions is a special case of an action of AGI,(C) on

general holomorphic maps (and hence on instantons).

§4.4 Deformations of harmonic maps.

We have seen that (up to left translation) extended solutions are maps
® € Hols(8?, Fn ) such that 8/928(z) € N~'®(z). The significance of the
integers d and k is that d (= deg @) represents the energy of the corresponding
harmonic map, and k (= — deg( det ®(z))) represents the component of QU,
containing $(S5?). Moreover, there is an integer mg associated to &, the
minimal uniton number. One has mg < &, n — 1. The integers d and % are
obviously preserved by continuous deformations through extended solutions,
as they are preserved by deformations through continuous maps. However,
the same does not hold for my (see (Ej|,(EK]| for some examples).

One way of obtaining a continuous deformation of an extended solution
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®:5% = F,; is to define

Q‘ = g;o@

where g : R — Gp is a curve in G, . Such a deformation preserves my as
well as d and k. However, it may happen that @ = lim,_.., ®' exists (in the
terminology of [BG], $* is obtained from ® by “completion”). In this case,
$* is an extended soluiion with the same values of d and &, but its minimal
uniton number may be lower than that of @.

A natural choice of the curve ¢ is suggested by Morse theory. Recall that
a parabolic subgroup P of G!),(C) determines a Morse-Bott decomposition
of Gry(C*"); the gradient flow of a corresponding Morse-Bott function is then
of the form x, = ¢;.z, where g is a one parameter subgroup of GI,,.(C). (See
[At2], for example.) If this flow preserves F,;, we obtain a Morse theoretic
decotnposition of F, ;.

Let ®' be the deformation of an extended solution & : §% — F, ; obtained
by applying a gradient flow of the above type. Then, since each flow line
converges to a critical point, the limit $%(z) = lim,_ (2] exists for each
z € S% The function % is not in general continuous. But, since @ is
holomorphic, ®* defines & holomorphic map (in fact, an extended solution}
on a subset S? — {2,...,2.}, and the singularities z,..., z, are removable.
After removing them, we obtain an extended solution §* : §? — wke (In
the terminology of [BG], @ is obtained from ® by “modified completion”; in
terms of harmenic maps, it is an example of “bubbling off".)

It is easy to check that there is a Morse function on Gr,{C*") (i.e. a func-
tion with isolated non-degenerate-critical points) whose gradient flow preserves
F, . and which preserves extended solutions. In fact, such a function gives
rise to the Schubert cell decomposition of F,,; which was referred to in 2.2.
By applying the gradient flow to an extended solution, we obtain the following

result (which answers the question posed in §7 of [BG]):

Theorem. Let & : S* — F,; be any eztended solution. Then & may be

deformed to a constant map by applying a one parameter family of dressing
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transformations and taking the limit, in the manner described above.

In order to obtain results on continuous deformations, one needs to in-
vestigate when the singularities z,...,z do not occur. We shall conclude
by describing the simplest example of this phenomenon (which necessarily
involves using a Morse-Bott function with at least one critical manifold of
positive dimension),

Recall that harmonic maps ¢ : 5 — §* correspond to holomorphic maps

& : §? — CP? which are horizontal with respect to the twistor fibration
r:CP? — 5!

(see [Ca],[Bz]). This fibration may be identified with the natural map

Spz . Spe
Slepl Splepl.

A 2-plane V in C* = H? is called horizontal if and only if V L jV (with

respect to the Hermitian metric of C*). (The name comes from the fact that

if V is horizontal, then P (V) is horizontal with respect to 7.] The group $p;
acts transitively on the space of horizontal 2-planes, which is thereby identified
with the homogeneous space Spy/U; (see [Gal).

The integer deg® = (8] € m,CP? = Z is called the twistor degree of 6. We
shall give a short proof of the following theorem, which was proved recently
by Loo [Lo] (see also [Vel],[Ve2| for earlier results on the space of harmonic

maps, and [Ej],|[EK],[Kt] for an alternative point of view).

Theorem. The space of harmonie maps 8§ — S of fized twistor degree is

path connecled.

Proof: Using homogeneous coordinates, a holomorphic map ® : §* — CP*
may be written in the form ® = (po; p1; p2; ps), where po, p1,p2, ps are poly-
nomials. The horizontality condition is pop), — piph + peph — papy = O (see
" |Br]). Consider the path &' = [py;tpy;p2;itps], where ¢ € [0,1]; this obvi-

ously preserves both holomorphicity and horizontality. Now, if we know that
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® avoids the horizontal 2-plane Vy, given by zy = z; = 0, then we have a
continuous path joining & = $' to an element ®° of the path connected space
Hol,(S?,P(Vis)), where Vy5 is given by 2, = z3 = 0.

We claim that a transformation X € Sp; can be found such that X.&
avoids Vg, Since the action of Sp; preserves harmonicity, this will complete
the proof, as @ can then be deformed to X.$ by using a path in Sp; connecting
the identity to X. It suffices to show that & avoids some horizontal 2-plane.
But this is obvious, as the space of horizontal 2-planes is three dimensional,
whereas, for each z € §?, the dimension of the space of horizontal 2-planes
containing ®(z) is one (since such a 2-plane satisfies the condition ®(z) C
v C (9()). "

Although we did not explicitly use Morse theory and dressing transforma-
tions in this proof, they provided our initial motivation. There is a natural
Morse-Bott function on CP?, with critical manifolds P(Vaz), P{Va2), and the
deformation ®* is simply the result of applying the gradient flow to ®. The
gradient flow is given by the action of a one parameter subgroup of the com-
plexification Sp§, which acts by dressing transformations on harmonic maps.

Further details and results will appear in a joint article with Y. Ohnita.
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