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§0 Introduction
Let M be a Riemannian manifold of dimension m. Let
A = bd (0.1)

be the Laplacian acting on the space of smooth complex valued functions.
We have chosen the geometers sign convention; A, = -2‘63._ is the Euclidean
Laplacian on R™. More generally, if z = (z!,...,2™) is a system of local

coordinates on M, let
gij = (8:,8;) and g" = (dz', dz’) (0.2)

be the representation of the metric locally, The Riemannian element of volume
is dvol = gdx where g = \/det(g;;}. We compute the adjoint § of d in a system
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of local coordinates:

(62}_}’}'({.‘123,)‘-);,:

(Zifida’ df )

— £, Ufdw, 8cf dzt)dvol

Siifag” [i0:(F)dz (0.3)
—Zi;J8i(gg” fi) [ dx_

~Z;f9718,(99" f;) Fdvel.

This shows &§(L; fidz') = —E,;07'3:(gg" f;) and consequently

Apr = =Zi;979i (99" ;). (0.4}

If M is an oriented two dimensional manifold, the metric defines a conformal
structure on M and hence a complex structure. If z = = + iy are local
holomorphic coordinates, ds* = g(dz? + dy?) and A = ¢g7*(82 + 33).

We suppose M is compact and with empty boundary to avoid imposing
boundary conditioﬁs for the moment. Standard elliptic theory, see [G-3|,
shows there is a spectral resolution {A,,#,} for Aps. The {¢,} are a complete
orthonormal basis for L2{M) of smooth functions ¢, so that A¢, = A,¢,. Let

E(X, Ap) = spany, {8} {0.5)

be the corresponding finite dimensional eigenspaces; {A, E(X, Ap)} is also
called a spectral resolution of Apy. Let spec[A.lM] = {A,} be the eigenvalues
where each eigenvalue is repeated according to multiplicity.

We will examine the relationship between spec{4, M} and the geometry
and topology of M. The question for a domain in R? with Dirichlet boundary
conditions was posed by Kac [Ka| and has an attractive formulation due to
Protter |Prl:

“Suppose a drum is being played in one room and a person with
perfect pitch hears but cannot see the drum. Is it possible for
her to deduce the precise shape of the drum just from hearing the

fundamental tone and all the overtones?”

In §1, we use spherical harmonics to determine spec{A, M) if M is a spher-

ical space form i.e. has constant sectional curvature +1. In §2, we use results
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of Tkeda to construct spherical space forms of dimensions 5, 7, and 9 which are
isospectral but not diffeomorphic. This shows one can not hear the shape of a
drum in general. At present, all known examples of isometric non isespectral
manifolds without boundary have non trivial fundamental group. In §3, we
discuss some relationships between the fundamental group and the spectrum
using spherical space forms as examples.

Heat equation asymptotics are a powerful tool in spectral geometry. In
§4, we discuss the heat equation asymptotics for manifolds without boundary
and in §5 the corresponding generalization to manifolds with boundary. In
§6, we conclude by discussing briefly the corresponding results for first order
operators of Dirac type.

There is a vast literature on the subject; we refer to Bérard and Berger
|BB| and Bérard [Be] for further references in addition to those appearing at
the end of this paper.

§1 Spherical Space Forms

We begin our investigation by studying spherical harmonics. Denote a point
of R™*! by £ = (2°,...,z™). Let $™ = {£: | ¥ |* = 1} be the unit sphere. Let

S(m+1,7) = {f € C[2°...,a™): f(tZ) =t f() for t € C} (1.1)

be the vector space of polynomials in the {z'} variables which are homogeneous

of degree 7. Let
Hm+1,j)={f€5(m=+1,5):4.f =0} (1.2)
be the subspace of harmonic polynomials; identify a harmonic polynomial

with its restriction to S™. Let r = |z|* = 2% + ... + 22

Theorem 1.1: Let Agm be the spherical Laplacian on S™.
() dim{S(m + 1,5)} = (™).
(b) Sm+1,5) =r*S(m+ 1,5 - 2) @ Him + 1,5).
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(€ dim(am = 1.9) = (%) - (7).

(d) {74 + m—1), Him + 1,5)}32, ¢s the spectral resolution of Asm on §™.

Remark: If m = 1, let 2 = 2y + iz, € S(2,1). Then H(2,j) = span{zf, #}
and the spectral resolution of Asi = —8} decomposes L*(5!) = @;¢'" - C in

terms of Fourier series.

Proof: Since S(m+ 1,j) = zpn - S(m + 1,5 - 1) & S(m, ),
dim{S(m + 1,71} = dim{§(m + 1,5 — 1)} + dim{S(m, 5)}. (1.3)

Since dim{S(m + 1,0)} = 1 and dim{S(1,7)} = 1, (a) follows by induction,
If p=Egpaz® € S(m+1,7), let P(p) = L,p8,. Define a positive definite

symnetric bilinear inner product {-,-} on S(m + 1,7) by:
(P,¢) = P(p)(8) = Tap PaPa{3s2"} = a alpofa- (1.4)
Let pe S§(m+ 1,7 —2) and ¢ € S(m + 1,j). Since P(r?) = —-A,,
—(p, Acq) = {p, ). (1.5)

Multiplication by r? is injective. Since coker{(r?) = ker(A,), (b) and (c) follow.

We have identified a harmonic function with its restriction to 5™, Let
A=ZL;H{m+1,j) CcC™(5™) (1.6)

be the subspace generated by the H(m + 1,_;"}. Since r2|gm = 1, we use (b) to

see!
oggHm+1,v) ={S§m+1,j)+S(m+1,7—1)} s~ (1.7)
A =y{Sim+1L,7)+8m+1,7—1)}s~. ’
Since
S(m+1,7) - S(m+1L,k) C S(m+ 1,5 + k), (1.8)

A is a sub-algebra of C*(M). Since 1 € H(m + 1,0), £ is unital. Since
' € H(m+1,1), 4 separates points. Thus by the Stone- Weierstrauss theorem,
A is dense in C™(S$™} so

LHs™) = 4. (1.9)
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We introduce polar coordinates = (r,8) for r € [0,00) and # € §™ on

R™*! In polar coordinates, the Euclidean Laplacian has the form

A, == =mrT18, + Agn. (1.10)

If f € H(m + 1,7}, then A.(f) = 0 so (1.10) implies
Ase f(8) = 3(j + m - 1)£(6). (L.11)
Since Agn is self-adjoint, E{A, &sm) L E(g, Agm) for A # u. Since
H{m+ 1,0} C E(j(f + m—1),48sn), (1.12)

H(m+1,j) and H(m + 1, k) are orthogonal in L*(5™) for 7 # k. This shows

L} (8™) =@;H(m+1,j) (1.13)
H{im+1,j) =E@G(j+m=1),45n). '

(]
Let 7 : G — O(m +1) be a real orthogonal representation of a finite group

G. We say 7 is fixed point free if
det(r(g) — I) #Oforg # I. (1.14)

For such a 1, let M, = §™/r(G@); M, is called a spherical space form. The
manifold M, is compact with constant sectional curvature +1; all complete
manifolds with constant sectional curvature +1 arise in this way. The spherical

space forms have been classified; see Wolf [WO]. Let
H(m+1,7) ={f € H(m+1,j}: f(z) = [(r(g)z) ¥g € G}. (1.15)

If f € Him+ 1,7)7, f is G equivariant and may be regarded as a smooth
function on M,; this embeds H{m +1,;)" in C*(M,). We define a generating

function
F(t) = Z;dim{H(m + 1,7)" }/; (1.16)

F,(2) is holomorphic for [¢| < 1 since dim{H (m + 1,5)7} < ("‘f:f).
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Theorem 1.2: Let Ay, be the Laplacian on M, = S™/7(G).
(@) {FG+m—=1),H(m +1,5)7}3, is the spectral resolution of Ay, .
(b) Frt) = |G| 254(1 — 2) det (I — tr{g))~".

Proof: Let 7 be the projection from S™ to M,. Pullback 7* defines an injec-
tion

0 — L*(M,) IS L2(S™); image(r*) = L(S™). (1.17)

Consequently L*(M,) = @,H(m + 1,7); () follows from Theorem 1.1 since

JI"AMr = Asmﬂ". (118)

We use Tkeda [IK] to prove (b). Let (g- f)(z) = f(r(¢)z) define representations
7y and 75; of G on H(m + 1,7) and §(m +1,5). By Theorem 1.1,

T5i =TH; P T54-2- [l.lg]

Let g € G and j = 0,1, .... We compute:

dim{H(m+1,§)'} = |G| 'L, tr(ra;(9))
Fi(t) =|GI'B,, tr{rar3(9))t? . (1.20)
G Zg i {tx(rs,i(9)) — tr(rs,;_2(g))}t’
(1= )G B, 4 tr(rs,:(g))e.

Let (4 f)(z) = f(Az) define a representation S; of O(v) on §(v,j). Let

il

F(A,t) = Z;tr{5; AN, (1.21)

We complete the proof of Theorem 1.2 by showing F(A,t) = det(f — At)~!.

If & > 1, there is a non-trivial orthonormal decomposition of R¥ so:
_ {4, 0
A—( o Az)' (1.22)
Since S(vy + 12, 7) = ®,5(v1, k) ® S{vy, 7 ~ k),
F(A,t) = F(Ay,t)F(As,t). (1.23)

Since the determinant is multiplicative, we need only consider the special cases

v=1and v =2. If v = 1, then A is scalar and

F(A,t) = T;(At) = (1 - At)™" = det(1 — A1), (1.24)
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If v = 2, A is a rotation through an angle . Let R? = C; A = ¢'* € C. Since

8(2,7) =span{z#*},4s=;
F(A, 3] _ Eﬂ'beiade-t‘bsta+b _ [1 _ wa]"‘l(l _ e—iﬁt)—l [1'25)
— det(7 — tA)",

§2 Isospectral Manifolds

There are many examples showing neither the geometry nor the topology of

M is determined by spec(A, M). We review some results:

Theorem 2.1:

{a) (Milnor |[Mi|} There exist isospectral non tsometric flat tori of dimension 16.

(b) (Vigneras |[Vi]) There exist isospectral non-isometric Riemann surfaces.

{c) (Vigneras [Vi]) There exist isospectral manifolds with different fundamen-
tal groups if m > 3.

(d) (Ikeda [Ik]|) There exist isospectral non isometric spherical space forms,

(e) (Urakawa [Ur]}) There ezist regions ; € R™ for m > 4 which are isospec-
tral for the Laplacian with both Dirichlet and Neumann boundary condi-

tions but which are not isometric,

Remark: See also |[DG, Su] for general methods of constructing such exam-
ples. Gordon, Webb, and Wolpert (private communication) have constructed
polygonal regions in the plane which are isospectral but not isometric for the

Laplacian with Dirichlet boundary conditions.

These examples come in finite families. There are non trivial isospectral

deformations:

Theorem 2.2:

(a) (Gordon-Wilson {GW]) There ezists @ non trivial family of isospectral me-
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trics which are not conformally equivalent,
(b) (Brooks-Gordon [BrGo|) There ezists a non trivial family of isospectral

metries which are conformally equivalent.

In addition to these examples, there are some compactness results:

Theorem 2.3:

(a) (Osgood, Phillips, and Sarnak [OPS]) Families of isospectral metries on
Riemann surfaces are compact modulo gauge equivalence,

(b} (Brooks, Chang, Perry, and Yang [BPY, CY|) If m = 3, families of isospec-
tral metrics within a conformal class are compact modulo gauge equiva
lence.

(¢) (Brooks, Perry, and Petersen [BPP]) [sospectral negative curvature mani-

folds contain only a finite number of topological types.

In the remainder of §2, we present some results of Ikeda [IK] giving isospec-
tral non isometric spherical space forms. We introduce some notation. If G is
a group, let Rep(G) be the set of equivalence classes of complex finite dimen-
sional representations of G. Let Irr(G) be the subset of irreducible complex
representations. Let Aut(G) be the group of automorphisms of G; Aut(G)
acts naturally on both Rep(G) and Irr(G). Let Conj(G) be the set of conju-
gacy classes. Let Class(G) be the space of complex class functions. If |G| < oo
and f; € Class(G), let

{f1, 12} = |G E, f1(g) f2(9) (2.1)

define a non-degenerate Hermitian inner product. Identify p € Rep(G) with
the character T'r(p) to embed Rep(G) in Class(G); by the orthogonality re-
lations, Irr(G) is an orthonormal basis for Rep(G). If f € Class(G), f = 0 if
and only if {f},p} =0 Vp € Irc(G).

We begin by relating isometries of spherical space forms to group theory.
Let m > 1. If r: G — O(m + 1} is fixed point free, let M, = S™/7(G). Since

S™ is simply connected, 7 defines an isomorphism between G and ,(M,).



SPECTRAL GEOMETRY 81

Lemma 2.4: M, and M, are isometric if and only if there exists ¢ € Aut(G)
and A € O(m + 1) so 0 = A~} r o ) A,

Remark: DeRham showed [De] that M, and M, are diffeomorphic if and

only if M, and M, are isometric.

Proof: Suppose A.¢ = (r 03} - A so we have a commutative diagram:
sm __{’&_} sm

lofg)  Lr(vla) 22)
gm — 5™,

Let ¢{z) .= Az. Since ¢ preserves equivalence classes, ¢ defines an isometry
8 : 5™/0(G) — 5™/1(¥(G)) = 5™/1(G). (2.3
Conversely, let ® be an isometry from M, to M,. Define ¢ € Aut(G) by
v==8:m(M,)=6GC—-m(M)=0G. (2.4)

Lift ® to an isometry ¢ of the universal cover S™. Then ¢(z) = Az for some
A € O(m+1) and (2.2) holds. Thus ¢ = A™(r o ) 4. ]

We now construct isospectral spherical space forms with non Abelian fun-
damental group which are not isometric. This construction is very group
theoretic in nature, The construction generalizes easily, but we present it for

a single example to simplify the discussion. Let
G={AB:AY =B® =1, BAB™ = A%); |G| = 275. (2.5)

Let Hy, = {A); since Hy, is normal in G, H,, is the unique Sylow 11-subgroup
of G. The group G is metacyclic:

I—PH‘l]—'G—‘ng—*l. {26]

Let Hs = (B®) be the center of G; Hy, & Hs = (AB?) is the maximal normal
subgroup. We define 35 subsets of G by:

BY . {A, A% A% A5 Al for 0 < i < 4,

BY {Az’ AG! A?s AY, AB} for5<i <9,
{B%}for 10 <:{ < 14,

Bi-{1,A,..,A®} for 1< i< 24 and i # 0 (5).

(2.7)

Poan

i
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Let A = ?"/11 and 4 = ¢**/%, Let {e,} be the standard basis for C® where v
is defined mod 5. Define 7(a,b) : G — U(5) by:

r(@,8){e,) = A%, and r(a,)(e,) = eu_,. (2.8)
Define p(c) : G — U(1) by p{c)(A) = 1 and p(c)(B) = ~°. Since r(a,b) and

plc) preserve the defining relations, they define representations of G.

Lemma 2.5:

(a) Conj{G) = {Ct, Dj}.

(b) Irr(G) = {7{a,b),p(c)} Jor 1 <a<2,0<b<4,and0< ¢ < 24.
(c) 7(a,b) is fized point free if a Z 0 mod 11 and b £ 0 mod 5.

Proof: Since BA*B~! = A%, all the elements of €, are conjugate. Since
A™'B'A = A*B'for v = 3 —1 and since 3' — 1 is a unit of Zy; for { # 0 (5), all
the elements of D; are conjugate. Thus [Conj(G?)| < 35. The representations
in (b) are inequivalent and irreducible so |Irr(G)| > 35. Since |Conj(G)| =
|Irr(G)[, (a) and (b) follow. The eigenvalues of 7{a, 5)(B7) and r(a, b)(A*B5¢)

are

(MY and (AP, (29)
These are not 1 for j # 0 (25}, and & # 0(11) or € 2 0(5) since a # 0(11) and
b£0(5). -

We study the automorphisms of G and ifometry classes of the M.

Lemma 2.6: Let M(a,b) = 5§°/7(e,5)(G). Let ¢(A4) = A"B* and ¥(B) =
A7 B,

(a) ¥ € Aut(G) & a#0(11)},8=0(25), andb=1 (5).

(b)M (a1,81) is isometric to M(ag,by) <> by = by (5).

Proof: Let ¢ € Aut(G). As (A) = Hy, is the only subgroup of order 11 in G,
@(Hu) = Hy; thus B® = 130 8 =0 (25) and A% # 1 s0 & # 0 (11). Also

$(BAB™) = A1BY4*B~6 4" = A¥e, (2.10)
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Since Y(BAB™!) = (A% = A%, 3¥ =3 (11) so é = 1 (5). This establishes
one implication. Conversely, if {e, 3,7, 8} satisfy the conditions of (a), ¢
preserves the defining relations and extends {0 an automorphism of G. Let

51
52

{M[lsl)! M(zsl]s M(1!4)! M(2’4}}

{M(1,2), M(2,2), M(1,3), M(2,3)}. (2.11)

Define ¥ € Aut(G) by ¢(4) = A% and $(B) = B. Then r(1,b) o ¢ = r(2,b)
so M(1,b) is isometric to M(2,8) for any b. Since the complex conjugate
7(2—@,5—b) is equivalent to 7{a, b) in O(10), M(2,d) is isometric to M(1,5—
b). Thus all the manifolds in S; are isometric for i = 1,2. Conversely, if
¥ € Aut(G), ¥(B®) = B°. Let r.(a,b) : G — O(10) be the underlying real

representation;
tr{r.(a,b)¥(B%)} = tr{r. (e, ) B*} = 5cos(27b/5). (2.12)

This shows r(1,1) and 7(1,2) o ¢ are not conjugate in O(10) so M(1,1) and
M(1,2) are not isometric. n

Let D be a natural operator of Riemannian geometry; for example we
could take I} = A, = (dé + éd) on the bundle of smooth p forms.

Theorem 2.7: M(1,1) and M(1,2) are D isospectral for all natural operators
D but M(1,1) end M(1,2) are not isometric.

Proof: We use ideas from the proof of Theorem 1.2, Let {}, E(A, D)} be the
spectral resolution of It on 5°. By hypothesis, the isometry group O(10) of

S? acts equivariantly with respect to D so there is a natural representation
E(A}: O(10) — GI(E(A, D)) (2.13)
of 0O(10) on the eigenspaces. Let

EM\D) ={f € E(\,D): E(\)(r(a))- f = f Vg € G} (2.14)
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be the invariant subspace; {4, E(, D)"} is the spectral resolution of D on M.
Let (A7 B¥) = A7 B*; 4 is a bijective set theoretic correspondence preserving

conjugacy classes which is not a group homomorphism. We verify:
tr(r(1,1){(¥g)) = tr(r(1,2)(9)). (2.15)
Thus r(1,1)(s¢) is conjugate in U(5) and hence in O(10) to 7(1,5)(g) so
tr{E(A)7(L,1)(vg)} = tr{E(A)7(1,2)(9)}. (2.16)

Therefore:

dim E(), D)r) |G E, tr{ E(A}(1,1)(g)}
|G B, tr{ E(A)}r(1,1)(0)}
|Gl E, tr{E(2)7(1,2)(9)}
dim E(X, D)),

(2.17)

nnun

Remark: Ikeda (IK] and Gordon [Go] have constructed examples of manifolds
which are A, isospectral but not A, isospectral; thus Ag isospectral does not

imply isospectral for all natural operators of Riemannian geometry in general.

We now turn our attention to Abelian fundamental groups, In contrast to
the preceeding example, the construction here is primarily number theoretic
in nature. Let n > 2 and let § = {sy, ..., 8} be a collection of integers coprime
to n. Let Z, = {A € C : A" = 1} be the cyclic group of n*® roots of unity and
let "

ps{A) = diag(r*,...,A") : 2, — U(k) € O(2k) (2.18)

define a fixed point free representation of Z,. Let

L{n; §) = §%*~1/pg(Z,) (2.19)
be a lenspace. The following follows directly from Lemma 2.4:
Lemma 2.8: L{n;5) and L(n;g) are isometric if and only if there is @ per-

mutation o, an integer £ coprime to n, and signs €; = +1 s0 8, = €;£§; for
1<i<k.
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We construct isospectral lens spaces which are not isometric. Let p =
2v — 1 be prime. Let § = {81,...,8,} and R = {rq,...,m} fore + b = v be

complementary collections of distinet indices so § U R = {1,2,...,v}.

Theorem 2.9:

() L{p;S) and L(p;é] are {sometric & L(p;R) and L(p; R) are isometric.
(b) Let b= 2 and p = 11. L(p; 3,4,5, .., ) is not isometric to L(p; 2,4,5,...,1).
(¢) Let b=2 and p > 11. All the L(p; S) are all isospectral,

Proof: Let Z; be the set of primitive p** roots of unity. Let Z; = {1} act
on Z, by multiplication; {1,...,v/} is a set of representatives for Z,/Z;. Let
Ves)=8-£:Z,/Z, - Z,/Z,. (2.20)

By Lemma 2.8, L(p; 5) and L(p; ) are isometric & 1,(8) = § for some £.
Since R = {1,..,v} — S and R = {1,...,v}— s Pe(8) = 8§ © ¥(R) = R.
This proves (a). L{p;1,2) is isometric to L{p;1,3) « 2-3 = £1 (p); this
fails for p > 11. Thus by (a}, the complementary lens spaces L(p;3,4,5,..,¢)
and L[_p:2,4,5,...,u] are not isometric. We complete the proof by showing

the generating function
Fs(t) = p~ (1 —t*)Ey det(f — t - ps(A)) ! (2.21)
of Theorem 1.2 is-independent of S or equivalently
Fs(t) = Topr det(I — t- ps(A))™! (2.22)

is independent of 5. Since {1,...,#} = SU R, if A # 1,

gt) = TLo(1 = tA'=)(1 —tA~")  TI4(1 — tA™)(1 — tA~"") (2.23)
= Iger(1 - tA%) = Mgy (1 — £€) )
is independent of S and A. We clear denominators:
g(t)Fs(t) = Eaga(l—tAm){1 — tA1)(1— tA)(1 — tA~"2) (2.24)

ao(5) + a1(8)¢ + az2(SI? + a3(S)® + au(S)t4.
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We note %r, and *r; + r, are not divisible by p. We compute:

a8} = a(S)=1.

GI(S) = G@(S) = —E;\;q/\” F AT AT A
— Cavaa (2.25)
Gz(R) = E;;ﬂ:! + )lirlirz = Eg¢l(2 + 4)\)
[ ]

Remark: Two lens spaces L; are isometric if and only if they are diffeo-
morphic; they are homotopic if and only if there exists £ so I;s; = £€*I13;;
see [Co|l. Thus L(11;3,4,5) and L(11;2,4,5) are isospectral 5 dimensional
lens spaces which are homotopic but not diffeomorphic; £L{13;3,4,5,6) and
L(13;2,4,5,6) are isospectral 7 dimensional lens spaces which are not homo-

topic.

§3 m, Isospectral Manifolds

Let M be connected. Let M be the universal cover of M. Let V be the
representation space of g € Rep(m(M)) and let V, be the associated bundle:

V, =M x Vjm (M) (3.1)

where we identify (z,w) = (gz,p(g)w). The transition functions of V, are
locally constant so V, is flat; V, inherits a-natural connection V, with zero
curvature. The holonomy of the connection V, is the representation p so we
may identify representations of my{M) and flat bundles. Since the transition
functions of V, are locally constant, we can define the Laplacian A, on C*(V,)
to be locally isomorphic to dim(p) copies of the standard Laplacian A,.

Let M = §™/r(G) be a spherical space form. We generalize Theorem 1.2

to the equivariant setting as follows; we omit the proof as it is analogous. Let

Fp(t) = T dim{(H(m + 1,5} ® V)°}¢’. (3.2)
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Theorem 3.1: Let M = S™/r(G) end let p € Rep(G).
(a)} {(F+m=1), (H(m+1,7)@V)?}2, is the spectral resolution of A, on M,.
(b) Fr,(t) = |G[T1E,(1 — t)* det(I — tr{g)) " tr(p(g)).

There are two different ways in which to relate flat bundles over differ-
ent Riemannian manifolds. The first is to assume a given isomorphism ¥ of

fundamental groups or marking.

Definition : Two Riemannian manifolds M; are marked m isospectral if

there exists an isomorphism ¢ : m;(M;) — my(M;) so

spec(A,, My) = spec(A oy, M1) ¥p € Rep(G). (3.3)

Theorem 3.2: If My and M, are marked m, isospectral spherical space forms,

then M, and M; are tsometric.

Remark: Carolyn Gordon informs us the examples of [GW)] are marked

isospectral so Theorem 3.2 fails in general.

Proof: We shall see in §4 that spec(A, M) determines the dimension m of the
underlying manifold. We use isomorphism o : m (M) — m(M;) to identify
the fundamental groups and to express M; = 5™ /1;(G) where the r; are real

representations of G; let 7;. be the complexifications. Let
m1(Mi, p) = dim{kernel(A, — 5(7 + m — 1))ar,} (3.4)
be the multiplicity of the first non-zero eigenvalue of A,. By Theorem 3.1,
#1(M;, p) = dim{(H(m + 1,1) @ V)¢} = (1., p"). (3.5)

Since the M; are marked , isospectral, we use the orthogonality relations to

see 7. = Ty, 50 7y and 7; are equivalent real representations of G. ]
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The notion of marked =, isospectral depends upon the isomorphism 4 cho-
sen between the fundamental groups. It is convenient for work in equivariant

hordism to have a notion which is independent of 1.

Definition : Two connected manifolds M; are m; isospectral if there exists

an isomorphism ¥ : 7 (M} = G — m(M2) = G; s
spec(A,, My) = spec(A oy, My) ¥p € Rep(G)A*(¢3), (3.6)

Since p is Aut{G;) invariant, (3.6) is independent of .

The following Theorem shows the nature of the fundamental group in-

volved plays a crucial role, even for spherical space forms.

Theorem 3.3:

(a) Let p be prime and let M; = L{p; §) be isospectral lens spaces. Then the
M; are 7y isospectral. Thus there exist 7y tsospectral non-isometric lens
spaces.

(b) Let G ={A,B: A = B*® =1, BAB™! = A% as discussed in §2.

Let M; = 8™ /1;(G). If the M; are m, isospectral, then the M; are isometric,

Proof: Let Z, = {A € C: Af = 1} for p is prime. Let M = L(p;§5). Let

2.(A) = A*; {p,}5=} parametrize the irreducible representations of G. Let
§=po+ .+ pp-1- (3.7)

be the regular representation. If p € Rep(G)A*€), then p = apo + b+ 6. Since

spec{fAg,, M) =spec(A,5™)

spec(A,,, M) =spec(4, M), (3.8)

isospectral implies 7, isospectral. This proves (a).
Before proving (b), we must examine the structure of the representation

ring. We adopt the notation of §2:
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Lemma 3.4:

(a) r1p + 725 € Rep(G)A*) and 154 € Rep{G)A*(S) vy,

(b) 714 ® 716 = 271508 + Irap4s and T2p @ 725 = 272049 + 37140,
{c) np @ g = 271408 + 272445 + Topsp

(d) S2{r1p) = 272,06 + Ty 2e and Sy(r2) = 2r12 + Ty 0.

Remark: Tos = Py + Psis + Pro+s + P15+ + Pro+s IS not irreducible.

Proof: (a) follows from Lemma 2.6. We compute characters to prove the

remaining assertions. If ¢ has order 25,

br{ras ® Tap}(g) = tr{Ss(7as}}(g) = 0. (3.9)
Similarly tr(r,;(g)) = 0. Let A = e*™/11, ; = ¢"i/6 and let g = A*B". The
eigenvalues of {7,, @ r,4)(g) are A***ulb+5 for

ve {1,3,9,54} + {1,3,9,5,4}
= (2,4,10,6,5, 4,6,1,8,7, 10,1,7,3,2, 6,8,3,10,9, 5,7,2,9,8);

(3.10)
Similarly the eigenvalues of (1, ® 3 5) (A% B%*) are A ut+8l for
v €{1,3,9,5,4} + {2,6,7,10,8} (6.11)
= (3,7.8,0,9, 5,9,10,2,0, 0,4,5,8,6,7, 0,1,4,2,6, 10,0,3,1);
Finally, the eigenvalues of Sz(7.,)(A%B%) are A*u®* for
v € {2,6,7,10,8,4,10,6,5,1,8,7,3,2,9}. (3.12)
n

Lemma 3.5: Let 7. = L,a,(r . +115-0) be the complexification of a real fized
point free representation 1, of G.

(a) {rey iy + 72,0) = @y + aa.

(b) (reimr2 + 722} = @2 + as.

(c) (8%, mo0) = 5(ad + a2+ at +ad).

(d) (§%r. 700} = B(a1az + azaz + asay).
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Proof: (a) and (b) are immediate. We decompose:

Se7e = Zai{So(r1i) + Salras-i)} + Tiadryi @ T25-
+Eidai(a — 1){re @ rig + 725-i ® T2 5-i}
+Ei<ja|'a-j{rl.i Q@ny;+n:® 7'2,5—_1'}
+Eicjtia;{Ta5i @ iy + To5-i ® Ta5-;}

We use Lemma 3.4 to expand S,7. in terms of the 7, 5. We are interested in
o = 0 and supress the terms where o # 0. Consequently we ignore the Sz(n 5},

T @ 114, and 7p; @ 1y terms. We expand 7, ® T2; = Tog4; + ... tO seE
Sa7e = Bialron + Dicjaias{roi-s + Toj-i) + (3.13)

Let 7. = E,a,(", + 7z 5-,) determine a spherical space form M(&) for the
a € N, Let @ = (a4, a3, az,8,) define an involution of N*. The argument of
Lemma 2.6 shows M(a@) = M(b) & & =b or &= b'; therefore N*/Z; is the

natural parameter space. We note
dim{E(j(5 + m — 1), 4,)} = (h;{r),p"}. (3.14)
Since s; = Aj + hj_2 + ..,

{(85(1’), p)}pekep(t}')*“"m (315]

are spectrally determined. We complete the proof of Theorem 3.3 by showing

{a=0+ay, B=ay+a

v=a}+a}+al+a}, 6=aia;+ aa5+ azes} (3.16)
distinguish points of N*/Zz. Introduce new variables:
= —1 = _1a.
r=a —j0, y=a;— ;0 1 (3.17)

a=ia+z, ea=210+y, w=18-y, aa=j0-z.
In these coordinates (z,y)" = —(x,y). We express:
1 = (et 2+ (18 +9)+ (39— 9 + (Yo o)’
so? +18% + 227 + 247 (3.18)
§ =(e+a)1+9)+ (G+00EF -+ (38 -¥Ga-2)
=22y —y* +1af +1p
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Suppose (a,8,7,6)(@) = (a, 8,7, 6)(5}. If @ corresponds to (r,y) and b to

? +y? = 2? 4 7% and 22y — y* = 2z — g, (3.19)

We complete the proof by showing (z,y} = +(z, 7).
If y=§ =0, then = = £z. We therefore assume y # 0 henceforth. We
acknowledge with gratitude the assistance of N. Spaltenstein with the following

argument. We use (3.19) to see:

zf =28 + g -y and 42%° = (225 - §* + v?). (3.20)

We eliminate z to see 4(2* + §* - y?)y® = (225 — §° + y*)°. This yields
5y* + y* (429 — 6% ~ 42%) + (237 - §*)* = 0. (3.21)
We factor this quadratic expression to see:
(v' - 9°)(5v" - (22 - 9)°) = 0. (3.22)
Since {y, §, 2} are integers and y # 0,
5yt — (22 — ) £ 0. (3.23)

Thus y* = g%, By changing the sign if necessary, we may suppose ¥y = § > 0.
Since 2zy = 2Zy and y # 0, z = I. [ ]

§4 Heat Equation Asymptotics for manifolds without
boundary.

So far we have seen that isospectral manifolds are not necessarily isometric
or even topologically equivalent. We now change our focus and investigate
what geometric properties are determined by the spectrum. Heat equation
asymptotics are a fundamental tool. We refer to Gilkey [Gi] for proofs and

details unless otherwise indicated in this and subsequent sections. Let

Trpze™® = 5,6 (4.1)



92 P. B. GILKEY

be the global trace of the fundamental solution of the heat equation. As

t — 0%, there is an asymptotic series
Trps e7t8 ~ T2 gan(A)em-m2, (4.2)

The ¢,(A) are spectral invariants which are determined by the local geometry
of M. Let Roman indices ¢, j etc. range from 1 through m and index a local
orthonormal frame {e,, ..., €,,} for the tangent space T(M}. We use the metric
to identify T(M) with the cotangent space T°M. Let R, be the curvature
tensor of the Levi-Civita connection with the sign convention Ry = —1 on
the standard sphere. We sum over repeated indices to define

T o= =Ry, pi; = —Rigjrs (4_3)
ﬂz = Rt'kijl'iJ'f! Rt = Ei'kfR‘f""

Theorem 4.1: (Sakai [Sa}, Gilkey |Gi]). Let the boundary of M be empty.

(a) a.{A) =0 forn odd .

(b) ao(A) = (4m) 7™/ fy,1.

(¢) a2(A) = 671 (dm) ™2 [ 1.

(d) as(A) = 3607 (4m)~™/2f,,57% — 2p® + 2R%.

(e) as(A) = 4536071 (dm)~"™/2f, — 142(Vr)? — 26(Vp)? — T(VR)? + 3573
—427p% + 427 R? — 36p;p5xPki — 2005k Rinjt — 8pij Riktn Rjktn
—24Ry5 Ryjrp Fiinp.

Remark: Avramidi [Av] and Amsterdamski, Berkin, and O’Connor [ABC]
have computed as(A); as has formidable combinatorial complexity.
We can use Theorem 4.1 to draw some positive conclusions in spectral

geometry:

Theorem 4.2: Let spee(d, M{™) = spec(A, M7™?).

{2) my = my and vol(M,) = vol(M).

(b} If my =2, x(M)) = x(My).

(c) Let my < 5. If My has constant sectional curvature ¢ so does My. If M, =
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S™ then M; = S™.

Proof: (a) follows from Theorem 4.1 (b). If m = 2, we use the Gauss-Bonnet

theorem to see the Fuler-Poincare characteristic is a spectral invariant:
x(M) = (4n)"1 ;7 = 6a;(A). (4.4)

In particular, if the M; are Riemann surfaces, they are diffeomorphic. The

proof of (c) is a bit more delicate. Let ¢ and ¢ be real parameters. Define:

p= p—(m—1)céh
Wiiule) = Riji — e{ubi + binba — Bixbit — pubin} (4.3)
—elfubyx — 6bj).

1l

Lemma 4.3:

(a) M has constant sectional curvature ¢ & |W|? = |52 = 0.
(b) 15> = Ipl* + Ofe).

(c) W[? = |R[* — (8¢ + (8 — 4m)e?)|5]? + de¥r? + O(c).

Proof: We follow the argument of Berger and Tanno |Ber, Ta|. If M has
constant sectional curvature ¢,
Riju = cbibir — cbinby (4.6)

50 pj; = (m—1)cb; and 5 = 0, Thus W = FRiju—cbisbj — cbixéy = 0. Conversly,
if p =0, then W = Ry - ebyd; — cbpéyy = 0 so R has constant sectional

curvature ¢. This proves (a); (b) is immediate. We prove (c) by computing;

WP = W;uWin

= |RI* — 2¢{BiRiji + FinRijui — BinRish; — pitRijut}
+e {Bupab vk + Piedinbubi + Pinhiebiibin + Pinbabixbix
+20ub;ebinbi — 2Bubibinby — 24P b6
—20;5buiebpn — 2p;1B1006:x + 2Pipibiibiz } + O(c)

= |R|* = (8¢ + (8 — 4m)e?)|5]® + 4¢*r? + O(c).

(4.7)
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Let g(e,m) = 8¢ + (8 — 4m)e* — 1. We use Lemma 4.3 to decompose:

a,(A) = 36071 {4r)"Lf,, 51F — 20" +2R?
= 360"1(41)7 [, "2|W|? + 2g(e, m)|5[? (4.8)
+(5 — 8¢*)(r — ¢)® + Ofe).

The missing terms are multiples of fer and f¢? which are controlled by ay and

a;. Consequently, we can find universal constants o; = a;(c, €} so:

(e0ag + @305 + agas){A) = [, 2|W|* + 2g(e,m)|3]* + (5 — 8€7)(r — ). (4.9)
If we can choose € € [0,%] so g(e, m) is positive, this spectral invariant will
vanish if and only if M has constant sectional curvature ¢. We note:

9(3,.2)=3 > g(3.3)=2 > g(3,4) =1 > 0. (4.10)
The function ¢ is maximal when ¢ = (m —2)7%; (m - 2)"' € (0,4] for m > 4
and

L _1>0form<6.m

m—2

g((m - 2)7",m)

Remark: Tanno [Ta] has proved Theorem 4.2 (c) also holds in the limiting

case m = 6. He has also shown isospectral deformations of spherical space

form are trivial; this analysis uses ag.

Let A, = dp_16,_; + é,d, be the Laplacian on p forms. We may expand

Tr2(e7*%%) ~ Toan (A, )t (4.11)

where the an(A,) are spectral invariants of the Laplacian on p forms. We can

generalize Theorem 4.1 to study the geometry of the form valued Laplacian.

The a,(A,) are locally computable. If n is odd and the boundary of M is

empty, a,(A,) = 0. Introduce constants:

e(mip) = () = sy

co(m,p) =e¢(m,p) —6e(m—2,p—1),
es(m,p) = 5c(m,p) — 60c(m — 2,p — 1) + 180¢c(m — 4,p — 2), {4.12)
ez(m,p) = —2¢(m,p) + 180c(m — 2,p — 1) — 720¢(m — 4,p — 2),

es(msp) = 2¢(m,p} — 30c(m — 2,p — 1) + 180c(m — 4,p — 2).
Set e(m,p) = cu(m,p) = 0 for p < 0 or p > m. The invariants a.{A;) for
n < 4 were computed by Patodi [Pa:
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Theorem 4.4: (Patodi) Suppose the boundary of M is empty.

(a) ao(Ap) = {4m)}="/3 [\ re(m,p) - 1.

(b) a2(4;) = (4m) /2L pyeo(m,p) - 7

(c) a(A,) = (4m) "5 [ae{er(m, P2 + ea(m, p)o* + e5(m, p) R?).

Remark: We refer to [Gi] for formulas which would permit a calculation of

a¢(Ap) and to Avramidi [Av] for similar formulas relating to as.

Corollary 4.5: (Patodi} Suppose spec(A,, M) = spec(A,, M,) for p =
0,1,2.

(a) I] My has constant scalar curvature r = ¢, so does M;.

(b) If My is Einstein, so is M,.

(c) if M, has constant sectional curvature ¢, so does M,

Proof: The matrix of coefficients ¢, {m,p) for 1 <v < 3 and 0 < p<2isnon
singular. Thus

{Inds Taers Taa?s Tago®s R} (4.13)

are invariants of spec{A,, M) for 0 < p < 2, The Corollary now follows. m

Remark: We will discuss two generalizations of this result to manifolds with

bounary in §5.

It is natural at this point to study general operators with leading symbol
given by the metric tensor. Let Greek indices v, p, etc. range from 1 through
m and index the coordinate frame for T(M). Let ds? = g, dz" o dz* be the

metric tensor and let
Fvﬂo = %gﬂ (avgtn + apgw - aegm) (4'14)

be the Christoffel symbols of the Levi-Civita connection. Let V be a smooth
vector bundle over M and let D be a second order partial differential op-

erator on C®(V) with leading symbol given by the metric tensor. In local
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coordinates, I has the form:
D=—(¢"] - 8,8,+ A8, + B) {4.15)

where AY and B are endomorphisms of V. We can work more invariantly. Let

¥ be a connection on V and let E be an auxilary endomorphism of V. Let
D(g,v, E) = “'(Ev.ngw‘vvvp + E) (4.16)

on C™(V) be an operator with leading symbol given by the metric tensor.

Theorem 4.8: If D is a second order operator on C®(V') with leading symbol
given by the metric tensor, there ezists a unique connection V on V and o
unique endomorphism E of V so D = D(g,V,E). If w, is the connection

I-form of V,
Wy %guu (A” + gﬂraeu)
E =B - g"(d,w, + wuw, — w. %),

1l

Example : Let A, be the Laplacian on p forms. The associated connection is
the Levi-Civita connection and E is given by the Weitzenbéch formulas. Let
ext’(-) be left exterior multiplication and let intf(-) be the dual, left interior
multiplication. Let
() = ext®(-) — int(") (4.17)
define a left Clifford module structure on the exterior algebra;
Vs + v = 26 (4.18)
Define a right Clifford module structure +* similarly. Then
E= “% i,-'::n’h!'T;"{::‘)': - %"- (4.19)
By the Bianchi identities, E preserves the decomposition A(M) = &,A?(M)

and restricts to endomorphisms E, of AP{M). Let * be Clifford multiplication.

We illustrate these formulas by computing:

. 1
Eo(1) = —gRiueitejvexe,— 47
=1 Py i1 ir=
—;Ili’;,-k,e‘*ek 4T—41‘ﬂ4T—0
Ej(en) = —gRimeite;revete,— ire, (4.20)

(—gRiueirej v e x e — ir) koo — dRime v e 2 ¢
= Eo(1l)en + Rijnjei = —pinei.
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Example : Let A*™ be the spin Laplacian. The associated connection is the

spin connection and E = — 17,

Let {),, 4.} be the spectral resolution of D = —(g"*V,V, + E). The
fundamental solution ' of the heat equation is given by a smooth kernel

function K :

K(t 2,9, D) =Z,eMd,(z) ® ¢;(y).
e'Pulz) = [K(t,z,y, D)u(y)dy, (4.21)
trv {K(t,z,z,D)} = e~ (z)]?, )
Trpa(e™P) = e = [, try K(t,z,z, D).

Theorem 4.7: Let the boundary of M be empty. Ast — o+,
ity K(t,z,2,D) ~ &, an(D)(z)i"™2
The a,(D)(z) are locally computable invariants which vanish for n odd.

Trrz(e™'?) ~ Taaq (D)™ for an(D) = [yran(D)(z).

Theorem 4.8: Let 1 be the curvature of the connection V on V.

(a) ae(D)(x) = (4ﬂ'||‘}"'“‘"2 tr(1).

(b) az2(D)(z) = (47)"™/?6~' tr(6E + 7).

() as{D)(z) = (47)"™/2360 ! tr{60E s + 607 E + 180E? + 30110, + 12744
+572 — 207 + 2R?),

Remark: See [Gi] for ag(D)(z) and Avramidi [Av] for ug(D)(z). We specialize
to the case D = A, to derive Theorems 4.1 and 4.4.
This gives complete information concerning a, for n < 8. Partial informa-

tion about all the coefficients is also available.

Theorem 4.9: Let the boundary of M be empty and let n > 3. Let

e(n) = (4m) "2 {(~1)*- 2" 1.3 . (20 + 1))
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Modulo cubic and higher degree terms which have fewer covariant derivatives,
aza(D) = e(n) [ tr {(n® — n — 1)|9"2r|? 4 2| 9" 2p)2

+4(2n + 1)(n — 1) V30 . UP2E 1 2(2n 4+ 1)V-200 . 9720

+4(2n + 1)(2n - 1)V IE . V*IE + ).

Remark: See Osgood, Phillips and Sarnak [OPS] if m = 2 and D = A,. This

thecrem plays a crucial role in the compactness results of Theorem 2.3.

$5 Heat Equation Asymptotics for manifolds with bound-
ary.

We must impose suitable boundary conditions to generalize Theorems 4.7 and
4.8 to manifolds with boundary. Near the boundary, let e, be the inward unit
geodesic normal. Let Roman indices {a, 5, ...} range from 1 through m — 1 and
index an orthonormal frame for the tangent bundle of the boundary. Define

the second fundamental form by
Lap = (ve..eb,em]- (51}

Let D = —(¢"#*V,V, + E) on C=(V). Let x be a smooth endomorphism of
V0ane with x2 = 1. Let

My = (1= x) and Ip = 3(1 + ) (5.2)

be projection on the £1 eigenspaces of x. Let S be a smooth endomorphism
of range(Ily). If ¢ € C®(V), let

Be =Tn{(V., + S)¢l am} @ Tp {¢] anr}:

domain(Dyp) = (¢ € C=(V) : B¢ = 0}, (53)
Let {A,,#,} be a spectral resolution of Dg. Let
K(tlzi i, D) = Eue_upév(x) ®¢;(y] {54)

be the kernel of the heat operator e~'P#. On the diagonal K behaves like

a distribution; we study this phenomena by localizing with a test function



SPECTRAL GEOMETRY 99

J € C*(M). Let VY f be the +** normal covariant derivative of f. Let “” be
‘multiple covariant differentiation with respect to the Levi-Civita connection
VL€ of M and let “” be multiple covariant differentiation tangentially with

respect to the Levi-Civita connection V' of the boundary.

Theorem 5.1: Ast — OF there is an asymptotic series of the form:
Trpa(fe7*02) ~ Eqan(f, Dp)tin™12,

There are local invariants a,(D)(z) defined on M and local inveriants a,,(Dp)(y)
defined on the boundary @M so

an(fa DB) = .er . a,.(D)(z) + EVJranvmf *Onp (DB)(y]

Remark: The usual heat equation asymptotics arise by setting f = 1. They
need not vanish if n is odd.

Theorem 5.3: (Branson and Gilkey [BG|, Moss and Dowker [MD))

() ao(f, Dp) = (47)=™/2 [ f tr(1).

(b) ar(f, D) = J{4m)=tm 072, f te(x).

(¢) a2(f, Dp) = §(47) "™/ {fpe fAT(6E + 1) + fapef t2(2f Laa + 121 5)
+ fim tr(3x)}

(d) es(f, Dp) = sk (4m)~(""22{f pps S 4r{96X E + 16X7 + Bf X Ramanm
+(13My — TMp)LaaLpy + (2N + 10N p) Loy Loy + 96S Loy
+1925% — 12x.aX:a} + fom t1{(6TIn + 30Ip) Log + 965} + fomm tr(24x)}

(e) au(f, D) = sh5(4m)"™/2{f 4 tr{60E sy 4+ 607 E + 180E? + 3002 + 127,;
+57% — 20° + 2R} + [0 f tr{(2401Ty — 120TIp) E,,, + (4211 — 1811p)7,y,
+24Lgg48 + OLgpas + 120E Loy + 207 Lyg + 4 RamamDts — 12Ramsm Las
+4Raves Lae + Oims + 2171 ({28011 + 40T p}Los Ly Lo + Ox.allam
+(168My — 26411p)Lyy Loy Le. + (224Ty + 3200p) Ly Ly L,.) + T20SE
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+12057 + OS R,mam + 1448 Lo Ly + 485 L Ly + 4805 L,, + 4805
+1208.04 + 60XX:-aam — 42X .aX:aLtt + 6X:a Xt Las — 120X:aX:a S}

+ f.m tr{180XE + 30x7 + ORymam + (8411y — 18011p) /7 - LagLsy
+(8411y + 6011p)/7 - LayLiay + 725 Las + 2405% — 18X.0X:a)

+ fomm tT(24L 40 + 1208) + fuim t2(30x) }.

Remark: See also Dowker and Schofield [DS], Kennedy et al [KCD|, Melmed
[Me], Moss [Mo], and Smith [Sm]| for related results. McAvity and Osborn
[MO| have computed ag, a1, and a; for boundary conditions of the form (&, +
Q)¢|ap = 0 where @ is a suitable first order tangential differential operator;

the invariants exhibit non polynomial dependence in the leading symbol of Q.

Absolute and relative boundary conditions are natural boundary condi-
tions which are motivated by index theory and which fit into this framework.
Let y = (y!,...,y™"!) be local coordinates on the boundary and let z™ be the
geodesic distance to the boundary; z = (y, £™) is a system of local coordinates

near the boundary in which the metric has the form:
ds® = gopdy® o dy® + dz™ o dz™. {5.5)
UI={1<o < a; <..<oa<m—1}is a multi-index, let
dy' = dz*' A ... A dz™ € AP(OM). (5.8)
Decompose the exterior algebra AM |arr = ;lN @ Ap where |
An = span{dy’} and Ap = span{dz™ A dy'}; (5.7)

Ay are the tangential differential forms and Ap are the forms which vanish
on the boundary. Absolute boundary conditions B, are defined by taking
Neumann boundary conditions on Ax and Dirichlet boundary conditions on
Ap. More precisely, if w € C°AM, decompose w = I;{ frdy’ + grdz™ A dy'}.
Then

Bi(w) = {S1 O frdy'}ome @ {1 91dy"}om € A(BM) ® A(BM).  (5.8)
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Relative boundary conditions 8, are defined using the Hodge duality operator
*

B,(w) = B, (+w). (5.9)

Exterior differentiation d preserves the boundary conditions 8,; interior dif-
ferentiation é preserves the boundary conditions B,. For ¢ € {r,a}, let A,
be defined by the boundary conditions 8.; A, has a self-adjoint non-negative

extension to L*A*M. We note
a’"(APrf‘] = al‘l{Amup,a) (5.10}

s0 we need only consider absclute houndary conditions. Define constants:

m m!

cm,p) = (7) = sty

¢(m,p) —6c(m —2,p— 1),
) c(m—l,p)—c(m—l,p—l], (5.11)
) = lﬁdg(m,p) —Qﬁdg[m—2,p—1),

dg(m,pg = 8dg(m, p) — 192dy(m — 2,p — 1),
)

co(m, p)

= 3¢(m, p) + 10do(m, p) — 96dy(m — 2,p — 1),
= B¢(m, p) — ddy(m, p) + 96dg(m — 2,p — 1).

Set ¢(m,p) = co(m,p) = d,(m,p) =0for p<Oor p>m,.

Theorem 5.3 (Blati¢, Bokan, and Gilkey [BBG]) :

(a) ao(&p,) = (4m)™™/2 [ yye{m, p).

(b a1(4,4) = [4”]_[m_lllzfaMd0(m’P)'

(€) a2{Aga) = (4m)™ ™2 2eolm, p){[ py7 + [ 302 L0s}-

(d} ‘13(Ap.rx] = {47"]_[“_1”2?;4{.{6;\4"11 (m, p)7 + dz2(m, p) Romam
+ ds(m, pY Lo Lin + do(m, p) LapLas }.

We can also study the total form valued Laplacian

A, = Bylpa; an(A,) = Tpan(Aap). (5.12)
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Theerem 5.4 (BlaZi¢, Bokan, and Gilkey) :

(2) ao(As) = 2™ (dm)=™/2f, 1.

(b) ea{A.) =0.

() az(Bs) = =27 3 (dm) ™ {[ps7 + [ops2Lua}-

(d) as(Aq) = 2™ (4a) -2 L {f s BLagLis + 6Lt Las}-

Although the calculation of a{A,) is in general quite difficult, there are

two special cases which are important.

Theorem 5.5 (BlaZi¢, Bokan, and Gilkey):

(a) ag(Qo.o) = (4m) ™2 ([, {67 — 2p* + 2R?}
+faa {307, + 207 Lgq + 4RomamLos — 12RampmLas + 4Roses Liae
+35(280Lge Ly Loe + 168 Loy Lap Lo + 224 LapLoeLae) }}

(b) a4(Auma) = (47) ™2 Z5{fps(57% — 20 + 2R?)
+ [ aas {307, + 207 Ly, + 4Rgmam Loy — 12RsmpmLas + 4 Babet Lae
+45(40L,Lyy Lo — 264Loy Loy Lee + 320L s LneLac) }}
We use these results to generalize Corollary 4.5 to manifolds with bound-

ary:

Corollary 5.6 (Bla%i¢, Bokan, and Gilkey): Let spec{A, ., M) = spec(A, o, M;)
Jor ali p.
(a) If OM, is totally geodesic, so s My,
(b) Assume @M, is totally geodesic.
(i} If My has constant scalar curvature 7 = ¢, so does M.
(ii)If M, rs Finstein, so is Ma,

(iii) If @M, has constant sectional curvature ¢, so does M,.

Proof: The following assertions are equivalent
(1) M is totally geodesic.
(2) L=o.
(3) SansLasLap = 0.
(4) fapr{8LaaLles + 6Lap Lo} = 0.
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We use Theorem 5.4 to see the spectrum of A, determines if the boundary is
totally geodesic and prove (a). We set L =0 in (b) and use Theorem 5.5 to
see

a4(Doa) = e(Apg) = (47) ™2 2ks [ 514607 . (5.13)

Consequently this integrand is a spectral invariant and vanishes under the
hypothesis of (b-i)-(b-iii). We use Theorem 5.2 to see all the boundary in-
tegrands of an(Ap.) vanish for n < 4. Let the constants ¢;(m,p) be as in
Theorem 4.4. By Theorems 4.4 and 5.2,

au(Bpa) = (47) e[ {er(m, p)7F + ca(m, p)o? + es(m, p)RTY;  (5.14)

Ja&7 = [apsTom = 0 so this invariant does not appear; the remainder of the

proof is the same as that given for Corollary 4.5. ®

We conclude this section by discussing small geodesic balls. Let B, (z) be
the geodesic ball of radius r about some point z € M and let spec(Ag p, B.(x))
be the spectrum of the scalar Laplacian with Dirichlet (relative) boundary
conditions. Let a,(r}) = ap(r, z) be the asymptotics of the heat equation. Let

v(m) = volume(S™ 1) =m-a™*.T(m+1)"!

a(m) = v(m)/(6m) (5.15)
B{m) = v(m}/(360m(m + 2)).

Theorem 5.7 (BlaZi¢, Bokan, and Gilkey):

(a) ao(r) = (dm)"™2r™v(m)m~! — r™a(m)(m + 2) "1
+rmH48(m)(m + 4) " (18A7 + 51 + 8p7 — 3R?) + O(r™*¢)}.

(b) a(r) = 47 ax) (N2 {y(m)rm-t - rtla(m)r
+rmt33(m)(18A7 + 57% + 8p? — 3R?) + O(r™*5)},

(c) az(r) = 6~(4x)"™{v(m)r™22(m — 1) — r™a{m)(2m — 4)r
+r™*28(m)(18(2m — 4)A(7) + 5(2m — 6)+?
+8(2m + 8)p* — 3(2m + 6)R? + O(r™+4)}.

(d} as(r) = —3847 (dx)~ (™2 {p(m)rm-3(Tm? — 24m + 17)

—r™la(m)(Tm? — 92m — 3)r
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+r"L8(m)(18(7m? — 128m — 279) Ar + 5(Tm? — 160m — 351)7*
+8(7m? + 32m + 21)p* — 3(Tm? + 32m + 81)R? + O(r™**)}.

Remark: There are similar formulas for Neumann (absolute) boundary con-
ditions; the spectrum of the Laplacian on p forms has also been considered.
One can also consider the conformal Laplacian with suitable boundary condi-

tions.

The following is an immediate consequence:

Corollary 5.8 (BlaZi¢, Bokan, and Gilkey): Let M) be a homogeneous
manifold. Suppose spec(Ag g, Brlz, Mi)) = spee{Aq,q, Br(y, M3)) for all y €
M, and any point x of My,

(a) If M, has constant scalar curvature 7 = ¢, so does M,.

(b) If My is Einstein, so is M;,

(c) If My has constant sectional curvature ¢, so does M.

86 Operators of Dirac Type

In some cases, it is possible to take a square root of D within the category
of differential operators; for example the total form valued Laplacian has this
property: dé + éd = {d + )%, This leads to additional spectral invariants.
The Clifford algebra bundle is the natural setting for this discussion; it is
the universal complex unital algebra bundle generated by the tangent bundle

subject to the Clifford commutation relations
0,8, +8,+3, = -29,,. (6.1)

A Clifford module structure on V is a unital algebra morphism ~ from the
Clifford algebra of M to the bundle of endomorphisms of V. If 4¥ = ~(dz"),
then 4¥n# + y#4* = —2¢"#. We may always choose a connection V on V so
V4 = 0; fix such a connection henceforth. Let ¢ be a smooth endomorphism
of V and let

P = P(Y,4) =1V, - $: C=(V) = C*(V) (62)
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be an operator of Dirac type; any operator of Dirac type can be expressed in
this form. We suppose the boundary of M empty for the moment.

Let {u,,4.} be the spectral resolution of P and let I} = P? be the asso-
ciated Laplacian; {A, = u2,¢,} is the spectral resolution of D. The operator
Pe~'P is infinitely smoothing with kernel L;

L{¢t,z,y,P) =F.K(t,z,y,D) = E,u,e"“3¢,(:r) @, (y)
Pe~Pu(z) = [L(t,z,y, P)u(y)dy,
trv {L(t,z,z,D)} = T e g, (z)}?,
Trp:(Pe~t) =T, p,e = [, try L(t, 2, z, P).

(6.3)

Theorem 8.1: Let the boundary of M be empty. Ast — 0F,
try L(t, z,z, P) ~ T, a,(P}{z)t""m"1/2,
The a,(D)(z) are locally computable invariants which vanish for n even.
Trz2(Pe™*?) ~ Sna,(P)t"~m=Y/2 for a (P) = [,,a.(P)(z).

Let {e;} be a local orthonormal frame for T(M) and let 4, = ~(e;}. Let
¥ = vy and let Wiy = 0y — LR

Theorem 6.2: (Branson and Gilkey [BG]). If the boundary of M is empty,
(a) ar(P){(=) = (47)="/*(m - 1) tr{y}.
(b) aa(P) (<) = —127{dm) "™/ tr {{2(1 ~ m) ¥ + 3(4 — M)y + 3V},
+(m = 3){r¢ + 6y Wi + 693y + (4 — myypyd + By} }.
If @3M # 0, we must impose boundary conditions analogous to those dis-
cussed in §5. Let x be an endomorphism of V|spr with x? = 1 so that
TmX + XV = YaX — XYa = 0 (6.4)
x always exists if m is even; if m is odd, x need not exist. Let
domain{P,) = {¢ € C™(V}: (1 + x)(¢ons) = 0}. (6.5)
As before, we may expand the trace in an asymptotic series:

Trza(fPye™Py) ~ Boan(f, P, x)t ™12, (6.6)
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Theorem 6.3 (Branson-Gilkey [BG]):

(a) aolf, P, x) = 0. _

(6) ar(f, P,x) = (47)=™2[ yp(m — 1) f tr(t)).

() ax(f, P, x) = 47 (am) "D fp (m — 2) f br(vx)-

(d) as(f, P, x) = —127Y(am) ™2 [\, f tr{2(1—m)y; +3(4—m) P+ 3Ty},
+(m — 3) Ftr{r¢ + Gy ;Wisth + 6Py + (4 — m)dd + 3 ¥}
+[ap6(2 — m) fim tr{xp} + Fr{(18 — 6m)xth.;m + (2 — 2m)1h.
=6XVmYa¥a +6(m — 2)x¥Laa + 2(m — 3} Laq + 6(38 — m)xym ¥
+31m¥¥r + 3(3 — m)x1m¥x¥ + 6xVaWem}}.

These formulas play an important role in the index theorem for mani-
folds with boundary. We sketch just one application; there are others. For

Re(s) >> 0, define:

n{s, P, x) = A};osign(.k]Iz\i“ dim E(A,P,). (6.7)

Standard analytic arguments show n has a meromorphic extension to C with
isolated simple poles on the real axis. Furthemore, modulo suitable normal-

izing constants,

Resr:ﬂn{S)P‘> X] = ﬂ'-m(l, va)' (68)
If the boundary of M is empty, # is regular at s = 0 [APS, Gi| and we define
n(P) = 3{n(0, P) + dim ker(P)} (6.9)

as a measure of the spectral asymmetry of P; this invariant plays an important
role in the index theorem for manifolds with boundary.
Theorem 6.2 shows the local eta invariant does not vanish so the regularity

of 1 at 8 =0 is a global result. For example, if m = 3,
ay(1, PY{x) = =127 {dm) ™ 2 tr{—dep; + 3yt + 3Tyh )4 (6.10)

is in divergence form so fes(1, P)(x) = 0. i the boundary of M is non empty,

a similar computation may be made; we omit details in the interests of brevity.
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