

SOME VARIANTS OF FLOER COHOMOLOGY

M. Furuta

I would like to talk about a joint work with K. Fukaya and K. Ohta on some variants of the Floer cohomology and its application to almost definite 4-manifolds with boundary.

Let X be an oriented closed (smooth) 4-manifold. We write

$$Q: H_2(X,Z) \times H_2(X,Z) \to Z$$

for the intersection form of X. Let b^+ be the rank of a maximal positive subspace of $H_2(X, Z)$. S. K. Donaldson proved the following theorem by using gauge theory.

Theorem 1 (Donaldson's Theorem A) Suppose X is closed and $b^+=0$. We assume X is simply connected for simplicity. Then for any classes α_1 and α_2 of $H_2(X,Z)$,

$$Q(lpha_1,lpha_2)+rac{1}{2}\sum_{Q(e,e)=-1}Q(lpha_1,e)Q(lpha_2,e)=0.$$

This equality and an elementary algebric consideration imply

$$Q\cong (-1)\oplus (-1)\oplus \cdots \oplus (-1)$$

If X is not closed but its boundary is a homology 3-sphere, then a generalization of theorem A is known as "folk theorem". Let Y be an oriented homology 3-sphere and $I^*(Y)$ be the Floer cohomology groups of Y. The period of $I^*(Y)$ is $8(I^{*+8}(Y) \cong I^*(Y))$. There is a homomorphism $D: I^{-1}(Y) \longrightarrow Z$ which satisfies

68 M. FURUTA

Theorem 2 (Folk Theorem) Suppose Y is the boundary of a simply conected (for simplicity) oriented 4-manifold X. Let Q be the intersection form of X. If $b^+=0$, then for any $\alpha_1,\alpha_2\in H_2(X,Z)$, there is a class $q(X,\alpha_1,\alpha_2)$ of $I^{-1}(Y)$ such that

$$Q(lpha_1,lpha_2)+rac{1}{2}\sum_{Q(e,e)=-1}Q(lpha_1,e)Q(lpha_2,e)=Dq(X,lpha_1,lpha_2).$$

Corollary 3 Suppose X is as above. If Q is not isomorphic to the standard negative definite form, then $I^{-1}(Y) \neq 0$.

Remark. If $D: I^{-1}(Y) \longrightarrow Z$ is an isomorphism, then the above formula gives $q(X, \alpha_1, \alpha_2)$ itself. This is a "Donaldson's polynomial invariant with values in the floer cohomology" or "relative polynomial invariant". An example of such a case is given by the Poincaré homology 3-sphere wich is a boundary of a simply connecterd manifold with $Q \cong (-E_8)$. We write $(-E_8)$ for this manifold. Since $I^*(S^3) = 0$, one gets Donaldson's Theorem A from the Folk Theorem by deleting a small ball from the given closed negative 4-manifold.

For manifolds with $b^1 = 1$ or 2, Donaldson proved:

Theorem 4 (Donaldson's Theorem B) Suppose X is a closed oriented simply connected (for simplicity) spin 4-manifold with $b^+=1$. Then for any $\alpha_1, \alpha_2, \alpha_3$ and $\alpha_4 \in H_2(X, Z)$

$$Q(\alpha_1,\alpha_2)Q(\alpha_3,\alpha_4)+Q(\alpha_1,\alpha_3)Q(\alpha_2,\alpha_4)+Q(\alpha_1,\alpha_4)Q(\alpha_2,\alpha_3)\equiv 0 \bmod 2$$

The above equality and an elementary algebraic consideration imply that the rank of Q is 2 and

$$Q\cong\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight).$$

Theorem 5 (Donaldson's Theorem C) Suppose X is a closed oriented simply connected (for simplicity) spin 4-manifold with $b^+=2$. Then for any

$$\alpha_1 \cdots, \alpha_6 \in H_2(X, Z)$$

$$Q(\alpha_1, \alpha_2)Q(\alpha_3, \alpha_4)Q(\alpha_5, \alpha_6) + (\text{similar terms}) \equiv 0 \mod 2$$

In this case Q has rank 4 and

$$Q \cong \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \oplus \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

To extend these theorems to manifolds with boundary, we need some variants of the Floer cohomology:there exists Z_2 -vextor spaces $I_{(i)}^*(Y)$ and $I_{(k,1)}^*(Y)(*\in Z, i\in Z_2, k, 1\in Z_4, k-1\equiv 0 \mod 2)$ and homomorphisms $D:I_{(0)}^{-2}(Y)\longrightarrow Z_2$ and $D:I_{(k,0)}^{-3}(Y)\longrightarrow Z_2(k=1,3\in Z_4)$ which satisfy:

Theorem 6 Suppose an oriented homology 3-sphere Y is the boundary of a simply connected (for simplicity) oriented spin 4-manifold X. If $b^+=1$, then for $\alpha_1, \dots, \alpha_4 \in H_2(X, Z)$, there is $q(X, \alpha_1, \dots, \alpha_4) \in I_{(0)}^{-2}(Y)$ such that

$$Q(\alpha_1, \alpha_2)Q(\alpha_3, \alpha_4) + (\text{similar terms}) \equiv Dq(X, \alpha_1, \dots, \alpha_4) \mod 2.$$

If $b^+=2$, then for $\alpha_1,\cdots,\alpha_6\in H_2(X,Z)$, there is $q(X,\alpha_1,\cdots,\alpha_6)\in I_{(k,0)}^{-3}(Y)(k=-2\ (sign(X)/8)-3)$ such that

$$Q(\alpha_1, \alpha_2)Q(\alpha_3, \alpha_4)Q(\alpha_5, \alpha_6) + (ext{similar terms}) \equiv Dq(X, \alpha_1, \cdots, \alpha_6) \mod 2.$$

There is an exact sequence (a spectral sequence) which gives relations between $I_{(i)}^*(Y)((I_{(k,1)}^*))$ and the Z_2 -coefficient Floer cohomology $I^*(Y, Z_2)$ (see below). In particular, in the situation of the above theorem,

Corollary 7: If $b^+ = 1$ and rank $(Q) \neq 2$, then $I^*(Y, Z_2) \neq 0$ for i = -2 or -1 and if $b^* = 2$ and rank $(Q) \neq 4$, then $I^*(Y, Z_2) \neq 0$ for i = -3, -2 or -1.

Remark. If D is an isomorphism, then the above formula gives the relative invariant itself. Such an example is given by $(-E_8)\sharp m(S^2\times S^2)(m=1,2)$ whose boundary is the Poincaré homology 3-sphere. See example below.

70 M. FURUTA

In what follows we give some properties of the variants of Floer cohomology. Let Y be an oriented homology 3-sphere and $I'(Y, Z_2)$ the Z_2 -coefficient Floer cohomology of Y. There is an isomorphism $\beta: I^*(Y, Z_2) \longrightarrow I^{\circ + 8}(Y, Z_2)$.

Properties of $I_{(i)}^*$:

(1) As invariants of Y, we have Z_2 -vector spaces $I_{(i)}^*(* \in Z)$ and also a homomorphism

$$u_{(i)}: I^{\circ}(Y, \mathbb{Z}_2) \longrightarrow I^{-+2}(Y, \mathbb{Z}_2)$$

for $i \in \mathbb{Z}_2$.

(2) There is a natural homomorphism

$$I_{(i)}^*(Y) \longrightarrow I_{(i+1)}^{*+8}(Y)$$

for $i \in Z_2$). Hence $I_{(i)}(Y)$ has period 16. We also have the relation

$$\beta u_{(i)}\beta^{-1} = u_{(i+1)} : I^*(Y, Z_2) \longrightarrow I^{*+2}(Y, Z_2).$$

(3) There is a long exact sequence:

$$\longrightarrow I^{r-2}(Y, Z_2) \xrightarrow{u_{(i)}} I^r(Y, Z_2) \longrightarrow I_{(i)}^{r-1}(Y) \longrightarrow$$

for $i \in \mathbb{Z}_2$.

(4) There is a natural homomorphism $D: I_{(0)}^{-2}(Y) \longrightarrow Z_2$

(5)
$$u_{(0)}u_{(1)}=u_{(1)}u_{(0)}=0:I^*(Y,Z_2)\longrightarrow I^{*+4}(Y,Z_2).$$

Properties of $I_{(k,l)}^*(Y)$:

- (1) As invariants of Y, we have Z_2 -vector spaces $I_{(k,1)}^*(* \in Z)$ for $k, 1 \in Z_4$ with $k-l \equiv 1 \mod 2$.
- (2) there is a natural homomorphism

$$I_{(k,l)}^*(Y) \longrightarrow I_{(k+1,l+1)}^{*+8}(Y).$$

Hence $I_{(k,l)}(Y)$ has period 32.

(3) There is a spectral sequence convergent to $I_{(k,l)}^*(Y)$ with

$$(E_2,d_2)=(I^*(Y,Z_2)\oplus I^*(Y,Z_2)\oplus I^*(Y,Z_2), \left(egin{array}{ccc} 0 & 0 & 0 \ u_{(k)} & 0 & 0 \ 0 & u_{(l)} & 0 \end{array}
ight).$$

(4) There is a natural homomorphism $D: I_{\{0,l\}}^{-3}(Y) \longrightarrow Z_2(l=1,3)$.

Examples:

(i) Poincarè homology 3-sphere ∑(2, 3, 5).

The Floer cohomology of $Y = \sum (2,3,5)$ is calculated by Fintushel and Stern.

$$I^*(Y) = \begin{cases} Z & \text{if } * \equiv -1 \mod 4 \\ 0 & \text{otherwise} \end{cases}$$

The universal coefficient theorem implies that

$$I^*(Y, Z_2) = \begin{cases} Z_2 & \text{if } * \equiv -1 \mod 4 \\ 0 & \text{otherwise} \end{cases}$$

Then all the maps in the exact sequence and the spectral sequence above are trivial and we have

$$I_{(i)}^{\star}(Y) = \begin{cases} Z_2 & \text{if } * \equiv -2, -1 \mod 4 \\ 0 & \text{otherwise} \end{cases}$$

$$I_{(k,l)}^{\star}(Y) = \left\{ egin{array}{ll} Z_2 & ext{if } st \equiv -3,2,-1 mod 4 \\ 0 & ext{otherwise} \end{array} \right.$$

(ii) Brieskorn homology 3-sphere $\sum (2, 3, 5, 7)$.

A calculation shows that $u_{(0)}$ and $u_{(1)}$ are non-trivial for $\sum (2,3,5,7)$.

As an application, Fintushel and Stern showed

Theorem 8 (Fintushel-Stern) If a homotopy K3-surface has an embedded $\Sigma(2,3,7)$, then its Donaldson invariant is non-trivial.

The homology 3-sphere $Y = \sum (2,3,7)$ satisfies

$$I^{-3}(Y, Z_2) = I^{-2}(Y, Z_2) = I^{0}(Y, Z_2) = 0, I^{-1}(Y, Z_2) = Z_2.$$

By using the variants of the Floer homologies and the spectral sequence, one can show that this condition is enough to get their result.

Theorem 9 If a homotopy K3-surface has an embedded homology 3-sphere whose Z_2 -coefficient Floer cohomology satisfies the above condition, then its

72 M. FURUTA

Donaldson invariant is non-trivial.

I would like to observe that the long exact sequence is an analogue of a Thom-Gysin exact sequence in a reasonable sense.

References

- [D] S. K. Donaldson, Connections, cohomology, and intersection forms of 4-manifolds, J. Diff. Geom. 24 (1986), 275-341.
- [FS] R. Fintushel and R. Stern, 2-Torsion instanton invariants, preprint.
- [F] A. Floer, An instanton invariant for 3-manifolds, Math. Phys. 118 (1988), 215-240.
- [Fk] K. Fukaya, Floer homology for oriented 3-manifolds, preprint.
- [FFO] K. Fukaya, M. Furuta, H. Ohta, in preparation.
- [F] M. Furuta, Morse theory and Thom-Gysin exact sequence, preprint.
- [O] Intersection forms of 4-manifolds, J. Fac. Univ. Tokyo Sect. IA, Math. 38 (1991), 73-97.

Department of Mathematics College of Arts and Sciences University of Tokyo Komaba, Meguro Tokyo, Japan.