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MORSE THEORY VIA MODULI SPACES

{

Ralph L. Cohen *®

Introduction

In recent years the classical techniques of Morse theory on compact manifolds
have been applied to various infinite dimensional settings and have yielded
many important results. For example Floer's important work in symplectic
geometry (5] revolved around a Morse theoretic analysis on the loop space
LM?™ of a closed symplectic manifold M**. Also his “instanton homology”
invariants of a homology 3 - sphere T were defined using a similar Morse
theory on the space of connections on the trivial principal bundle £ x SU(2)
[6]-

In an ongoing joint project with J.D.S Jones and G.B. Segal we have at-
tempted to understand the underlying algebraic topological aspects of this
type of infinite dimensiona[ Morse theory. One feature that these examples
have in common is that the indices of the critical points are infinite, although
the relative index between any two critical points is finite, Here the relative
index can be viewed as the dimension of the space of gradient flow lines con-
necting one critical point to the other. These spaces can be viewed as moduli
spaces. In the above mentioned infinite dimensional examples considered by
Floer, these spaces of flow lines turn out to be the moduli spaces of pseudo
- holomorphic spheres in a symplectic manifold, and of asymptotically flat
instantons on £ x R, respectively. Thus in our project we were led to the

question of reformulating the basic ideas of classical Morse theory purely in
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terms of the moduli spaces of flow lines in such a way that it would apply to
various infinite dimensional settings, including those described above.

This was the theme of the minicourse I gave at the Campinas workshop
on Gauge theory. In this paper I will describe some of the ideas and results
of this project. In section 1 I will recall how, given a Morse function on a
compact Riemannian manifold, one can associate a CW - complex with the
same homotopy type as the manifold. I will then discuss the work of Franks
[7] that describes the relative attaching maps of this complex in terms of the
framed modulj spaces of flow lines. In section 2 I will describe the category of
critical points and flow lines associated to a Morse function. I will then outline
the main theorem of [4| which describes a method of completely recovering
the topology of the manifold from this categorical data. In section 3 I will
discuss various generalizations of this result, and in particular a theorem that
applies in a rather large class of infinite dimensional examples. The basic
properties required for this theorem to apply are a finiteness condition on the
relative indices and a gluing procedure for flow lines (see (3.3)). In section
4 [ will describe results concerning the stability of moduli spaces and will
show how they can be proven using this machinery. Finally in section 5 I
will discuss the notion of “Floer homotopy type” and compute it explicitly in
the infinite dimensional example of the symplectic action on the loop space
of the Riemann sphere. Most of the results described in sections 3 through
5 represent joint work in progress with Jones dnd Segal. Details of this work
will appear in due course.

I would like to take this opportunity to thank A. Rigas, F. Burstall, and
the other organizers of the workshop for the lively mathematical atmosphere

at the meeting and their marvelous hospitality.

1. The CW complex of a Morse function

In this section we recall some basic constructions from classical Morse theory.

Specifically we describe the CW - complex associated to a generic Morse
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function on a compact, Riemannian manifold, and recall Franks' theorem (7]
describing the attaching maps of the cells in terms of the framed bordism
classes of the moduli spaces of flows. In particular this gives a description of
the boundary maps in the Morse - Smale chain complex.

We begin by establishing some notation and terminology. Let M be a ¢,

compact, Riemannian manifold of dimension n and
f:M —R

a €% map. A point p € M is a critical point of f if the differential df, :
I,M — R is zero. (Here T,M denotes the tangent space of M at p.) A
critical point p € M is said to be nondegenerate if the Hessian Hessy(f) is

nonsingular. Hess,(f) is a symmetric, bilinear form on the tangent space
Hess,(f) ' T,M x T,M — R

which, in terms of local coordinates {z,, -, z,} of a neighborhoed of p € M,

is represented by the matrix of second order partial derivatives

2
Hess,(f) = (6:;;:5;{”) .

The index of a critical point p, A{p), is defined to be the dimension of the
negative eigenspace of Hessp(f). A gradient flow line ( or integral curve ) is

a curve

1R — M

that satisfies the following differential equation (the flow equation):

d _
Et_ —I-V.,(f) =0

Here V(f} is the gradient vector field determined by f. Given the Riemannian
metric, V(f) is determined by the property that

(Vp(f);v) = dfp(”}
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where v is any tangent vector v € T, M.

A function f : M — R whose critical points are all nondegenerate is
called a Morse function. Froma tol;ological point of view, the main goal of
Morse theory is to obtain global topological information about the manifold
M from the structure of the set of critical points of f and from the dynamics of
the gradient vector field of f. An important example of this is the association
of a CW - complex C(f) of the same homotopy type as M, which has one cell
of dimension A for every critical point of index A\. We now quickly recall this
construction. We refer the reader to [11] for details.

We begin by recalling the regular neighborhood theorem.

Theorem 1.1 Let f : M — R be a smooth map on a compact Rieman-
nian manifold with boundary. Suppose that f has no critical points and that
F(0M) = {e,b}. Then there is a diffeomorphism

F:fa)x[a,b] — M
making the following diagram commute:
FYa) % [a,b] > M
proj. | s
{a. 8] = [a,b]
In particular all the leve! surfaces are diffeomorphic,
Now assume M is 2 compact manifold and let f : M — R be a smooth
function. For a € R we write
M®= f"Y-co,e] ={zeM: f(z) < a}.
The next result follows immediately from the regular interval theorem.
Corollary 1.3 Let a < b and suppose thet f~'[a,b] C M contains no eritical

points. Then M® is diffeomorphic to M®. Furthermore, M® is a deformation
retract of M®.
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This corollary says that the topology of the submanifolds M*® does not
change with @ € R so long as a does not pass through a critical value. We
now examine what happens to the topology of these submanifolds when one
does pass through a critical value.

Fix a Morse function f : M — R on an n - dimensional closed manifold.
For any point z € M let -y, be the flow line through z. That is, it satisfies the
flow equation

dy

4Vl =0

and the initial condition v(0) = z. Since M is compact one knows that ~,(¢)
tends to critical points of f as ¢ — +oo. So for any critical point a of f we
define the stable manifold W*(a) and the unstable manifold W*(a) as

follows:

Wia) ={reM:lim_ie1:(t) =a}
Wha) ={ze M :lim__,(t) = a}.

The following is referred to as the Stable Manifold Theorem. We refer the

reader to [9] for a proof.

Theorem 1.3 W¥(a) is diffeomorphic to the disk D*, and W*(a) ts diffeo-
morphic to the disk D"~ where ) is the indez of a.

Let ¢ € R be a critical value of the Morse function f : M — R with
@1, -1 0 the seb of critical points having f(a;) = ¢. Let ¢ > 0 be such that ¢
is the only critical value in the open interval (c - ¢, ¢ + ¢). Finally, as above,
let W*(a;) be the unstable manifold of a;, which is diffeormorphic to a disk

D>, where }; is the index of the critical point a;.

Theorem 1.4 The inclusion of the subspace
My W“(al] U-u Wu(ak)‘——?Mt+z

is a strong deformation retract.
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We note also that the retraction p in this theorem can be taken to have
the property that in a suitable coordinate system in a small neighborhood
of the critical point ¢, in which we'think of f(z,y}) = —|z|® + |y|?, where
z € R* =W¥(q,), and y € R" = W*(q;), then

p(z, y) = (zl 0)'

Assume f; M — R is &2 Morse function that satisfies the extra condition
that for any two critical points ¢ and b the unstable and stable manifolds
W¥(a) and W*(b) intersect transversally. This is the Morse - Smale condi-
tion, and it was shown by Smale in [17] that this is a generic condition. That
is, an open, dense set of Morse functions satisfy this condition.

f: M- Ris a Morse - Smale function, then the deformation re-
tractions of Corollary 1.2 and Theorem 1.4 allow one to define in the obvious
way & CW - complex C(f} homotopy equivalent to the manifold M whose
cells correspond to the unstable manifolds of the critical points of f. See [11]
for details. Hence by Theorem 1.3 C(f) has one cell of dimension A for each
critical point of index A.

Given a CW - complex X let X(@) denote the ¢ - skeleton. For a ¢ - cell
Di in X, let ¢o : §77' — X{~1} be the attaching map. Let r < ¢ be the
minimal positive integer so that the attaching map ¢, factors up to hamotopy
through the r - skeleton

$o 1 8971 — X7,

For an r - cell D} in X, define the relative attaching map of & and g
q&,_,g : Sqql e Sr
to be the composition

bag 1 87— XU — XUl x-D o \f 57— 5] (1.5)
Cell,

where Cell, denotes the set of r - cells of X and the last map is the projection

onto the sphere given by the one point compactification of the cell Dy
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This relative attaching map, viewed as an element of the (g—1)* homotopy
group of 5", is represented, via the Thom - Pontryagin construction, by a
g — 7 — 1 - dimensional framed submanifold Ng,p of §471, Perturbing P il

necessary so that 0 € R" U oo = 57 is a regular value then
Nop = ¢.5(0) c 5971

and has the induced framing on its normal bundle, This framed manifold is
well defined up to framed cobordism.

In [7] Franks identified the relative attaching maps in the CW - complex
C(f) in terms of the corresponding framed cobordism classes. We now de-
scribe one of his results.

Continuing in the setting of a Morse - Smale function f : M — R we

consider the intersection manifold
Wia,b) = W"(a) nW*(8)

where a and b are critical points of f. This is a manifold of dimension p—r,
where p = indez(a) and r = indez(b). We refer to this number as the refative
index of a and b. W(a, b) is the space of all points that lie on Aow lines starting
from a and ending at b.

The space W (a,b) has a natural free action of the real line R given by the
flow of V(). That is, the action

W(a,b) x R — W{a,b)

is defined by
(J’J,t] - 7:“)
where, as above, 7, is the unique flow through z satisfying v,(0) = z. Notice

that if we pick any point ¢ between f(a) and f(b) and set W{a,b)! to be the

submanifold W (a, 5)" f=*(t) then this action restricts to give a diffeomorphism

W(a,8)! x R = W(a,b).
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Therefore we may form the quotient orbit space
M(e,b) = W(q,b)/R.

This space will be referred to as the moduli space of flow lines from ¢ to
b. This terminology is justified by the fact that two points x and y € W(a,b)
represent the same element in M(a,b) if and only if they lie on the same flow

line. Notice furthermore that the composition
W{a,b)' —W(a,b) — W(a,b)/R = M(a,b)

is a diffeomorphism for any value t between f(a) and f{b), and hence M{a,b)
is 2 manifold of dimension p—r—1 and can be viewed as a subspace of W (g, b).

One of the results in [17] is the transitivity property. That is, if @ and b are
critical points of 2 Morse - Smale function f, then we write a > b if W(a,b), or
equivalently M(a,b) # 0. The transitivity property then =ays that if M(e,b)

”

and M(b, ¢} are nonempty, then so is M(a,c). This implies that “ < " is a

partial ordering of the critical points.

Lemma 1.8 Let {o,} be a Cauchy sequence in the moduli space M(a,b) and
suppose that a, does not converge in M(a,b) as n — oo. Then there 15 a finite

sequence of critical points
a=a>a>...>4g>ay==5t

with { > 1 and flow-lines +; joining a;_y to a;, where 1 < ¢ < I, with the
following property. Given ¢ > O there is an integer N > 0 such that

d{i,0) = inf d(7:(0), an(t)) < €

foralln> N,

Proof We will identify M(a,b) with the subspace W'{a,b) of M as de-
scribed above. Choose a real number ¢, so that there is no critical value of f

between f(a) and ¢;. The sequence a, gives a Cauchy sequence z, in W' (a,b)
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which does not converge in W' (a,b). However, since M is compact, this se-
quence has a limit ; in M. Let (¢t} be the flow line through y, and let a,
and gy be the limit points of this Aow line,

lim v (t} = ao, tl_i.rgla’h(!) =a.

t——co

We want to show that ay = . The map (z,t) — ~.(t) is continuous so

f(n(e)) = Jim f(v.,(t))

and since f decreases along flow lines, it follows that if ¢ < O then fla) >
f(3:.(t)) > t1, and so f(a) > f(m(¢)) > ¢1. Letting ¢t — —oo we have that
fla) > f(aog) > ty. From the choice of ¢; there are two alternatives. Either
& = ag, Or @ # ag but f{a) = f(ag). Suppose the latter holds. By the facts
that the critical points are isolated and that f decreases along gradient flows,
then for sufficiently small ¢ there is a disk D.(ay) of radius € about ag with the
property that if + is any flow line beginning at a, then 4(t) ¢ I, (ay) for all ¢.
Now because lim—._. 1(t) = ¢o there is some ¢ such that (to) € D.jy(ap).
But there is no n such that v, (to} € D,(a0), contradicting the continuity of
(z,t) — ~.(t). We therefore must have that a = a,. Also we know that since
1 is not in W(a, b} it must follow that a; # b. Now repeat the process, with
¢ replaced by t;, where ¢, is chosen so that there is no critical value between
f(a1) and t3, to get a flow line ; connecting a, to some other critical point
@z and so on. The process must terminate after a finite number of steps, say
{, in the sense that we reach the stage where q; = b. Now it is clear from
the construction that the critical points a; and the flow-lines = satisfy the

conclusion of the lemma,.

Now let @ € M be a critical point of index ¢q. A critical point b € M is
said to be a successor of @ if b < a and b is maximal with respect to this
property. That is, there exists no critical point ¢ with b < ¢ < a. Notice that
by Lemma 1.6 we see that if b is a successor of a, then M(a,8) is a compact,

smooth manifold of dimension p — r — 1 where p and r are the indices of & and
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b respectively. Indeed this lemma says that M(e,b) is compact if and only if
b is a successor of a.
M(a,b) can be given a framing -as follows. Let ¢ be any regular value

between f(a) and f(b). Notice that the intersection
W(a) N (1)

is a sphere of dimension p — 1 which we denote by $%(a). By construction we

have
M(a,b) = W(a,b)! = W(a,b)nf}(t) = W (B)nW*{a)nf~{t) = W*(b)n5"(a).

Thus we have a natural embedding M(a,b)—5"(a) which has codimension r.
The normal bundle of this embedding is the pull - back of the normal bundle
of the embedding -
We(b)— A
which comes equipped with a unique framing (up to sign) because W*(}),
being diffeomorphic to the disk D" " is contractible. This induces a framing
o on the normal bundle of M(g, b)—5%(a).
The following theorem, proved by Franks in (7], describes the relative
attaching maps in the CW - complex C(f) in terms of these framed moduli

spaces.

Theorem 1.7 Let a > b be critical points~of a Morse - Smale function f :
M — R having indices p and r respectively. Then in the CW - complez
C(f) the relative attaching map

éa.b < ﬂp-l(sr)

described in (1.5) is represented via the Thom - Pontryagin construction by

the p— r — 1 - dimensional framed moduli space of flows (M(a,b},a).

Idea of Proof The attaching map ¢, : SP~! — §" is the map §(e) —
WH(b) Uco = 5" defined by taking a point = € 5%(a), going along the flow -,,
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composing with the deformation retractions of (1.2) and (1.4) and collapsing
onto W¥(b} U ce as in (1.5). By considering these retractions, one sees that
the pre - image of b € W*(b) C 5%(b) U oo consists of those points z £ 5"(a)
such that the flow «,(t) approaches & as t — oo. This is precisely the space

M(a, b). The induced framing is clearly a as described above.

Notice that the cell structure of C(f) yields the associated cellular - chain

complex, known as the Morse - Smale chain complex

Oy — A, (1.8)
where C is the free abelian group generated by the cells of C'(f) of dimension
A, which is to say the critical points of f of index A. The boundary homomor-
phisms are determined by the relative attaching maps of the A - dimensional
disks onto the A — 1 - dimensional skeleton of C'(f). This can be computed
by the above theorem as follows.

Suppose ¢ and b are critical points of relative index one. Say indez{a) = p
and index(d) = p — 1. Then the space of flows, (M(a,#),a) is a zero dimen-
sional, framed, compact manifold; that is a finite set of points (flow lines) with
signs attached to them induced by the framing. Let n(a,b) € Z denote the
signed number of flow lines:

n(e,b) = > afv)
YEM(a,b)

where a(7) = %1 is the sign associated to the flow line 4 by the framing a.
nfa,b) € Z = m,_ 57!
is therefore the integer given by the degree of the relative attaching map

Gap e 5P — 5P,

Corollary 1.9 The coefficient of [b] € C,_, of the boundary 8,[al, (8,]al, b)),

s given by the formula

{Bplal, [b]) = n(a,b) € Z.
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2. The Classifying Space of a Morse Function

Let f : M — R be a Morse function on a compact, closed, manifold. In this
section we outline the ideas in [4]. In particular we will construct a topological
category C; whose objects are the critical points of f and where the space of
morphisms between two critical points a and b is a compactification, M{a, )
of the moduli space of flows M(a,b). We will then describe a theorem in [4]
saying that for a generic f (i.e one satisfying the Morse - Smale condition)
the classifying space BC; is homeomorphic to the manifold M. This will give
M the structure of an explicit simplicial space and will complete our goal of
recovering the topology of the manifold directly and explicitly in terms of the
space of flows of the gradient vector field.

We begin by recalling the definition of the classifying space of a category.
We refer the reader to [15] for details of this construction.

Let C be a category. Let Mor(A,B) be the set of morphisms between
objects A and B. € is a topological category if the sets of morphisms are

topologized and the composition pairings
Mor(A,B) x Mer{B,C) — Mor(A,C)

are continuous. If no topology is specified, the morphisms are assumed to
have the discrete topology. For 4 € Mor(A, B} we say that A is the source of
~ and B is the target. :

For each n > 0 define the space NC,. to be the space of n - tuples of

composable morphisms:
NCp = {{(71,""*,¥) : the target of ; = the source of y;41,i =1,--+,n — 1}

We define “face maps” 8; : ¥C,, —= NCpno1, 0 < ¢ < n, by the formula

(255 %n) fori =10
ai(?ls"'!'fn): ('717"'1’7:"7:‘4—1;“"71':] for]:S*Sn_l
(113"'!7‘1—1) for ¢ = n.
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There are also “degeneracy maps” 8j 1 NCp — NCpi1, 0 < 5 < n given
by

(Lo, s ) for =0
s- ‘l-;‘ " = .
;(F}‘l K ) { ('fla""ffslawj-f-ls"'a‘?ﬂ] for J 2 1.

The classifying space of the category C is a space consisting of one of n
- simplex for every point in NC.. To make this more precise, let A" be the

standard n - simplex in R";

n
An:{(tlj"'atn) €R": UStJ < 1‘ and Zt‘ < 1}

i=1

Now consider the following maps between these simplices:

& A" — A™  and o; 1AM — An
for 0 < 7,7 < n defined by the formulae

6-(f wao f ): (tla"',ti—hesti!'“rtn‘l) for:>1
AT, yin-1 (1- Z:;ll gq,tl‘...,tn_l) fort =0

and

NI — [tl!"'uti-bt:"\“‘ti-‘—hti+h"'1tn+1) fori>1
o;{t, tnr) = { (tz, "y tnt1) fori=0.

& includes A"-1 in A™ ag the b face, and o; projects, in a linear fashion,
A" onto its ¢ face,

We can now define the classifying space BC of the category C by the rule

BC=J A" x NC,/ ~

n>0

where if t € A" and z € NC,,, then
(t.8i(z)) ~ (&(t),2)
and if £ € A™*! and z € X,, then

(8, 8;()) ~ (o4(t}, z).
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Example. Let G be a group ¢ be the category with one object (say *) and
Mor(#,+) = G. The composition law in the category is given by group mul-
tiplication. Then the classifying space B(; is the “bar construction” model
for the classifying space of the group, BC; = BG. This is the motivation for

the terminology “classifying space of a category”.

The basic idea in the work of [4] was to study this construction for the
category whose objects are the critical points of a Morse function and whose
morphisms are the moduli spaces of flow lines. In order to define this category
properly we need to study the compactification of the moduli space of flows
M(a,b). Now lemma 1.6 describes what happens when one approaches the end
of such a moduli space of flows M(a,b). Namely one approaches a sequence
of flows (which we will refer to as a piecewise flow) {v1,+++,vm} where -y; €
M(ai-1,0,) where {a = @y, a1, 8-y, 2m = b} is 2 sequence of critical points.
This suggests the following compactification theorem.

Recall from section one the partial ordering on critical points defined by
setting @y > ap if there exists a flow from @, to ap, that is if M{e,,ay) is
nonempty. A sequence a = {ao,*-',an} is ordered if a; > a;1, for all . Given
such a sequence we let s(a) = ao and e(a) = a,,. We define the length of this

sequence, [{a), to be n — 1. Finally we define
M(a) = M(ao,a1) X -+ x M{an-1,0n).
Theorem 2.1 A compactification of the moduli space of flows M{a,b) is given
by the following space:
M(a,b) = M(a,b) U M(a)
a

where the union is taken over all ordered sequences of critical points a with

s(a) = a and ea) = b.

We will state this compactification theorem more precisely later, and in

particular describe the topology of M(a,b). We first describe how it will be
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used to define the category induced by a Morse function and state how its
classifying space is related to the underlying manifold. We will begin by
stating the main theorem to be discussed in this section. The details of the

proof of this theorem will appear in [4].

Theorem 2.2 {a). Let f : M — R be a Morse funetion on a compact
manifold satisfying the Morse - Smale transversality condition. Consider the
topological category C,; whose objects are the critical points of f, and whose

spaces of morphisms are the compactified moduli spaces,
Mor(a,b) = M(a,b).
Composition in this category is given by the inclusion
M(a,8) x M(b,c) — M(a,c)

described in the compactification theorem £.1. Then there 1s a natural homeo-

morphism of the classifying space of this category with the underlying manifoid
BC; S M.

{b). For any Morse function f : M — R {i.e. not necessarily satisfying

the Morse - Smale condition) then there is a homotopy equivalence

BC; = M.

Notice that this theorem defines an explicit simplicial space description of
the manifold M in terms of the moduli spaces of flow lines of the gradient
vector field of the Morse function f. Indeed the k - simplices of this decompo-
sition are parameterjzed by the space of k - tuples of “composable” flow lines.
In order to outline the proof of this theorem we need a more precise version of
the compactification theorem. This theorem is proved in (4] using the general

gluing results in [2].
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Theorem 2.3 There ezists an ¢ > 0 and maps
#1(0,¢] x M(a,ay) x M{ay,8) — M(a,b)

which we write as

{t! "y ‘rz} —* V1 % Ve

that satisfies the following properties:
(1) fs a diffeomorphism onto its image.

(2)p setisfies the following associativity law:

(‘h O "]fz) Ot Y3 = 71 0, (‘}'z Ot ‘)‘3)

Jorall s, t <e.
(3) This associativity property defines maps

i (0,¢f x Mla) — M(a,8)

where (a) s any ordered sequence of critical points of length [ unth s(a) = e
and e(a) = b. These maps are also diffeomorphisms onto their images.
(4) Define K{a,b) C M{a,b) to be

K(a,b) = M(a,6) - Uu ((0,¢)! x M(a))

where the union is taken over all ordered sequences (a) of length > 1
having s(a) = a and e(a) = b. Then K(a,b) is compact.
(5) Define the compactification M(a,b) to be the union along p

M(a, ) = M{a,b) U J[0, €] x M(a).
m
Then M(a,b) is homeomorphic to K(a,b).

This, theorem says that the ends of the moduli space M(a,b) consist of
spaces of half open cubes parameterized by composable sequences of flow lines.
The compact space K{a,b) is formed by removing the associated open cubes.

The compactification M(a, b) is formed by formally closing the cubes. It should
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therefore not be surprising that they are homeomorphic. If 4, € M(e,q,) and
Y2 € M(ay,b), then the parameter t € (0,¢] in the flow ~; ¢, v, € M(a,b) can
be viewed as a measure of how close this flow comes to the critical point ay.
Thus the fact that the pairing u is a diffeomorphism onto its image allows
us to view the space K{a,b) as the space of flows that stay at least ¢ away
from all critical points other than a and b (in this undefined measure). On
the other hand, the homeomorphic space M(a,b) can be viewed as formally
adjoining piecewise flows to M(e,b). From now on we will rescale the metric
if necessary so as to be able to assume € = 1 and so we will drop this from

the notation.

We now outline the proof of part (a) of theorem 2.2. We refer the reader
to [4] for details.

We begin by describing a filtration of the spaces M(a,5). We can think
of the set K(a,b) of theorem 2.3 as the space of flow lines from a to b which
keep distance of at least 1 from any critical points ¢ with ¢ > ¢ > 6. More
generally we can filter the space M(a,b) by saying that a curve in M(a,b) has
filtration k& if it gets within distance less than 1 of at most & intermediate

critical points. Precisely, we define

K9G8 =U U  #(01] xK(a,0)) x ... K(a,5)) .

i<k a>a,>..>a1>b

so that K(©(a,b) = K{a,b) and
K&=Na,b) € K¥)(q,b).
Thus + is in K(¥)(a,b) if and only if ¥ can be decomposed as
Y=V Cuy O N

where v, € K(ai_1,0:), 0 < s; < 1forall i, and { < k. We have the following

obvious properties.



36 R. L. COHEN

Lemma 2.4

K®(a,b) \ K N(g,b) = L} [0,1)% x K(a,a1) x ... K (@, b)

A > rap>h

Lemma 2.5

UK®(a,b) = M(a,b)

Let a = (ap,---,a14+;) denote an arbitrary decreasing sequence of criteal
points with length {{(a) = [, starting point s{a) = a5 = @ and ending point
e(a) = aj41 = b. We define

K(a) = K(ag,a1) x - -+ x K{a1, a141).
Using these lemmas we see that the map
U U 0,1) x K(a) — M(a,b)
oia)=i
defined by
(51, vstiYor M) — Yo ou, 00 W
is onto and therefore M(a,b} can be recovered by imposing an equivalence

relation on the above disjoint union. It is straightforward to extract this

equivalence relation; it is generated by

(s15. 0048521, LiSit1se e e @3Y1ren ey M) =

(519“' S =Ly Sty e e o S Wy o vy Vim1 O Vige o -;'7!]-

Thus the relations only involve the faces of the cubes which do not contain
the point (0,...,0).

From this argument we draw the following conclusion.

Theorem 2.6
M(a,b) = |_| |_| [0,1]‘ x K(a}/ =

i i(a)=t
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The next step is to go from this description of the spaces M(a,?) to one
of the manifold M. Let 4 € M(e,¥) be a flow line. Then we may compactify
% by adding the points ¢ and b to form the curve 5. This curve is closed in
the sense that it contains all of its limit points. The function f is decreasing

along flow lines and so it gives a natural difeomorphism
i3 — [£(b), f(a}]-

Now suppose that 4 = ~p 0 -+~ 09 v is a point of M(a,b) which is not in
M(a,b). Thus v, -, i3 a sequence of flow lines joining critical points a >

e > -+ > a; > b. In this case define
ﬁ:ﬁou"'uih

80 7 is a curve in M joining a to b; in an obvious sense ¥ is a piecewise fAlow

line joining @ to b. The function f defines a diffeomorphism

Fia — (flai), flai-a)]

and these diffeomorphisms piece together to define a homeomorphism
23— [f(8), f(a)).

This shows that each element in M{a,b) can be identified with a well
defined curve 7 : [f(8), f(a)] — M parameterized by the inverse of the above
homeomorphism. However, with this parameterization, none of these curves

satisfy the flow equations. In any case we get a map
¢: [f(b]!f(a” X M(a,b) — M

whose image is the closure of the space W(a,b) C M since we have added
to W(a, ) all points on the curves 5 : f(b), f(a)] — M where v € M(a,b).
Therefore the map

l:][f(ﬂtﬂ),f(aoﬂ x [0,1 x K(a) — M
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defined by
(551,815 %00 M) — (0 00y -+~ 2 W)(E)

is onto. The disjoint union is taken over all decreasing sequences of critical
points & = (ag,--+,0+1). Once more it is not difficult to extract the appropri-
ate equivalence relation on the disjoint union. Given a sequence a of critical

points as above with {{a) = [, we define

Ja = [flas), flao)], I =[0,1].

Now we define

Ry=|]Ja x '™ x K(a)/ ~ (2.7)

where the relations ~ are given by

(t;slt'"asi—110|55+11“'|3l;’70""Q'TI) ~ (I}

{ (tisay vy sictio, - -y vi1), ift € [f{a:), fleo)] -
(tisivts= =y 865 %m0, 1), it € [flart), Fla))

and
(t;sl!...!sl‘—llll‘si+1!'"!81;1’0!'-.|‘n} -~ (II)

(t;‘sla"'a3|'-—11sl'+11"'93ﬁq"0!"':‘I"Ch""'n—l 531 1"!‘1"'!'71‘]

The map ¢ respects the equivalence relation ~ so it gives a well defined
map
R; — M.

Thecrem 2.8 The map
Q5 H R'r —_— M

is @ homeomorphism.

Proof The first step is to check that the second set of relations are the

only relations which can occur if all the ;s are non - zero. This follows
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from the fact that if two How lines have a point in common then they are
equal, together with the previous theorem. If one of the 8;’s is zero then
we are dealing with a piecewlse Aow line. If two piecewise flow lines have a
point in common then this point must be one of the joining points or else
they have a common segment. An elementary analysis leads to the conclusion
that the only identifications which can take place if one of the s, is zero are

consequences of the first set of relations.

Since the spaces K(a,-;,q;) are diffeomorphic to the compactified spaces
M(a;_1,4;) in such a way that the composition in the category corresponds
to oy, this shows us how to recover the manifold M from the category C;.
To prove theorem 2.2 we are therefore reduced to the combinatorial exercise
necessary to identify the space R; with the classifying space BC;. Recall
from chapter 11 the definition of the classifying space of the category ¢ I
Comparing it with definition 2.7 of the space R ; we see that these spaces are
very similar but they are not obviously the same. The essential difference is
that &y is built up out of cubes whereas the classifying space is built out of
simplices. Nonetheless these two spaces are homeomorphic. Verifying this is

a combinatorial argument for which we refer the reader to (4] for details.

3. Generalizations

In this section we describe various generalizations of theorem 2.2 including a
theorem that applies to rather general infinite dimensional settings. In the
following two sections we apply this result to obtain topological information
about the moduli spaces of flows in the examples studied by Floer in [5] and [6].
These are the moduli spaces of pseudo - holomorphic spheres in a symplectic
manifold, and of asymptotically flat self dual connections on ¥ x R, where
Y is a closed, 3 - dimensional manifold. These results all represent work in
progress by myself, Jones, and Segal. Details of this work will appear in due
course.

The first basic generalization is to the setting of Morse - Bott functions
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J : M™ — R on compact manifolds |3]. Recall that in such a function the
critical points are not isolated, but rather are accumulated into a disjoint union
of connected, critical submanifolds. 'On a critical submanifold ¥" — M™
with normal bundle v(N), the Hessian at a point z € N" restricts to define a

symmetric bilinear form
HessY (f): v:(N) x v.(N} — R

The critical submanifold N is said to be nondegenerate if HessY (f) is a
nonsingular form at every z € N. f : M — R is a Morse - Bett function
if all of its critical points lie in a disjoint union of nondegenerate critical
submanifolds. An important class of examples of Morse - Bott functions are
equivariant Morse functions. These are smooth functions f : M — R where
M has a smooth action of a group G, and f is invariant under that action {i.e
flg =) = f(z}). In this case the critical submanifolds are orbits under the
action.

In his thesis [2], M. Betz defined a category C; associated to a Morse
- Bott function f. As before, the objects of f are the critical points of f,
however the topology of the critical submanifolds is taken intoc account, in
that the set of objects, Obj{(C,) is topologized as the disjoint union of the
critical submanifolds of f : M — R. As before, for ¢ and b critical points of
f, the space of morphisms Mor(a,b) is given by the compactification of the
space of flows, .

Mor(a,b) = M(e,b).

However, now in the entire space of morphisms of the category Mor((;),
which is the space of piecewise gradient flow lines,the topology of critical
submanifolds is taken into account in the natural way. In particular, the

maps
s8:Mor(Cy) — Obj(Cy) and t:Mor(Cr} — Obj(Cy)

defined by sending a morphism to its source and target respectively, are con-

tinuous maps. There is also a Morse - Smale transversality condition on Morse
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- Bott functions defined like above, and it is easy to verify that in this context
it is a generic condition as well. In [2] Betz proved the following generalization
of (2.3).

Theorem 3.1 Let f : M — R be a Morse - Bott function on a closed
manifold M, that satisfics the Morse - Smale transversality condition. Then

there 15 @ homeomorphism

BC; = M.

Furthermore, if { is an equivariant Morse function, then there is a naturally

induced action on BC; and the above homeomorphism is equivariant.

Next we discuss the generalization due to M. Sanders |14] to the case where
f:M — R is a Morse function on a complete, infinite dimensional Hilbert
manifold. Recall from [12] the Palais - Smale condition (C):

Condition C On any subset S on which f is bounded and the gradient vf

is not bounded away from zero, then f has a critical point in the closure of S.

Now observe that on an infinite dimensional manifold the gradient flow
lines may not be defined on the entire real line. Moreover, flows that are
defined on the entire real line may not converge to critical points. This makes
studying Morse theory qualitatively different in infinite dimensions than in the
compact manifold setting, even under the assumption that the Morse function

satisfies condition (C). In his thesis [14] M. Sanders proved the following.

Theorem 3.2 Let f : M — R be a Morse function on a complete Hilberi
manifold that satisfies the Palats - Smale condition C. Then there is a category
Cy whose objects are the critical points of f, and the morphisms between fwo
critical points a and b is the compactification of the moduli space of flows

M(a,b). Moreover there is a natural homotopy equivalence

BC; -5 M.
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Furthermore if one assumes the following additional properties
(1}f satisfies the Morse - Smale transversality condstion, and
(2)every flow line ~ can be defined on the entire real line and both
limg— o, ¥(t) and lim,— 4o ¥(t) ezist and are critical points

then there {s a homeomorphism

BC; = M.

We now describe the most basic generalization to the infinite dimensional
setting. So assume that
f:M —R

is a smooth map on a possibly infinite dimensional manifold that satisfies the

following properties.

Properties 3.3

(1) The set of eritical points of f is a disjoint union of finite dimensional
connected submanifolds of M, (Note there mey be infinitely many such con-
nected components and the dimensions of the components may be arbitrarily
large.)

(2) Let A and B be connected, eritical submanifold of M. Let W(A, B)
denote the subspace of M consisting of points x € M that lie on gradient flow

lines ~. with

7:(0) ==, lim v%(t)cAd,  lim ~(t)<B.
Then each such space W(A, B) is a finite dimensional manifold.
(3)Let M(A, B) = W(A, B)/R be the moduli space of flow lines starting in
A and ending in B. Then each M(A, B) has a compactification M(A, B) with

the follounng structure. Given connecled eritical submanifolds A, B, end C,

there are embeddings

ki (0,¢) x M(A, B} x M(B,C) — M(A,C).

Gv72) — Mo
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Jfor sufficiently small € > 0, that eztend to maps
51 [0,€] x M(4, B) x M(B,C) — (4, C)
5o that for every v, € M(A,B), v, € M(B,C), then

1% Y2 € M(A4,C) = M(4,C).

First observe that a Morse - Smale function on a compact, closed manifold
clearly satisfies these properties. Mareover these properties are the basic in-
gredients that the various examples of Floer homology in infinite dimensions
have in common. In particular the finite dimensionality of the spaces W (4, B)
says that even though a critical point (or critical submanifold) of a function
may have infinite indices and co- indices (i.e., the stable and unstable mani-
folds W*(B) and W"(A) may be infinite dimensional) the relative indices i.e
the dimension of the intersections W¥(4)n W+*(B) = W(A, B) are finite. The
maps  in this list of properties should be viewed as gluing maps. Gluing of
moduli spaces is a construction that is not only central to Floer theory, but
is an important tool in all of Gauge theory.

Using the techniques of [2] one can show that given a function f : M — R
satisfying properties 3.3 one can reprarameterize the gluing maps u if neces-

sary so that they obey the associativity rule {compare 2.3 part (2))

(% 12) o0 5 = 1 0, (72 0 73)

for all 5,¢ in the domains of definition of the relevant gluing maps. For a and

b ¢ritical points this allows us to define the space of “piecewise flow lines”
M(e,b) = R(a,b) ULJ[0, e x M(a))
il

where, as in the statement of 2.3, the union is taken over all ordered sequences
of critical points (a) = {a,@y,- - ay,b). For critical submanifolds A and B the
space M(A, B) is defined to be

MA,B) = | Me,b)
aEAbER
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and is topologized in the natural way.

Notice that M(A,B) is not necessarily compact but we have that
Mc M

Certainly these spaces are equal when the manifold is compact. The comple-
ment
M(A,B) — M(A, B)

is accounted for by “bubbling” phenomena in the ends of certain moduli
spaces. We will discuss this point more later,

Using these gluing maps we can construct two categories. Like in previous
examples, C; will be the category whose objects are the critical points of f
topologized with respect to the topology of the critical submanifolods. The

morphism Mor(a,b) is the space of piecewise flow lines
Mor{a,b) = M(a,b)
and the composition law is given by

(“n“f:) —* 71 % V2.

One can also form what we will call the “compactified category” C;, which
has the same objects as { {i.e the space of critical points), but the morphism,

which we denote by Mor(a,b) is given by the compactified moduli space
Mor(a,b) = M(a,b).
Now given connected, critical submanfolds A > B, there are subcategories
ctPce, 0Pl

defined to be the full subcategories whose objects are critical points ¢ such
that A > ¢ > B. (That is, there exist a € A and b € B with M(a,¢) and
M(c,b) nonempty.} An argument completely analogous to the proof of part

(a) of theorem 2.2 proves the following.



MORSE THEORY VIA MODULI SPACES 45

Theorem 3.4 Let f : M — R be a smooth function on a Hilbert mani-
fold M thet satisfies properties (8.8). Let A > B be any connected, critical

submanifolds of M. Then there is a homeomorphism
BC}® = W(A, B)

where
' w,B)= |J w(4,B).
AZA'>B'>B
Notice that if M is compact, then W (A, B) is the closure of W(A,B) in the

manifold M.

This theorem also allows us to identify the classifying space of the entire
category (; (assuming it satisfies properties 3.3). To do this, consider the

space of “algebraic points” in the manifold:

Definition 3.5 For f : M — R a smooth function on a Hilbert manifold let
My, C M be the subspace defined by

My, = {x € M : There is a flow line~, : R — M

with 7.(0) = z, and the limits lim,_ 1+, v(t) exit and are critical points. }

Thus the “algebraic points” are the points that lie on flow lines defined
for all time and go between critical points. Points that lie on flows that are
defined only on a subinterval of the real line or that lie on flows that go off
to infinity are not considered algebraic. We will give the motivation for this
terminology when we consider the example of the loop space of a symplectic
manifold.

A consequence of theorem 3.4 is the following.

Theorem 3.8 Let f: M — R be a smooth function on a Hilbert manifold
that satisfies properties {4.9). Then there is a homeomorphism between the

classifying space of the category C; and the space of algebraic points,

BC; = My,
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4. Group Completions and the Stability of Moduli Spaces

In this section we apply theorem 3.6 to-obtain results about the topology of the
moduli space of flows of a smooth function. We will then examine the examples
of the symplectic action on the loop space of a compact symplectic manifold,
as well as the the Chern - Simons functional on the space of connections on a
trivial principal bundle over a closed 3 - dimensional manifold.

First we begin with some generalities. Let C be a topological category with
spaces of objects and morphisms denoted Ob47(C} and Mor(C) respectively,
Following the notation and terminology used in K - theory, we will call the
loop space of the classifying space NBC the “group completion” of the space

of morphisms, denoted, following Quillen, by a superscript *+7,
Mor(C)* = QBC.

When the category has one object and the space of morphisms is a topo-

logical group G, then of course there is 2 natural homotopy equivalence
G =Mor(C) = Mor(C)* = RBG.

In the case when the category C has one object but the space of morphisms,
which forms a monoid under composition, does not form a group (i.e., not all

the elements are invertible) then there still is,a natural inclusion
Mor(C) — Mor(C)™ = BC

where the loop space is homotopy equivalent to a topological group, which
is the classical group completion of Quillen [13]. The notation is inspired
from algebraic X - theory, where, given a ring R the space BGL(R)" is the
representing space for the algebraic K -groups of R.

Now let f: M — R be a smooth map on a Hilbert manifold satisfying
properties (3.3). Let

M{f) =TT M(4, B)
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where the union is taken over all connected critical submanifolds of M. So
M(f) is the full moduli space of piecewise flows of f and by definition is the
space of morphisms

M(f) = Mor(Cy).

Thus an immediate corollary of (3.6) is the following.
Corollary 4.1 Let f : M — R be as above. Then there is a homeomorphism

M(f)t = OMy,.

The value of this result comes from the fact that K - theory techniques of
Quillen [13] allow one to relate the homology or homotopy types of the moduli
space M(f) with its group completion M(f)*. Thus one obtains information
about M(f) in terms of homotopy theoretic information about the loop space
1M,1;. Of course this is of little value unless one knows something about
the homotopy type of the space of algebraic points, M,;,. However many
interesting examples of functions on infinite dimensional manifolds satisfy the

following variational property:

Property “Crit” The {nclusion of the algebraic points in the entire manifold
My, — M

is @ homotopy equivalence.

This property is so named because it says that up to homotopy, one need
only consider those points that lie on How lines connecting critical points (j.e
the algebraic points). Now many maps do not satisfy this property, even those
that satisfy property 3.3. However it is not difficult to see that if f satisfies
the Palais - Smale Condition C then it also satisfies Property Crit. Moreover
as we shall see, this is a much more general property than Condition C. That

is, many interesting smooth functionals do not satisfy Condition C but do
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satisfy Property Crit. In any case we can summarize these considerations as

follows.

Theorem 4.2 Let f: M — R be a smooth map on a Hilbert manifold that
satisfies Properties (9.3} as well as Property Crit. Then there is a homotopy
equivalence from the group completion of the moduli space of flow lines to the

loop space of the manifold,
M{f)* ~ QM.

We now apply this result to two classes of examples. These are the exam-
ples considered by Floer in [5] and [6]. First we consider a compact, closed,
simply connected symplectic manifold (M?",w). Here w is the symplectic
form; that is a closed two - form with w™ # 0. Although it is not a necessary
assumption, for the purposes of this exposition we will make the simplifying

assumption that the second homotopy group is infinite cyclic,
IQ(M) = Z

Let LM be the space of smooth, unbased loops on M. LM is a smooth infinite

dimensional Hilbert manifold with fundamental group
m(LM) = m{M) = Z.

The symplectic two - form w on ¥ transgresses to give a one-form a on LM,
o has the property that if o : [0,1] — LM is any smooth one - simplex in
LM, and hence defines a smooth map from the cylinder & : S1x [0,1] — M,

then
[a=w
o &

Now a pulls back to a one form (which by abuse of notation we also call
a) on the universal cover LM, which, since m(LM) = Z, is a cyclic covering
space. Since LM is simply connected, a, being a one form is exact and so
there is a functional
¢:LM —R
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with d¢ = e. In fact ¢ determines a map of covering spaces

— ¢

LM — R

! i

LM % Rjz=s",

By construction it is clear that the map ¢ : LM — S! represents an integral
cohomology class lifting the real cohomology class represented by the closed
one form «.

In the most basic, but perhaps most important special case, when M = 52,
then ¢ : L8 —s R /Z can be viewed as the area functional. More specifically,
if #: 5! — $? is an embedding, then #(8) is (up to a constant multiple)
the area of the surface bounded by 4. Now, since # bounds two surfaces, this
area is only well defined modulo the surface area of the sphere. That is why
¢ takes values in R/Z (the actual area functional on the unit sphere would
take values in R/47rZ).

It is not difficult to prove that the critical points of @ : LM — S§! are the
constant loops which are topologized as the manifold M. Similarly, the space
of critical points of ¢: LM — R is given by Z x M, Notice furthermore that

a flow line between critical points z and y € M C LM is a curve
7Y:R— LM orequivalently 7:8'xR — M

which asymptotically approaches the constant loops at z and y. That is, one
can view 4 as a map

1:8=CUo0 — M

with ¥(0) = z and 4(e0) = y. Viewed in this way, the flow equations are
essentially the Cauchy Riemann equations. That is, v : §? — M is a flow
line if and only it is a “psuedo - holomorophic™ map; that is, the map of

tangent bundles

dy:TS* —TM
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preserves the almost complex structure. (Recall that a symplectic structure
on a Riemannian manifold determines an almost complex structure on its
tangent bundle.) We refer the reader to [5] for details of these facts.

Now on the level of the universal cover LM, we consider the space of flows
between two critical points (z,n + k), (y,n) € M x Z. Such a flow is given by
a map

v:8 — M
satisfying

(1) «v is pseudo - holomorphic,

(2) ¥(0) = z and y(o0) = g

(3) v has degree k; that is, the homotopy class represented by ~ in 7, (M) =
Zis k.

We denote the corresponding moduli space by Hof’;_v(Sz,M]. Notice that
the moduli space of piecewise flow lines form (z,n + k) to {y,n) consists of
smooth, degree k maps 4 : § — M with 4(0) = z and y(oc¢c) = y having
the property that there are a finite number of circles parallel to the equator
in 52 on which « is constant, and ~ is pseudo holomorphic in the complement
of these circles. We denote the corresponding moduli space by H"ol:lu[Sz, M).
The full moduli space of piecewise flow lines we denote Iﬁ:l(S’,M). The

following is an application of theorem (4.2).
Corollary 4.3 Suppose that ¢ : LM — R-satisfies Properties (3.3} and
Property Crit. Then there is a homotopy equivalence

Hol(§%, M)* ~ QfM.

In order to understand the meaning of this result one can use the techniques
of Quillen [13] as follows. Let

Hol!(8%, M)

denote the space of based psuedo - holomorphic maps of degree k. By “based”

I mean that the value at 0 € C U co = §? is a fixed basepoint, but there is
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no restriction on the value at co. Assuming that ¢ : LM — R satisfies

Properties (3.3) the gluing maps in .H-OI{SZ,J‘J) allow one to define pairings
Hol*(8%, M) x Hol"(5*, M) — Hol** (5 M)

which makes [I, Hol*($?, M) into a (homotopy) monoid. Indeed it is a sub-
menoid (up to homotopy) of the full space of smooth maps 2. One can use
the above corollary and the techniques of [13] to prove the following, which
says that the group completion of the space of holomorphic maps is homotopy

equivalent to the space of all smooth maps.

Theorem 4.4 Suppose that ¢ : LM — R satisfies Properties {3.3) and
Property Crit. Then there s a homotopy equivalence

(]_I Hos’:(s’,M)) ’ ~ *M.
k

Now in the setting of homotopy monoids, Quillen’s theory allows us to iden-
tify the group completion. Gluing with a canonical element in Hol'(5%, M)

defines the inclusion maps
i Hol*(5%, M) — Hol**'(5%, M).
Let Hol®(S? M) be the (homotopy) limit of these inclusions
Hol®(5* M) = lim Hol*(8?, Mj.
Then one can prove the following.
Theorem 4.5 Suppose that ¢ : LM — R satisfies Properties {3.8) and
Property Crit. Then there is a homotopy equivalence

Z x Hol®(S*, M) ~ N*M.

This is an example of a “stability theorem” for these moduli spaces. That
is, it identifies the limiting homotopy type of the moduli spaces under gluing

with a canonical class of degree one.
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Now one can prove that in many cases ¢ : EM — R does not in fact
satisfy Property Crit. However in the examples of M = CP(n), or more
generally, a Grassmannian or even 2 more general flag manifold, then Prop-
erties (3.3) and Property Crit are satisfied. Then theorems 4.4 and 4.5 apply
and we recover results of Segal, Guest, and Kirwan [16], [8], [10] concerning
how, as the degrees of the maps get large, spaces of holomorphic maps from
§? to these manifolds approximates the homotopy type of the spaces of all
continuous maps.

We now discuss the example of the Chern - Simons functional on the
space of connections on a 3 - manifold ¥, and show how theorem 4.2 leads
to a stability theorem about the moduli space of self - dual connections on
Y xR.

Let G be a simply connected, compact Lie group, and consider the space
Ac(Y) of connections on the trivial principal bundle Y x G — ¥ over a
closed 3 - manifold ¥. A¢(Y'} can be identified with the space of Lie algebra
valued one forms

Ac(Y) = 0YY; ).

In particular there is an natural isomorphism between the tangent space
and this vector space,
TAAG{Y) = nI(Y; g].

Now give ¥ a Riemannian metric. Since'Y is a 3 - manifold, the space of

2 - forms 02*(Y';q) acts on the space of one - forms 1'(Y; ) by the rule
= {1 A dvol.
a(f) f‘; race (a A f)dvo
Thus we may think of Lie - algebra valued 2 forms as cotangent vectors:
0 (¥i0) = (V3 ))" = Ta{Aa(¥)).
In particular the curvature form Fy € Tj(A¢(Y)) and so the mapping

A — Fy e Ty{Ac(Y))
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is a section of the cotangent bundle T"(43(¥)) and hence is a one form
F e a'(A: (V).

Notice that using the metric and the induced Hodge star operator we have

that the vector field dual to the one form F is given by
A—+Fy € 0'(Yig) = Ty(Ae(Y)).

Clearly the zeros of this vector field are given by the flat connectionson ¥ x G.

It is not difficult to see that the curvature F is a closed 1 - form on 4¢(Y)
and since Ag(Y) is contractible, it must be the differential of a function.
Equivalently, the vector field *F, is the gradient vector field of a function on

Ae(Y). This function is the Chern - Simons functional
?:As(Y) — R

defined by
1 1
¥(4) = j; troce(SANdA+ AN AN 4)

where in this formula A is viewed as a one form.
Now let § be the gauge group of the trivial bundle ¥ x G. This is the

group of bundle automorphisms and hence is given by
G =Map(Y,G).
Notice that the set of path components
m(G) =[Y.G|=mG =2

and we can think of the path component that an element g € § lies in as its

degree. The gauge group acts on Ag(Y) = 0(Y;n) by the rule
9(A) =g 'Ag + g7'dg € Q}(Y ;).

The behavior of the Chern - Simons functional under a gauge transforma-

tion is given by

¥(g(A)) = ¥(A) + ¢ - deg(g)
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where 7 is a constant depending only on the Lie group G. For example,
Tsur(z) = 7-

Thus, although ¥ is not fully gal;ge invariant, it is invariant under the
action of G° C G, the subgroup of gauge transformations of degree zero. Since
G/6" = Z (given by degree), ¥ induces a map of infinite cyclic universal

covering spaces

B = 4s(v)/g® R
l )
B = 4.(YV)/§ -4 R/reZ =80

An important issue dealt with in [5] is the fact that the underlying space
B = A(Y)/§ is not a manifold. The reason for this is because the gauge group
G does not act freely on A(Y). Actually by the above formula for the action
it is apparent that the center of G always acts trivially on any connection.
However the singularities B arise from reducible connections, that is those

connections A whose isotropy subgroup
Ga={yg€§:9(4) = 4}

is larger than the center C(G).
One way of dealing with this problem is to restrict to the subgroup of

based gauge equivalences

g.c§ and (§°.cg°

given by those bundle automorphisms which are the identity on the fiber over
a fixed basepoint y; € Y. Equivalently, §. is given by the basepoint preserving
mapping space

G. = Map.(Y,G),

and similarly (§°). = Map?(Y, G), the maps of degree zero.
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Now §. does act freely on Az(Y') and so the quotient spaces 8. = A4(Y)/§.
and 8. = Ac(Y}/(G®). are infinite dimensional manifolds. Thus we can
restrict the Chern - Simons functional to these manifolds and view it as a
G/8. = G/e(G) - equivariant functional, where ¢(G) is the center of G.

Let @ and b be flat connections and so represent critical points of ¥, A

curve 4 : R — B, is a gradient flow between a and & if
:Hlinm 4{t) =e and t‘lﬂ‘f[t) =b

and
dy
7 = Van(¥) = -« Fyy.

Now one can view a curve of gauge equivalence classes of connections
7¥: R — B going between flat connections a and 6 as a gauge equivalence
class of connection 5 on the trivial bundle over ¥ x R which, when viewed as a
one-form, is trivial in the R - direction and satisfies the asymptotic conditions
that as ¢ — +oo, J approaches the flat connections b and a respectively. A
direct calculation, comparing the curvatures of of the connections ~(t) on ¥
at each t with the curvature of the connection 5 on the four manifold ¥ x R,
yields the following. (See [5] for details.)

Theorem 4.8 A curve 4 : R — B(Y) going between the flat connections a
and b satisfies the flow equation
dy _
dt
if and only if the connection 4 on the 4 - manifold Y xR satisfies the anti-self

—* Fo

duality equation
F,' = — % Fﬁ.

Any connection on the trivial bundle ¥ x R x SU(2) is gauge equivalent

to one that is trivial in the R - direction. Hence, we have the following.

Corollary 4.7 Let a and b be flat connections on Y x G and so represent crit-

teal points of the Chern - Simons functional i : B. — S§'. Then the “modul
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space of flows” M(a,b) is equal to the moduli space of based gauge equivalence
elasses of anti - self - dual connections (instantons) on ¥ x R x G which in

the sense described above, asymptotically approack the flat connections a and
b.

We now turn our attention to the functional 3 : 8. — R on the universal
cover. We first make the following observation. Let i[a,b] denote the space
of (§°). - equivalence classes of connections on (¥ x R) » G which in the sense
described above, asymptotically approach the flat connections e and 5. The
following observation is proved using a rather standard homotopy theoretic

argument.

Lemma 4.8 There is a natural homotopy equivalence
B.(a,b) ~ Map.(Y x §'/y, x §', BG)
and hence the set of path components fs given by

7o(8.(a,b)) = Z.

We refer to the integer representing the path component of the connection
as its degree. We then have the following description of the dynamics of
¢ B. —R.

Corollary 4.9 The eritical points of ¥ :‘5, — R are given by pairs (n,a)
where n € Z and a is a (G°). - equivalence class of flat connecte’on; onY x@G.
The moduli space of flows M({n + k,a);(n,b)) is equal to the moduli space of
(8°). - equivalence classes of degree k anti - self dual connections on ¥ x Rx G
which asymptotically approach the flat connections a and b. We denote this

moduli space by M,(a,b).

Let My = Ua,p Mi(a, b) where the union is taken over all (§°). - equivalence
classes of flat connections. We then have the following application of theorem
4.2. (Compare with (4.3}.)
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Corollary 4.10 Suppose that  : B. — R satisfies Properties {3.8) and
Property Crit. Then there 13 a homolopy equivalence

(]_[ Mk)+ ~ 3.,

k

In order to understand the meaning of this group completion theorem we
impose further basepoint conditions. Let BO denote the space of (6°)- - gauge
equivalence classes of connections 4 on {¥ x R) x G which satisfy the following
asymptotic conditions.

(1) limy_,_,, 1 is the trivial connection on ¥ x G, and

(2) Umy— 4, 7 is any flat connection on ¥V x G.

The following is another easy homotopy theoretic exercise.
Lemma 4.11 There is a natural homotopy equivalence

8% ~ Map.(SY; BG) ~ Map.(Y,G)
where Y denotes the suspension of Y.

Let M = M, N B? be the space of “based” anti - self dual connections.

Then Taubes “gluing of instantons" defines pairings
ME X M? - Mg-i-r

which makes I, M} into a (homotopy) monoid. Like we saw above in the
holomorphic mapping setting, Quillen’s theory [13] implies that the group

completion is given by
.
(H Mg) ~Z % ML,
%

where MY = limj... M}. Like above, the limit is taken over the process
of gluing with a fixed instanton of degree one. We then get the following

“stability theorem”.
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Theorem 4.12 Suppose that ¢ : B. — R satisfies Properties (3.8} and

Property Crit. Then there 13 a homotopy equivalence

Z x M%, =~ B° =~ Map.(Y,G).

This theorem is the analogue of theorem 4.5. It says that in the limit {over
degree), the space of instantons on ¥ x R approximates the homotopy type
of the space of all connections. Theorem 4.5 says that the limiting homotopy
type of holomorphic maps is all continuous maps. Recall that the analogous
statement for instantons on a closed four - manifold (rather than on a four
manifold of the form ¥ x R) was proved in complete generality by Taubes in
(19]. Indeed work in progress by T. Mrowka suggests that the basic analytic
setup in [19] can be used to show that  : B, — R satisfies Property Crit.
for any closed 3 - manifold ¥ and any compact simply connected Lie group

G. We therefore make the following conjecture.

Conjecture 4.13 Theorem 4.12 holds for any elosed three - manifold ¥ and

any compact, simply connected Lie group G.

5. Floer homotopy type

In [5] and (6] Floer defined homological invariants to the functionals ¢ :
LM — R and % : B — R for certain examples. (Actually Floer did
not work on the level of universal covers but instead dealt with R/Z - valued
functionals). These invariants are the homology groups of Morse - Smale type
chain complexes generated by the critical points, and whose boundary homo-
morphisms are computed by counting the number of flow lines between critical
points of relative index one. In this section we describe work in progess, in
which Jones, Segal, and [ are attempting to describe the underlying homotopy
theory in these constructions in terms of the categorical constructions studied
above. In order to motivate we go back to the compact, finite dimensional

setting.
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Given a Morse - Smale function f : M" — R on a closed n - dimensional
manifold, for each 0 < k < n let C} C C; be the full subcategory whose objects
are critical points of index < k. Notice that by applying classifying spaces we
obtain a filtration of M,

BC?-‘—’ "‘L"“’BC!_I h‘*‘BC}‘_‘ e BC? =BCIEM.
The following is an immediate corollary of theorem 3.4.

Corollary 5.1 (a). The strata of this filiration are given by the unstable
manifolds
BCj-BCy'= | WH(a)

aECrit,
where Crily ts the set of all critical points of indez k. Since each such W*(a)
is diffeomorphic to a disk D*, we also have
(b). The subgquotients of this filtration are given by a wedge of spheres,

BCj/BCY =\ s

aclril,

An immediate outcome of this result is that the spectral sequence converg-
ing to the homology H.(M) coming from this filiration has as its E| - term
the Morse - Smale chain complex and hence the spectral sequence collapses
at the E; - level. In infinite dimensions, when one can define this filtration,
(that is, when there is a well defined notion of index) one would not expect
the spectral sequence to collapse and indeed the differentials should contain
some interesting geometric information.

In general in infinite dimensions one does have the notion of index, (that
is the dimension of the stable and unstable manifolds are infinite} and so
the Morse - Smale complex, determined by the homotopy of pairs of the
form (BC%, BC%™') must be replaced by a more general construction. When
f:M — R is a smooth map on a Hilbert manifold satisfying Properties

(3.3) one simply studies the homotopy type of pairs (BC?‘B, BC‘;'B') for any
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triple of connected critical submanifolds, 4 > B > B'. The “Floer homotopy
type” is the homotopy type of this collection of pairs.

In a wide class of examples this. data can be studied as follows. For ex-
ample, when Properties 3.3 are satisfied, theorem 3.4 says that BC?'B =
W (A, B), and so we are really studying the homotopy types of pairs of the
form {W (4, B'),W(A, B)). Now consider the normal bundle v§ g of the em-
bedding W{A4,B) — W(4,B"). In many cases this extends canonically to
a bundle (which we still call v$ ) over W(4,B) = BC#P. In this case we
study the Thom space this bundle T(v3 5.) which by definition is the corre-
sponding unit disk bundle modulo the boundary unit sphere bundle. More-
over, it is usually the case that when one has connected critical submanifolds
A' > A > B > B, then the bundle v§ 5. over BC?'B is the restriction of the
bundle v§ . over BC?"B. Hence there is a finite dimensional bundle vp g over
BC}‘B, where C;’B C C; is the full subcategory whose objects are the points
of the critical submanifolds A with A > B, In this setting “Floer homotopy
type” is given by the homotopy types of the Thom spaces T'(vg ).

The homotopy type of these Thom spaces can be studied using techniques
of stable homotopy theory in the following manner. Let B denote a decreasing

sequence of critical submanifolds
B>By>By >8>

and let v; = vp 5, denote the associated normal bundles over BC}’B. For
A > B, let v denote the restriction of 1; to Cf'a. Let —v# denote a bundle
over BC?'B which has the property that v @ —# is trivial. By the finiteness
properties in (3.3) such a bundle exists. Now the stable homotopy type of
the Thom space T(—u) is well defined (up to suspension), so we let T(~u2)
denote the spectrum associated to this Thom space. In the category of spectra
one can’formally suspend and desuspend, which has the effect of shifting the
dimensions of the homology groups. The convention we use is the following.

If v2 is a k dimensional bundle, then the Thom isomorphism theorem gives



MORSE THEORY VIA MODULI SPACES 61

an isomorphism (with 2, - coefficients if v# is not orientable)
HY(BC}P) = B4 (Tv?)

and so we formally suspend the spectrum T{—v) so that the Thom isomor-

phism is in dimensions
HY(BC)y = HY (T (—vf)).

Now the Thom - Pontryagin construction gives an inverse system of these
spectra

BC}P = T(-vf) = = T(—pf) = - (5.2)

which fit together (over choices of A > B) to give an inverse system of spectra
BC;P —T(-) = = T(~14) & (5.3)

We will not go into the detail of the Thom - Pontryagin constructions in these
contexts, but we will simply recall that given an embedding of manifolds
N — M with normal bundle ¢, then by identifying the total space of the
disk bundle of v with a tubular neighborhood of NV in M there is 2 Thom
- Pontryagin map r : M — T(v) which collapses everything outside the
tubular neighborhood to a point. Given a bundle ¢ — M, there is a more
general Thom - Pontryagin map r : T(¢) — T(¢, @ v). The maps in the
inverse systems (5.2) and (5.3) are of this type.

The Floer homotopy type of f: M — R with respect to the sequence B
is the homotopy type of the inverse system of Thom - spectra {5.3). Moreover

we define the Floer homology with respect to B by the rule
HF.(M;B) = !_lirn H (T({-w)). (5.4)

Notice that this definition of Floer homology measures the homological data
of the pairs (BC}'B",BC;'B"“). However this is only an example of the ho-
motopy theoretic data that the inverse system {5.3) contains. We also define

the compactified Floer homotopy type to be the homotopy type of the inverse
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system of Thom spectra as in (5.3) of bundles over the compactified cate-
gories BC;'B as defined earlier. Of course to do this one needs to know that
the normal bundles v; extend over the classifying spaces of the compactified
categories. When one is in this situation, one may also define the compactified
Floer homology as the limit of the cohomology groups of the Thom spectra
as in (5.4), but now these bundles live over BC;'B. We end by describing an
example where these constructions may be studied in a particularly clean way.

Let ¢ : £52 — R be the map induced by the canonical symplectic form
on 57 = CP(1) as defined above. In this case one may verify that ¢ satisfies
Properties (3.3) and so by theorem 3.6 one has

B¢, = ﬁzﬂg.
We begin by identifying this space. By viewing S? as CP(1) we have that
Ls* = L(C* - (0,0))/L(C")

where C* = C — 0 is the group of units. Letting Ly{C"*) be the space of loops

in C* of winding number zero, one sees that
L8% = L(C? - (0,0))/Ls(C").

Now an element of L{C? - (0,0)} is a pair of smooth, complex valued functions
f and g on the circle S with no zeros in common. By the description of the
flow lines of ¢ as holomorphic maps as explained above, it is easy to see that
such a pair (f,g) represents an algebraic point of 32 if and only if fandg

are both polynomials. That is,

BCy = ﬁzﬂ,g = {(p, 9) polynomials with no zeros in common on §! }/C".

Now as described above, the critical points are given by 2 x §7. To ease

notation we write
CrH-k,n _ Ct"‘f'*)"-s""‘xsz
=(y ,
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It is then rather straightforward to see that
BCn¥hn = {(p, ¢) polynomials of degree < k with no zeroes in common on Sty/C.

Now let P, be the {complex) vector space of all polynomials of degree < k.
Then with this description of BC™*" we see that it is diffeomorphic to an

opén dense subspace of
(P x P —(0,0)) /C" = CP(2k + 1).

It is not difficult to see that the difference between BC™*" and this model of
CP(2k +1) comes from the fact that the moduli spaces of flows, which consist
of piecewise holomorphic maps from 57 to itself, are not compact. There is
bubbling phenomena that occurs when a root of a holomorphic map of a fixed
degree approaches a pole. The upshot is that when one compactifies these

moduli spaces to form the category {4 one obtains the following result.

Theorem 5.6 There is o natural homeomorphism from the classifying space

of the compactified category to the complez projective space
BlMken = CP(2k + 1).
Furthermore the norma! bundle of the embedding
BE+En , gEn+En-1
15 1somorphic to the normal bundle of the natural embedding
CP(2k + 1) < CP(2k + 3)

which is given by 2¢, where ¢ — CP(2k + 1) is the canonical (complez) line
bundle.

Now the Thom space of k - times the line bundle

k¢ — CP(m)
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is homeomorphic to the stunted projective space CP(m +k)/CP{k —1) which
we denote by CPL“'”‘. This notatioq makes sense in the stable category of
spectra even when k is negative. Moreover if one considers the line bundle
over the infinite projective space,

¢ — CP{oo),

then we write T(k¢) = CP{ for all k € Z,

Z, for g — 2r where r > k
H¥(T (k¢)) = { 0 foraodd

Now consider the decreasing sequence of critical submanfolds
0} x8¥>{-1}x8> - >{-i}x 8>
The corresponding sequence of classifying spaces
B’ BC e .. BT s
is homeomorphic to a sequence of embeddings
CP(o0) — CP(oc) < -+ CP{o0) — -+

where the successive normal bundles are given by 2¢. Hence we have the

following.

Theorem 5.6 The compactified Floer homotopy type of ¢ : L3 — R is

given by the inverse system of spectra

CP(oo) =CPy « CP%, — ++- — CP%), . +»
The compactified Floer homology is given by

Z, for g any even integer (positive or negative)

HFq[Egz) = { 0 for ¢ odd.

We end by noting that if Floer's calculations in [5] are adapted to this

context, he would have that
HF.(L5)) =P H.(5?)
2z

which is isomorphic to our result after regrading.
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