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EXTENSIONS OF JETS ON TUBE STRUCTURES

Joaquim Tavares *®

Abstract

We apply the Ehrenpreis’s cohomological extension method to tubes
structures. We extend jets which are pointwise solutions of the structure
in tubelike closed sets.

Resumo

Aplicamos o método cohomoldgico de extensao de Ehrenpreis as es-
truturas Tubo. Extendemos jatos que sao solugoes pontuais da estrutura
definidos em conjuntos fechados tubulares.

1. Introduction

Let {uq} be a subset of functions of C(F, C) indexed by the set of all nonnegative
integer N-uplas (o, ..., an) with |(aq,...,an)| = a1+ ... + ay € N.
The set {uq} defines a smooth jet in a subset F of R¥ if for all bounded

subset K C F
ua+/3
w@= ¥ ey s R (L)
ataice P!

and
u(z)| < M(K)
|Rak(z,y)| < M|z —y* 1o forall z,ye K CF, k€N (1.2)
We denote the set of all jets defined in F by J(F,C).

The Whitney extension theorem asserts that when F' is closed smooth jets

extend themselves to RV as an element of C*®(RY, C).
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If F C RY is a closed set and F is a finite vector bundle over RY , we denote
by J(F, E) the sections of E with base in F' and coefficients in J(F, C).

Let £ be a subbundle of C ® T(RY) generated by n, 2 < n < N, linear
ly independent smooth complex vector fields expressed by a frame field L =
(Ly,..., Ly). We define H(F) to be the subalgebra of elements of J(R™ x F, C)
such that

Lu=0in R" x F (1.3)

The equation (1.3) should be understood as
Liu=0in F for j=1,.,n

in the classical sense since we can always extend u to R™ x R™.

We say that L is globally integrable if there is a smooth map
Z:R" xR*—»C" (1.4)

such that
dZ\N ... NdZy, # 0 (1.5)

in RY. When we can find global coordinates in R™ x R™ such that
Z(z,t)x +19(t)

we say that £ is a Tube structure.
By choosing global coordinates i, ..., Tm,t1,..., t, in R™ x R* we may

express the vector fields L; as

L; = (8); — > _(3),(Z%)(0x)y, §=1,..,m (1.6)
k1
where (9;) = (8%1 o %) and
Lij=O, th[=6kl, (1S]Sm,1§k,lgn) (17)

Let us denote by £+ the orthogonal of £ with respect to the duality between

tangent vector and forms. Associated with £ we have the induced covariant



EXTENSIONS OF JETS IN TUBE STRUCTURES 189

exterior derivative acting in exterior powers of J(R™ x K, E), where E = C®

T*/L+ and the associated differential complex
P d P+l
NJ(R™ x K,E) <% A J(R" x K, E) (1.8)

In this context we will study extensions of jets in H(F') to jets in H(U),
where U is some open neighborhood of F'. We will apply the cohomological
extension method as described in [1], that is; for an adequate neighborhood U
of F and an extension % € C®(R™ x U) of u € H(K) we will solve dov = d1
in some open neighborhood U of K with v =0 in R™ x K. An extension of u

will be @ — v.

2. Extending Jets

Let us denote by C(v) the family of diadic cubes Q, with edges of size 27
in R*. Let Qg be some fixed diadic cube containing K in its interior and
N(v) the number of diadic cubes in C(v) contained by Qk. Let Bg be the
ball of radius R centered in the origin in R™ and 0% = (9/0;,)**...(0/0x, )",
& = (8/6,)..(0/8,,)Pr, L* = LS. L% z* = g$...2% andt? = 7. P~

Also let us denote by I'y the m-dimensional affine linear manifold
{zeC":z2=y+1i0(t)}
and consider
G(€) = exp(—€ 47'€%)
~1.2

the Fourier-Laplace transform of E,(z) = (er)™7 exp(—e '2?). Let u be in
H(K). We extend u to R™ x R* as a function @ in C®(R™ x R*, C). It follows
that d@i € C°(R™ x R",C® Ab™) and

dei=0in R" x F (2.1)

In fact all derivatives of d.@ vanish at R™ x F since the L7’s and 9,,’s commute.
Denote by w = = + i®(t) and z = y + i®(s) complex vectors in C*. Consider
0 < Ry < Ry < Ry, and x in C*°(Bg,), where x = 1 in Bp, and w = d(x@).
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It follows that w € J (Rm xR*, C® /\l’m) is an uniformly compact supported

form in the first variable in B, . Define v, by

ve(z,t) =207 ™ // / exp (i [w — 2] - §) Ge(§w(s, Rz) ANdE AN dz (2.2)

A T's R™

Since

e [ exp (ifw - 2]- € G(O)(xd)(t, Re)dz =

Iy

/ exp (i [w — 2] - €) Ge(E)w(t, R2) A dz (2.3)

Iy
This last 1-differential form is exact for every fixed £ € R™ and (2.2) is inde-
pendent of the arc A joining a fixed point t; € K to t € R*. The exponential
decay guaranteed by G, allows one to apply Fubini theorem to represent (2.2)

as

ve(z,t) = 207" / //exp (i[w—=2]-&) G(&)w(s,Rz) ANdz AN dE (2.4)

R™ A Ty

it follows also that

v@P(z,t) = 2 ™) / //exp (tw—2]- &) Ge(&)w(s,R2) ANdE ANdz =

R™ A Ty

2™ 8f / //exp (tlw—2]-&) G(§w(s,Rz) ANdz ANdE =

R™ AT

= 27r_m/ / exp (i [w — 2] - &) Ge(§) LPOZ (xu)(t, Rz) A dé A dz

't Rm

+27r_m// / exp (i[w — 2] - &) Cv’e(f)Lﬂa;"w(t7 Rz) NdENdz =

A T's R™

_ / B (w — 2)LP0% (xu)(t, Re)dz

w20 [ [ [exp(ilo— o] GlOL it R2) ndg ndz (25)

Em A Ty
For any u € C*(R™ x R*,R) and ¢ € R denote the interior of the set
{t € R* : supcpm u(z,t) < c} by u, .
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We will introduce now a semilocal condition (x)y for a tube structure £ in

order to establish a boundedness criteria for the family
{v2?, e<1, |al 18] <1}

We say that L satisfies (x)o at a closed connected set F' C R™ if for any connected
compact subset K C F and open neighborhood Q O K there exists an open
neighborhood U of K such that for all ¢ € R and v € H(R") any connected
component C of Ru.NU is contained by a connected component C' of R = u.NQ
with C'NF # 0 or else Ru.NU =0

If G C R" is open and F C G we say that L satisfies (x)o at F relative to
G if the statement above holds with Q and U relative open sets in G.

When K reduces to a point and F' = R", the condition (x)y was originally
stated for tubes structures in [6] and it agrees with the solvability condition ap-
pearing for locally integrable structures of codimension one ([3]). We will prove
an extension theorem, analog to those proved in [2], for a tube structure £ that
verifies the condition x; at a compact subset of closed connected hypersurface
F.

With the notation above we state the Lemma 2.1, whose proof we postpone

to Section 3.

Lemma 2.1. Let £ be a tube structure in C® T(R™ x R*). Let FF C R be
a connected closed set, K C F compact connected set and Qg an open diadic

cube containing K. If L satisfies (x)o at F, then for a fized | the family
(v, e<1, lal, 181 <1} (2.6)

is bounded in {t € R" : |t| < k} x U by a same constant, depending only on K,
[l and k. Let G C R™ be an open set with regular boundary. If G C R™ is an
open subset with reqular boundary and L satisfies (x)o at F' relatively to G C R"

then the same statement holds for U a relative open set in G.

The next two definitions deals with maximum of functions in compact sets

and will be used in the statement of the main Theorem 2.6.
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Definition 2.2. Let u : RY — R be continuous and a closed set F C RY. We
say that u attains a local maximum at a compact subset K C F' relatively to F
if there is a open neighborhood U of K in RY such that wyx =M andu(z) < M
ifz€ FNU\K. If F = RN we simply say that u attains a local mazimum at

a compact subset K.

We derive from definition 2.2 a new one for Tubes structures

Definition 2.3. Let £ be a Tube structure defined in C ® T(Rm X ]R"). We
say that L satisfies the local maximum principle at F C R" if for all K C F
compact Ru does not have a local mazimum at {xo} x K relatively to R™ x F
for any o € R™ and u € H(R"™), unless u is a constant. If F = R"™ we simply

say that L satisfies the local maximum principle.

We shall restate for tube structures a theorem of Treves [5].

Theorem 2.4. Let u € H(R™) and V C R™ x R",be an open connected set.
Then if u vanishes in V, it vanishes in all orbit O (in the sense of Sussmman
[S]) that intercepts V.

This theorem lead us to the following definition

Definition 2.5. Let £ be a Tube structure in C®T(]Rm X R"). We say that a
closed set FF C R™ has the uniqueness property if for any compact set K C F
there is an open neighborhood U of K such that any orbit O of L which meets
R™ x U also meets R™ x UN F.

Now we state the main Theorem.

Theorem 2.6. Let L be a Tube structure in C® T(Rm X ]R") and FF C R*
a closed connected set with the uniqueness property. Assume that L satisfies
the local maximum principle at F. Then the following three statements are
equivalent:

i) For any compact connected set K C F and for any open neighborhood
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Q D K there exists an open subset U, K C U C Q such that any function
u € H(F N Q) admits an unique extension to R™ x U, as a function in H(U).
it)There is no u € H(R™) and no compact subset K C F such that Ru
attains a local mazimum at {xo} X K relatively to R™ X F', unless u is constant.
iii) There is no 0 € S™* and no compact set K C F compact such that 0-®
attains local mazimum at K relatively to F', unless 6 - ® is constant.

iv)The tube structure L satisfies the condition (x)o at F' .

Proof: Suppose i) holds and ii) does not. Then one can find a compact set
K C F, y € R™, an open neighborhood @ of K, a nonconstant u € H(R")
such that Rujzeyxx = M and Rupmyxrng < M. If R € Su({z0} x K), the

smooth function w defined in R™ x Rups., as
w(z,t) = explu(z,t) — (M +e+iR)] ™ if (z,t) € FNQ\u ' ({M +¢+iR}))

and

w(x,t) =0 if (2,8) ER" x FNQNu ' ({M +e+iR})

isin H(QN F). Also K C 9(—Ru)_p because L satisfies the local mazimum
principle at F. The uniqueness property of F implies that we(x, t) = explu(z,t)—
(M + e+ 4R)]™! is the unique possible value for any extension of w to R™ X
V\ut({M + € + iR}). Consequently for small € the jet defined in H(F N Q)
by {w.} cannot be extended to the fixed neighborhood R™ x U of R™ x K
granted by i), even as a continuous function. Thus i) implies ii). That ii)
implies iii) is trivial. Next assume that iii) does not hold. Then there exists
6 € S™1, a compact K C F and an open neighborhood U of K, such that
6 - ® attains a local maximum M at K, in FNU. Now K C 9(—0 - ®)_,; and
KN (—0-®)_3 = 0. Then any t € (=0 - ®)_p NV cannot be connected to
K by any continuous path or else (=0 - ®)_5;r = @, but this last alternative is
empty since L satisfies the local mazimum principle at F. This contradicts
iv). Assume now that iv) holds. Let K} C Qj be an exhausting sequence of
compact connected subsets for F', @ an open diadic cube containing Kj and

Ur C Qi an open connected neighborhood of K}, for which the condition (x)o
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holds. Denote U = Uy U and By, the ball of radius £ centered in the origin in
R™. Let @ be an extension of u to R® x R™, as in Lemma 2.1. Then the family of
functions {L#9%v,, |al,|B| < 1} is bounded in By x U, by a constant depending
only on [, k. By a standard diagonal process one can find a subsequence ¢, — 0
such that v, — v, where v € C*°(R™ x U). Then vjp =0 and L(% —v) =0
in R™ x U. Thus @ —v € H(U) is one extension of the original jet u. The
uniqueness follows from the connectedness of the U,’s. The proof is finished.

Let F = p71(0) be a connected hypersurface, gy = {t € R" : o(¢) > 0} and
o ={t € R" : p(t) <0} all defined by a smooth ¢: R* — R

One can prove the analogue of Theorem 2.6 for an open relative neighbor-
hood of ¢71(0) in o_ = {¢t € R* : p(t) < 0}. The condition (x)o is taken
relatively to o_. Recall that £ satisfies (x)o at 0~(0) C o_ relatively to o_
if for any connected compact set K C ¢~*({0}) and any open neighborhood
@ D K there exist an open relative neighborhood U of K in g_ such that for all
u € H(p-) and ¢ € R any connected component C of Ru, N U is contained by a
connected component C' of Ru, N Q with €' N g=1(0) # 0 or else Ru. N U = .

Let 07(0) be a noncharacteristic hypersurface with respect to £, that is
deo # 0. If u € C®(R™ x 971(0)), we say that u satisfies the tangential
tube structure £ at o=(0) if dzu A dgo(t) = 0 for all ¢ € p~'(0) and in this
case it is possible to find an extension @, such that & € C®°(R™ x p_) and
Uj-1(0) € H(R™ x 071(0)) (see [2] for details).

We now state and prove a lateral extension theorem :

Theorem 2.7. Let p € C*°(R",R) such that o~*(0) is connected and dgo # 0
in 071(0). If L is a Tube structure in C® T(Rm X R") which satisfies the local
mazimum principle at 071(0), then the following four assertions are equivalent:
i) for any compact connected set K C 071(0) and for any open neighborhood
Q D K there exists an open subset U, K C U C Q such that any u € H(Q N
071(0)) extends to R™ x U N o_ as a jet in H(U No_).
ii) There is no u € H(ps), K C 07*(0) compact and o € R™ such that

Ru attains a local mazimum at {xo} X K relatively to R™ X gy, unless u is a
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constant.
wi)There is no 0 € S™ ' such that 0 - ®,, attains a local mazimum at K
relatively to o4 unless 0 - ® is a constant.

iv) The tube structure L satisfies the condition (x)o at 0~1(0) relative to o_.

Proof: Now the proof follows the same arguments as in Theorem 2.6 except
for the detail that o_ is a smooth manifold with boundary ¢=1(0), so one may
use the mean value theorem and Lemma 2.1 to ensure uniform continuity of the
family {LP0%. : |al,|B] <k, 0< €< 1}in any compact subset of R™ x UNg_
where U = U2,U;, C o_.

As a consequence of Theorem 2.7 we have the following corollary, that im-

plies Theorem 2.4 in [2].

Corollary 2.8. L is a Tube structure in C® T(Rm X R") which satisfies the
local mazimum principle at o_ and suppose that ¢~'(0) is compact. Then
u € H(o71(0)) extends itself to o_ as a jet in H(o_) if and only there is no
0 € S™ ! such that the set such that 0 - ®|(.4,), attains a local mazimum at K

relatively to (¢ + 0)+ for all ¢ € [0, +00), unless 0 - ® is a constant.

3. Proof of Lemma 2.1

We begin recalling that in Section 2 we had choose 0 < Ry < R; < Ry, and x in
C*°(Bpg, ), where x = 1 in Bg, and wd,(x%). Let diam(K) denote the diameter
of K. Throughout the proof we shall assume without loss of generality that
(3+n)d = Ry — Ry, where

d = diam(K) sup |V®(1)|

151957
For each 0¢/|¢|, £ € R™ and ¢ € R* denote by (®-6)g (1.9 the open set {s €
R™ : ®(s)-0 < ®(t)-0}. Let tg be fixed in K, t € U and t' € UN(® - 0)o(z).0. By
the hypothesis (xq) one can find g9 € Qg NFN(® - 0)4(1).¢ in the same connected
component of Qx N (P - 0)a(y.9 to which ¢’ belongs. Since t € Qx N m

one can take ¢’ arbitrarily close to ¢.
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Taking advantage of the exactness in (2.3) we will choose a path A, for each
¢ € R™ as a sum of two piecewise linear paths, A, = A, ; + A, ,, where the path
indexed by 0 links the fixed point 3 to gy and the other one links gy to ¢ and
lies nearby m inside Qg. By 2.5

v =250 exp (7 -§) G(ef)aaLﬂ (s, Rz) NdE N dz
ey
+/E w — 2) Lﬂaa(xu)(t y) NdyA+ B (3.1)

where B0 when S0.

We will first estimate the partial sum A in 3.1. Let us write A as

A=2g"m / (A/ + /) /exp (i [w — 2] - €) G(€)0°LPw(s, Rz) A dE A dz

- / / / exp (i [w — 2] - €) Ge(€)92LP (xdcw) (=) A dE A dot

27r7m/ / /eXp (ifw—2]-¢) Ge(f)aﬁLﬂ(udcx)(z)/\df/\dz+
_m/ / / exp (i [w — 2] - €) Ge(§) 2 LP (xdcu) (2) A dE A de+
a / / exp (i — 2] &) GUO)OL (wdex) () AdEAdz  (32)

Denote the ﬁrst two integrals in (3.2) by the roman numerals I, I respec-

tively and by 1711 the sum of the last two. Then

=2x ™ / / /exp ]-€) G(€)LPO® (Xdﬁu) (z) NdENdz  (3.3)

]RmA

The set K is connected. For each £ € R" fixed one can find a piecewise linear

path A, as follows; let v € N be such that

27 (exp(—2d A([¢]))) < 27 < (exp(—2d A(|£]))) < exp(— 2d\/_ (3.4)
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where A(p)Z= > 0if p < A and A(p) £ if p> A.
Let € be a positive number and N (K, v) the number of closed diadic cubes
Q, in of C(v) whose union is a covering of K. There exist A > 0 such that

N(Kw)

3 sn < Y N(G) < € / dz (3.5)
k=1 [9)7e

where the last inequality is a consequence from the fact that the upper Minkowski

dimension of Qg is n. Consider a vertex t; in
BLFS™ gy (3.6)

which is at a minimum distance of t,. Suppose that the vertex t;_; € Qr_1 is
defined then select the next vertex t, € UY_; Qk nearby #_; (in another cube
intersecting the former one), allowing the maximum projection in the direction
of the vector qu;. In doing so we find after a finite number of steps, vertices
{t1, ... ,tn} of the cubes Qy, with N < N(K,v), such that tx_; and ¢ lies in
the same cube Q, ty is in the same cube as ¢y and #; is in the same cube as
%o Denote the polygonal line defined by A, , these vertices. It follows from the
hypothesis on the flatness of dyu that for any [ € N

12202 (xdeu) (v, 5) < Ofs — 119 < Co=@-Beioleid (37)
for all s € Qy, t* € QyNK # () and uniformly in y € Bg,. If | — (|| +|8]+1) >

n+ 1 then by (3.4),(3.5) and (3.7) we obtain

N(Kw)
I < exp| sup |V®(s)||to—s Lo (xu)||(z, 8)dzdsdé =
UEID N Ny N xpLEQr;l (9t ||s|}|| ()l (z. ) dzdie

N(K,v)

> s [ o] sup (VR(asle] fos-te] | 12905 (den)lze <

k=1 s€Qxk /R™
sup / exp[(IW(s)lp—s|—2d)|§}dg dzy/nN (K, v)2-0-(el+A+D) <
s€Qk JR™ T'sNSUpPx

/.., exp(—alél)ds sup dzv/AN (K, v)2 ¢ D g/ < N(p)2m !
m s€Q

€Qx JTansuppx

< Ce (3.8)
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The path A = Ag o+ Ag is fixed for each £ € R™. Apply Fubini theorem and
the fact exp(i[z + i®(¢t)] - £) = exp(iz - §) exp(—P(¢) - £), to write

=27 / / /exp (i [w— 2] - €) G(€)LPO® (udgx) (s, Rz) Ndz NdE =

Rm™ A&0 Ts

27r_m// /exp(i [z +1®(t) —y — D(s)] - §) Gf(f)Lﬂaﬁ(udgx)(s,y)/\dg/\dy

RmR™ A,

(3.9
The integrand in (3.9) is analytic in the &-variable. The exponential decay of

G. allows change of integration domain from & € R™ to ¢ € C%, where
T ={CeC" : =& +iA(|€])sgn(z; —y;)} for j=1,...,m (3.10)
Then
Jexp (i — 2] - €) [ exp (= [B(s) — (1)) - € — (= — ) - A€ sgn(z — v)) <
exp (|2(s) — 0(1)|1¢] — A(€]) |z — ) < exp (€][|@(s) — @(8)] - (3+m)a]) <
exp((sup [V0(s) o — slle] — (3-+ m)aA(€])) < exp(~(n+ 2)aA(e])) (311)

As w is confined to Bg, x K, while z is in Bg, \ Bg, x K, we get

<2 [ [ [ exp(—(n+2)aa(%¢))) G(€) 1170 (udex) | (s, y)AdGAdy <

R™ R™ ARgO

SEQK

2n sup [ 111292 (udex) (s, )y [ exp(—aAGRCI)AC2/mN(K, 1) (2" <
Br, Rm™

C2y/nNv)(2")"*! < C'e (3.12)

by (3.11), (3.4) and the fact that G, is bounded in C7F by 1 for |R¢| > A. If
|R¢| < A we must observe the constrains imposed by (3.4) and (3.5). We choose
e such that 271 exp (—Qd A) < e < 4dy/mA~, to obtain —dA+4"tem 1A% < 0.

This shows in view of (3.12) and (3.8) for wy = z+i®(tp) and w = x+iD(t),
that

lim v () = 02 (1) =
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limeo2n™ ™ (“/ - /) / exp (i[w — 2] - §) GE(C)LBB;I(Xu(z))df Adz
t Ty ” R™

= im0 (/ - /)Ee(w - 2))LPo® (Xu(z))dz =0 (3.13)
in Bg, +iK. Thus 0
028 (w) = () ™2 [ Eow - 2) 1282 (xu(2))dz + O(e)

ifn+1<1—(|a|+|8|+1), uniformly in Bg, x K and it is well known that

/Ee(w - 2)LP 32 (Xu(z))dz

converges uniformly to L?0% in Bg, x {t} as € — 0.

This last step provide a semilocal version of the Baouendi-Treves approxi-
mation theorem [5] for jets in H(K) where K C R" is a compact set having
the following property: any two points of K can be linked by a rectifiable curve
within K of length bounded by a fized constant.( In this context the Baouendi-
Treves approximation theorem asserts that any u € H(K) can be approximated
by a sequence of polynomials P(Z(z,t)) in H(K)).

We may conclude that v®? converges uniformly to L?0%u in B, x K, as
long as |o| + 8] <1 — (n+2).

Now we estimate the last partial sum. We select a piecewise linear A, path
quite in the same way as we did before. We know by hypothesis that we can
find #' and ¢y in a same component of Qg N (® - 0)pw).0 With gg € F and #
arbritarily close to t.

Let N(&,t) be the minimum number of closed cubes Q, € C(v) whose union
covers Qg ﬂm and such that Q, N Qx N (P - 0)ew).9 # 0. Moreover we
choose v such that

21+ |gf)7F 22 > (L+[gf) (3.14)
We always have

3 2 < N(p)2¥ = / dz (3.15)
k=1 -
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We will select the vertices of A, in UN:('S’t)an. Consider a vertex t; in the
£,1 k=1

boundary of one of N(&,t) cubes in the covering of
Qr N (2 - O)ar)0 (3.16)

which contains the point gy. Suppose that the vertex t;_; € Qr_ is defined.
Then select the next vertex ¢, in the boundary of another cube @ in the
covering of Qg N (® - 0)g(r).¢ distinct of Q_1, with Qp N Qp_y # 0, allowing
the maximum projection in the direction of the vector q—g%. As before in the
construction of Agp we find after at most N(&,t) number of steps, vertices
{t1, ... ,tn} of the cubes Qy such that t;_; and ¢ lies in a same cube Q. The
point ¢; is in the same cube as gy and the point ¢y will be in the same cube as
t. The process is fullfilled because there is a cube which contains ¢ and in its
interior points ¢’ of Qx N (®-0)e).o Which are in the same connected component
of gg. Denote the polygonal line defined by these vertices by A,,. It follows
from (3.15) that

(1+[EP)"2""UN2™ < N(£,8)2™™ < N(v)2™ = / dx (3.17)
Qk

Integrating I11 by parts with respect to P(8,), where P(X) =1— Y7, X7, at

least k = [mg”] times we get

11T = 27 ™ / / / exp (i [w — 2] - €) G(e€) P~ (=€) PX(8,) LP 82w (2) AdE Adz

(3.18)

and each point of A, | is within \/n2" of some point of Qx N (P - #) (.9 Then

&yl
we can bound the exponential integrand in II1 by

zme/ / /eXp (i[w — 2] - €) G(e€) P~¥ (—i€) PX(3,) LPAw(2) A d€ A dz| <

N(&:t)
O 3 [ exp(sup [Va(s)lvaz gt P (ig)de (319
k=1 SEQK
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where C(K, 1) = 2r ™ sup,co, Jr, | PX(8,) LP8%w(s, Rz)||dz. Now from 3.18 we

can estimate 3.19 and get
n¥C(K, ) exp(VC sup [VO(s)|)N (g, 927 [ P4 (—ig)ds <
SEQK m

n¥C(K) exp(vnC sup [V&(s)|)N(v)2™ / PR+ (—ig)de < C(K, k1)
SEQK Rm
(3.20)
Finally the partial sum B in 3.1 is given by

v@P(z,t) = /Ef(a: — y)Lﬂaz‘/"(Xu)(t, z2) ANdz (3.21)

which converges uniformly to LP9g (xu)(-,t) in R™ x Q. This proves the first
part of the Lemma. We omit the rest of the proof as it uses essentially the same
ideas; we only remind that in this case we must construct paths A¢ reaching
a point in F' N JG laying inside G and this can be done since 0G is a regular
manifold. The proof is finished.
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