

### EXTENSIONS OF JETS ON TUBE STRUCTURES

# Joaquim Tavares \*

### Abstract

We apply the Ehrenpreis's cohomological extension method to tubes structures. We extend jets which are pointwise solutions of the structure in tubelike closed sets.

#### Resumo

Aplicamos o método cohomológico de extensão de Ehrenpreis as estruturas Tubo. Extendemos jatos que são soluções pontuais da estrutura definidos em conjuntos fechados tubulares.

#### 1. Introduction

Let  $\{u_{\alpha}\}$  be a subset of functions of  $\mathcal{C}(F,\mathbb{C})$  indexed by the set of all nonnegative integer N-uplas  $(\alpha_1,...,\alpha_N)$  with  $|(\alpha_1,...,\alpha_N)| = \alpha_1 + ... + \alpha_N \in \mathbb{N}$ .

The set  $\{u_{\alpha}\}$  defines a smooth jet in a subset F of  $\mathbb{R}^{N}$  if for all bounded subset  $K \subset F$ 

$$u^{\alpha}(x) = \sum_{|\alpha+\beta| \le k} \frac{u^{\alpha+\beta}(y)}{\beta!} (x-y)^{\beta} + R_{\alpha,k}(x,y)$$

$$\tag{1.1}$$

and

$$|u^{\alpha}(x)| \leq M(K)$$

$$|R_{\alpha,k}(x,y)| \le M|x-y|^{k-|\alpha|}$$
 for all  $x,y \in K \subset F$ ,  $k \in \mathbb{N}$  (1.2)

We denote the set of all jets defined in F by  $J(F, \mathbb{C})$ .

The Whitney extension theorem asserts that when F is closed smooth jets extend themselves to  $\mathbb{R}^N$  as an element of  $C^{\infty}(\mathbb{R}^N, \mathbb{C})$ .

<sup>\*</sup>The author was partially supported by a research grant from CNPq Key words and phrases: Overdetermined systems of complex vector fields, jets

If  $F \subset \mathbb{R}^N$  is a closed set and E is a finite vector bundle over  $\mathbb{R}^N$ , we denote by J(F, E) the sections of E with base in F and coefficients in  $J(F, \mathbb{C})$ .

Let  $\mathcal{L}$  be a subbundle of  $\mathbb{C} \otimes T(\mathbb{R}^N)$  generated by  $n, 2 \leq n \leq N$ , linear ly independent smooth complex vector fields expressed by a frame field  $L = (L_1, ..., L_n)$ . We define  $\mathcal{H}(F)$  to be the subalgebra of elements of  $J(\mathbb{R}^m \times F, \mathbb{C})$  such that

$$Lu = 0 \text{ in } \mathbb{R}^m \times F \tag{1.3}$$

The equation (1.3) should be understood as

$$L_i u = 0$$
 in  $F$  for  $j = 1, ..., n$ 

in the classical sense since we can always extend u to  $\mathbb{R}^m \times \mathbb{R}^n$ .

We say that  $\mathcal{L}$  is globally integrable if there is a smooth map

$$Z: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{C}^m \tag{1.4}$$

such that

$$dZ_1 \wedge, \dots, \wedge dZ_m \neq 0 \tag{1.5}$$

in  $\mathbb{R}^N$ . When we can find global coordinates in  $\mathbb{R}^m \times \mathbb{R}^n$  such that

$$Z(x,t)x + i\Phi(t)$$

we say that  $\mathcal{L}$  is a Tube structure.

By choosing global coordinates  $x_1, ..., x_m, t_1, ..., t_n$  in  $\mathbb{R}^m \times \mathbb{R}^n$  we may express the vector fields  $L_i$  as

$$L_j = (\partial_t)_j - \sum_{k=1}^m (\partial_t)_j (Z_k) (\partial_x)_k, \quad j = 1, ..., n$$
 (1.6)

where  $(\partial_x) = (\frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_m})$  and

$$L_k Z_j = 0, \quad L_k t_l = \delta_{kl}, \quad (1 \le j \le m, \ 1 \le k, l \le n)$$
 (1.7)

Let us denote by  $\mathcal{L}^{\perp}$  the orthogonal of  $\mathcal{L}$  with respect to the duality between tangent vector and forms. Associated with  $\mathcal{L}$  we have the induced covariant

exterior derivative acting in exterior powers of  $J(\mathbb{R}^m \times K, E)$ , where  $E = \mathbb{C} \otimes T^*/\mathcal{L}^{\perp}$  and the associated differential complex

$$\bigwedge^{p} J(\mathbb{R}^{m} \times K, E) \xrightarrow{d_{\mathcal{L}}} \bigwedge^{p+1} J(\mathbb{R}^{m} \times K, E)$$
(1.8)

In this context we will study extensions of jets in  $\mathcal{H}(F)$  to jets in  $\mathcal{H}(U)$ , where U is some open neighborhood of F. We will apply the cohomological extension method as described in [1], that is; for an adequate neighborhood U of F and an extension  $\tilde{u} \in C^{\infty}(\mathbb{R}^m \times U)$  of  $u \in \mathcal{H}(K)$  we will solve  $d_{\mathcal{L}}v = d_{\mathcal{L}}\tilde{u}$  in some open neighborhood U of K with  $v \equiv 0$  in  $\mathbb{R}^m \times K$ . An extension of u will be  $\tilde{u} - v$ .

## 2. Extending Jets

Let us denote by  $\mathcal{C}(\nu)$  the family of diadic cubes  $\mathcal{Q}_{\nu}$  with edges of size  $2^{-\nu}$  in  $\mathbb{R}^n$ . Let  $\mathcal{Q}_K$  be some fixed diadic cube containing K in its interior and  $N(\nu)$  the number of diadic cubes in  $\mathcal{C}(\nu)$  contained by  $\mathcal{Q}_K$ . Let  $B_R$  be the ball of radius R centered in the origin in  $\mathbb{R}^m$  and  $\partial^{\alpha} = (\partial/\partial_{x_1})^{\alpha_1}...(\partial/\partial_{x_n})^{\alpha_n}$ ,  $\partial_t^{\beta} = (\partial/\partial_{t_1})^{\beta_1}...(\partial/\partial_{t_n})^{\beta_n}$ ,  $L^{\alpha} = L_1^{\alpha_1}...L_n^{\alpha_n}$   $x^{\alpha} = x_1^{\alpha_1}...x_m^{\alpha_m}$  and  $t^{\beta} = t_1^{\beta_1}...t_n^{\beta_n}$ . Also let us denote by  $\Gamma_t$  the m-dimensional affine linear manifold

$$\{z \in \mathbb{C}^m : z = y + i\Phi(t)\}\$$

and consider

$$G_{\epsilon}(\xi) = \exp(-\epsilon \ 4^{-1}\xi^2)$$

the Fourier-Laplace transform of  $E_{\epsilon}(z) = (\epsilon \pi)^{-\frac{m}{2}} \exp(-\epsilon^{-1}z^2)$ . Let u be in  $\mathcal{H}(K)$ . We extend u to  $\mathbb{R}^m \times \mathbb{R}^n$  as a function  $\tilde{u}$  in  $C^{\infty}(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{C})$ . It follows that  $d_{\mathcal{L}}\tilde{u} \in C^{\infty}(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{C} \otimes \wedge^{1,m})$  and

$$d_{\mathcal{L}}\tilde{u} \equiv 0 \text{ in } \mathbb{R}^m \times F \tag{2.1}$$

In fact all derivatives of  $d_{\mathcal{L}}\tilde{u}$  vanish at  $\mathbb{R}^m \times F$  since the  $L^j$ 's and  $\partial_{x_k}$ 's commute. Denote by  $w = x + i\Phi(t)$  and  $z = y + i\Phi(s)$  complex vectors in  $\mathbb{C}^n$ . Consider  $0 < R_0 < R_1 < R_2$ , and  $\chi$  in  $C^{\infty}(B_{R_1})$ , where  $\chi \equiv 1$  in  $B_{R_0}$  and  $\omega = d_{\mathcal{L}}(\chi \tilde{u})$ .

It follows that  $\omega \in J(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{C} \otimes \wedge^{1,m})$  is an uniformly compact supported form in the first variable in  $B_{R_1}$ . Define  $v_{\epsilon}$  by

$$v_{\epsilon}(x,t) = 2\pi^{-m} \iint_{\Lambda} \iint_{\Gamma_{\epsilon}} \sup_{\mathbb{R}^{m}} \exp\left(i\left[w-z\right] \cdot \xi\right) G_{\epsilon}(\xi) \omega(s,\Re z) \wedge d\xi \wedge dz \tag{2.2}$$

Since

$$d_t \int_{\Gamma_t} \exp\left(i\left[w-z\right] \cdot \xi\right) G_{\epsilon}(\xi)(\chi \tilde{u})(t, \Re z) dz =$$

$$\int_{\Gamma_t} \exp\left(i\left[w-z\right] \cdot \xi\right) G_{\epsilon}(\xi) \omega(t, \Re z) \wedge dz \tag{2.3}$$

This last 1-differential form is exact for every fixed  $\xi \in \mathbb{R}^m$  and (2.2) is independent of the arc  $\Lambda$  joining a fixed point  $t_0 \in K$  to  $t \in \mathbb{R}^n$ . The exponential decay guaranteed by  $G_{\epsilon}$  allows one to apply Fubini theorem to represent (2.2) as

$$v_{\epsilon}(x,t) = 2\pi^{-m} \int_{\mathbb{R}^m} \int_{\Lambda} \int_{\Gamma_{\epsilon}} \exp\left(i\left[w - z\right] \cdot \xi\right) G_{\epsilon}(\xi) \omega(s, \Re z) \wedge dz \wedge d\xi \tag{2.4}$$

it follows also that

$$v_{\epsilon}^{\alpha,\beta}(x,t) = 2\pi^{-m}\partial_{x}^{\alpha}\partial_{t}^{\beta} \int_{\mathbb{R}^{m}} \int_{\Lambda} \int_{\Gamma_{s}} \exp\left(i\left[w-z\right] \cdot \xi\right) G_{\epsilon}(\xi)\omega(s,\Re z) \wedge d\xi \wedge dz =$$

$$2\pi^{-m}\partial_{x}^{\alpha}\partial_{t}^{\beta} \int_{\mathbb{R}^{m}} \int_{\Lambda} \int_{\Gamma_{s}} \exp\left(i\left[w-z\right] \cdot \xi\right) G_{\epsilon}(\xi)\omega(s,\Re z) \wedge dz \wedge d\xi =$$

$$= 2\pi^{-m} \int_{\Gamma_{t}} \int_{\mathbb{R}^{m}} \exp\left(i\left[w-z\right] \cdot \xi\right) G_{\epsilon}(\xi)L^{\beta}\partial_{y}^{\alpha}(\chi u)(t,\Re z) \wedge d\xi \wedge dz$$

$$+2\pi^{-m} \int_{\Lambda} \int_{\Gamma_{s}} \int_{\mathbb{R}^{m}} \exp\left(i\left[w-z\right] \cdot \xi\right) G_{\epsilon}(\xi)L^{\beta}\partial_{y}^{\alpha}\omega(t,\Re z) \wedge d\xi \wedge dz =$$

$$= \int_{\Gamma_{t}} E_{\epsilon}(w-z)L^{\beta}\partial_{y}^{\alpha}(\chi u)(t,\Re z)dz$$

$$+2\pi^{-m} \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{m}} \exp\left(i\left[x-y\right] \cdot \xi\right) G_{\epsilon}(\xi)L^{\beta}\partial_{y}^{\alpha}\omega(t,\Re z) \wedge d\xi \wedge dz \qquad (2.5)$$

For any  $u \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R})$  and  $c \in \mathbb{R}$  denote the *interior* of the set  $\{t \in \mathbb{R}^n : \sup_{x \in \mathbb{R}^m} u(x,t) < c\}$  by  $u_c$ .

We will introduce now a semilocal condition  $(\star)_0$  for a tube structure  $\mathcal{L}$  in order to establish a boundedness criteria for the family

$$\{v_{\epsilon}^{\alpha,\beta}, \ \epsilon \le 1, \ |\alpha|, |\beta| \le l\}$$

We say that  $\mathcal{L}$  satisfies  $(\star)_0$  at a closed connected set  $F \subset \mathbb{R}^n$  if for any connected compact subset  $K \subset F$  and open neighborhood  $Q \supset K$  there exists an open neighborhood U of K such that for all  $c \in \mathbb{R}$  and  $u \in \mathcal{H}(\mathbb{R}^n)$  any connected component  $\mathcal{C}$  of  $\Re u_c \cap U$  is contained by a connected component  $\mathcal{C}'$  of  $\Re = u_c \cap Q$  with  $\mathcal{C}' \cap F \neq \emptyset$  or else  $\Re u_c \cap U = \emptyset$ 

If  $G \subset \mathbb{R}^n$  is open and  $F \subset \overline{G}$  we say that  $\mathcal{L}$  satisfies  $(\star)_0$  at F relative to G if the statement above holds with Q and U relative open sets in  $\overline{G}$ .

When K reduces to a point and  $F = \mathbb{R}^n$ , the condition  $(\star)_0$  was originally stated for tubes structures in [6] and it agrees with the solvability condition appearing for locally integrable structures of codimension one ([3]). We will prove an extension theorem, analog to those proved in [2], for a tube structure  $\mathcal{L}$  that verifies the condition  $\star_0$  at a compact subset of closed connected hypersurface F.

With the notation above we state the Lemma 2.1, whose proof we postpone to Section 3.

**Lemma 2.1.** Let  $\mathcal{L}$  be a tube structure in  $\mathbb{C} \otimes T(\mathbb{R}^m \times \mathbb{R}^n)$ . Let  $F \subset \mathbb{R}^n$  be a connected closed set,  $K \subset F$  compact connected set and  $\mathcal{Q}_K$  an open diadic cube containing K. If  $\mathcal{L}$  satisfies  $(\star)_0$  at F, then for a fixed l the family

$$\{v_{\epsilon}^{\alpha,\beta}, \ \epsilon < 1, \ |\alpha|, |\beta| < l\}$$
 (2.6)

is bounded in  $\{t \in \mathbb{R}^n : |t| \le k\} \times U$  by a same constant, depending only on K, l and k. Let  $G \subset \mathbb{R}^n$  be an open set with regular boundary. If  $G \subset \mathbb{R}^n$  is an open subset with regular boundary and  $\mathcal{L}$  satisfies  $(\star)_0$  at F relatively to  $G \subset \mathbb{R}^n$  then the same statement holds for U a relative open set in  $\overline{G}$ .

The next two definitions deals with maximum of functions in compact sets and will be used in the statement of the main Theorem 2.6.

**Definition 2.2.** Let  $u: \mathbb{R}^N \longrightarrow \mathbb{R}$  be continuous and a closed set  $F \subset \mathbb{R}^N$ . We say that u attains a local maximum at a compact subset  $K \subset F$  relatively to F if there is a open neighborhood U of K in  $\mathbb{R}^N$  such that  $u_{|K} = M$  and  $u(z) \leq M$  if  $z \in F \cap U \setminus K$ . If  $F = \mathbb{R}^N$  we simply say that u attains a local maximum at a compact subset K.

We derive from definition 2.2 a new one for Tubes structures

**Definition 2.3.** Let  $\mathcal{L}$  be a Tube structure defined in  $\mathbb{C} \otimes T(\mathbb{R}^m \times \mathbb{R}^n)$ . We say that  $\mathcal{L}$  satisfies the local maximum principle at  $F \subset \mathbb{R}^n$  if for all  $K \subset F$  compact  $\Re u$  does not have a local maximum at  $\{x_0\} \times K$  relatively to  $\mathbb{R}^m \times F$  for any  $x_0 \in \mathbb{R}^m$  and  $u \in \mathcal{H}(\mathbb{R}^n)$ , unless u is a constant. If  $F = \mathbb{R}^n$  we simply say that  $\mathcal{L}$  satisfies the local maximum principle.

We shall restate for tube structures a theorem of Treves [5].

**Theorem 2.4.** Let  $u \in \mathcal{H}(\mathbb{R}^n)$  and  $V \subset \mathbb{R}^m \times \mathbb{R}^n$ , be an open connected set. Then if u vanishes in V, it vanishes in all orbit  $\mathcal{O}$  (in the sense of Sussmann [S]) that intercepts V.

This theorem lead us to the following definition

**Definition 2.5.** Let  $\mathcal{L}$  be a Tube structure in  $\mathbb{C} \otimes T(\mathbb{R}^m \times \mathbb{R}^n)$ . We say that a closed set  $F \subset \mathbb{R}^n$  has the uniqueness property if for any compact set  $K \subset F$  there is an open neighborhood U of K such that any orbit  $\mathcal{O}$  of  $\mathcal{L}$  which meets  $\mathbb{R}^m \times U$  also meets  $\mathbb{R}^m \times U \cap F$ .

Now we state the main Theorem.

**Theorem 2.6.** Let  $\mathcal{L}$  be a Tube structure in  $\mathbb{C} \otimes T(\mathbb{R}^m \times \mathbb{R}^n)$  and  $F \subset \mathbb{R}^n$  a closed connected set with the uniqueness property. Assume that  $\mathcal{L}$  satisfies the local maximum principle at F. Then the following three statements are equivalent:

i) For any compact connected set  $K \subset F$  and for any open neighborhood

 $Q \supset K$  there exists an open subset  $U, K \subset U \subset Q$  such that any function  $u \in \mathcal{H}(F \cap Q)$  admits an unique extension to  $\mathbb{R}^m \times U$ , as a function in  $\mathcal{H}(U)$ .

ii) There is no  $u \in \mathcal{H}(\mathbb{R}^n)$  and no compact subset  $K \subset F$  such that  $\Re u$  attains a local maximum at  $\{x_0\} \times K$  relatively to  $\mathbb{R}^m \times F$ , unless u is constant.

iii) There is no  $\theta \in S^{m-1}$  and no compact set  $K \subset F$  compact such that  $\theta \cdot \Phi$  attains local maximum at K relatively to F, unless  $\theta \cdot \Phi$  is constant.

iv) The tube structure  $\mathcal{L}$  satisfies the condition  $(\star)_0$  at F.

**Proof:** Suppose i) holds and ii) does not. Then one can find a compact set  $K \subset F$ ,  $x_0 \in \mathbb{R}^m$ , an open neighborhood Q of K, a nonconstant  $u \in \mathcal{H}(\mathbb{R}^n)$  such that  $\Re u_{|\{x_0\} \times K} = M$  and  $\Re u_{|\mathbb{R}^m \times F \cap Q} \leq M$ . If  $R \in \Im u(\{x_0\} \times K)$ , the smooth function w defined in  $\mathbb{R}^m \times \Re u_{M+\epsilon}$  as

$$w(x,t) = \exp[u(x,t) - (M+\epsilon+iR)]^{-1} \text{ if } (x,t) \in F \cap Q \setminus u^{-1}(\{M+\epsilon+iR\}))$$
 and

$$w(x,t) = 0 \text{ if } (x,t) \in \mathbb{R}^m \times F \cap Q \cap u^{-1}(\{M + \epsilon + iR\})$$

is in  $\mathcal{H}(Q \cap F)$ . Also  $K \subset \partial \overline{(-\Re u)_{-M}}$  because  $\mathcal{L}$  satisfies the local maximum principle at F. The uniqueness property of F implies that  $w_{\epsilon}(x,t) = \exp[u(x,t) - (M + \epsilon + iR)]^{-1}$  is the unique possible value for any extension of w to  $\mathbb{R}^m \times V \setminus u^{-1}(\{M + \epsilon + iR\})$ . Consequently for small  $\epsilon$  the jet defined in  $\mathcal{H}(F \cap Q)$  by  $\{w_{\epsilon}\}$  cannot be extended to the fixed neighborhood  $\mathbb{R}^m \times U$  of  $\mathbb{R}^m \times K$  granted by i), even as a continuous function. Thus i) implies ii). That ii) implies iii) is trivial. Next assume that iii) does not hold. Then there exists  $\theta \in S^{m-1}$ , a compact  $K \subset F$  and an open neighborhood U of K, such that  $\theta \cdot \Phi$  attains a local maximum M at K, in  $F \cap U$ . Now  $K \subset \overline{\partial(-\theta \cdot \Phi)_{-M}}$  and  $K \cap (-\theta \cdot \Phi)_{-M} = \emptyset$ . Then any  $t \in (-\theta \cdot \Phi)_{-M} \cap V$  cannot be connected to K by any continuous path or else  $(-\theta \cdot \Phi)_{-M} = \emptyset$ , but this last alternative is empty since  $\mathcal{L}$  satisfies the local maximum principle at F. This contradicts iv). Assume now that iv) holds. Let  $K_k \subset \mathcal{Q}_k$  be an exhausting sequence of compact connected subsets for F,  $\mathcal{Q}_k$  an open diadic cube containing  $K_k$  and  $U_k \subset \mathcal{Q}_k$  an open connected neighborhood of  $K_k$  for which the condition  $(\star)_0$ 

holds. Denote  $U = \bigcup_{k=1}^{\infty} U_k$  and  $B_k$  the ball of radius k centered in the origin in  $\mathbb{R}^m$ . Let  $\tilde{u}$  be an extension of u to  $\mathbb{R}^n \times \mathbb{R}^m$ , as in Lemma 2.1. Then the family of functions  $\{L^{\beta}\partial_x^{\alpha}v_{\epsilon}, |\alpha|, |\beta| \leq l\}$  is bounded in  $B_k \times U_k$  by a constant depending only on l, k. By a standard diagonal process one can find a subsequence  $\epsilon_k \to 0$  such that  $v_{\epsilon_k} \to v$ , where  $v \in C^{\infty}(\mathbb{R}^m \times U)$ . Then  $v_{|F} \equiv 0$  and  $L(\tilde{u} - v) = 0$  in  $\mathbb{R}^m \times U$ . Thus  $\tilde{u} - v \in \mathcal{H}(U)$  is one extension of the original jet u. The uniqueness follows from the connectedness of the  $U_k$ 's. The proof is finished.

Let  $F = \varrho^{-1}(0)$  be a connected hypersurface,  $\varrho_+ = \{t \in \mathbb{R}^n : \varrho(t) \geq 0\}$  and  $\varrho_- = \{t \in \mathbb{R}^n : \varrho(t) \leq 0\}$  all defined by a smooth  $\varrho : \mathbb{R}^n \to R$ 

One can prove the analogue of Theorem 2.6 for an open relative neighborhood of  $\varrho^{-1}(0)$  in  $\varrho_- = \{t \in \mathbb{R}^n : \varrho(t) \leq 0\}$ . The condition  $(\star)_0$  is taken relatively to  $\varrho_-$ . Recall that  $\mathcal{L}$  satisfies  $(\star)_0$  at  $\varrho^{-1}(0) \subset \varrho_-$  relatively to  $\varrho_-$  if for any connected compact set  $K \subset \varrho^{-1}(\{0\})$  and any open neighborhood  $Q \supset K$  there exist an open relative neighborhood U of K in  $\varrho_-$  such that for all  $u \in \mathcal{H}(\varrho_-)$  and  $c \in \mathbb{R}$  any connected component  $\mathcal{C}$  of  $\Re u_c \cap U$  is contained by a connected component  $\mathcal{C}'$  of  $\Re u_c \cap Q$  with  $\mathcal{C}' \cap \varrho^{-1}(0) \neq \emptyset$  or else  $\Re u_c \cap U = \emptyset$ .

Let  $\varrho^{-1}(0)$  be a noncharacteristic hypersurface with respect to  $\mathcal{L}$ , that is  $d_{\mathcal{L}}\varrho \neq 0$ . If  $u \in C^{\infty}(\mathbb{R}^m \times \varrho^{-1}(0))$ , we say that u satisfies the tangential tube structure  $\mathcal{L}$  at  $\varrho^{-1}(0)$  if  $d_{\mathcal{L}}u \wedge d_{\mathcal{L}}\varrho(t) = 0$  for all  $t \in \varrho^{-1}(0)$  and in this case it is possible to find an extension  $\tilde{u}$ , such that  $\tilde{u} \in C^{\infty}(\mathbb{R}^m \times \varrho_-)$  and  $\tilde{u}_{|\varrho^{-1}(0)} \in \mathcal{H}(\mathbb{R}^m \times \varrho^{-1}(0))$  (see [2] for details).

We now state and prove a lateral extension theorem:

**Theorem 2.7.** Let  $\varrho \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$  such that  $\varrho^{-1}(0)$  is connected and  $d_{\mathcal{L}}\varrho \neq 0$  in  $\varrho^{-1}(0)$ . If  $\mathcal{L}$  is a Tube structure in  $\mathbb{C} \otimes T(\mathbb{R}^m \times \mathbb{R}^n)$  which satisfies the local maximum principle at  $\varrho^{-1}(0)$ , then the following four assertions are equivalent:

- i) for any compact connected set  $K \subset \varrho^{-1}(0)$  and for any open neighborhood  $Q \supset K$  there exists an open subset  $U, K \subset U \subset Q$  such that any  $u \in \mathcal{H}(Q \cap \varrho^{-1}(0))$  extends to  $\mathbb{R}^m \times U \cap \varrho_-$  as a jet in  $\mathcal{H}(U \cap \varrho_-)$ .
- ii) There is no  $u \in \mathcal{H}(\varrho_+)$ ,  $K \subset \varrho^{-1}(0)$  compact and  $x_0 \in \mathbb{R}^m$  such that  $\Re u$  attains a local maximum at  $\{x_0\} \times K$  relatively to  $\mathbb{R}^m \times \varrho_+$ , unless u is a

constant.

iii) There is no  $\theta \in S^{m-1}$  such that  $\theta \cdot \Phi_{|\varrho_+}$  attains a local maximum at K relatively to  $\varrho_+$  unless  $\theta \cdot \Phi$  is a constant.

iv) The tube structure  $\mathcal{L}$  satisfies the condition  $(\star)_0$  at  $\varrho^{-1}(0)$  relative to  $\varrho_-$ .

**Proof:** Now the proof follows the same arguments as in Theorem 2.6 except for the detail that  $\varrho_{-}$  is a smooth manifold with boundary  $\varrho^{-1}(0)$ , so one may use the mean value theorem and Lemma 2.1 to ensure uniform continuity of the family  $\{L^{\beta}\partial_{x}^{\alpha}v_{\epsilon}: |\alpha|, |\beta| \leq k, \ 0 < \epsilon \leq 1\}$  in any compact subset of  $\mathbb{R}^{m} \times U \cap \varrho_{-}$  where  $U = \bigcup_{k=1}^{\infty} U_{k} \subset \varrho_{-}$ .

As a consequence of Theorem 2.7 we have the following corollary, that implies Theorem 2.4 in [2].

Corollary 2.8.  $\mathcal{L}$  is a Tube structure in  $\mathbb{C} \otimes T(\mathbb{R}^m \times \mathbb{R}^n)$  which satisfies the local maximum principle at  $\varrho_-$  and suppose that  $\varrho^{-1}(0)$  is compact. Then  $u \in \mathcal{H}(\varrho^{-1}(0))$  extends itself to  $\varrho_-$  as a jet in  $\mathcal{H}(\varrho_-)$  if and only there is no  $\theta \in S^{m-1}$  such that the set such that  $\theta \cdot \Phi_{|(c+\varrho)_+}$  attains a local maximum at K relatively to  $(c+\varrho)_+$  for all  $c \in [0,+\infty)$ , unless  $\theta \cdot \Phi$  is a constant.

### 3. Proof of Lemma 2.1

We begin recalling that in Section 2 we had choose  $0 < R_0 < R_1 < R_2$ , and  $\chi$  in  $C^{\infty}(B_{R_1})$ , where  $\chi \equiv 1$  in  $B_{R_0}$  and  $\omega d_{\mathcal{L}}(\chi \tilde{u})$ . Let diam(K) denote the diameter of K. Throughout the proof we shall assume without loss of generality that  $(3+n)d = R_2 - R_1$ , where

$$\mathbf{d} = diam(K) \sup_{t \in \mathcal{Q}_K} |\nabla \Phi(t)|$$

For each  $\theta \xi/|\xi|$ ,  $\xi \in \mathbb{R}^m$  and  $t \in \mathbb{R}^n$  denote by  $(\Phi \cdot \theta)_{\Phi(t) \cdot \theta}$  the open set  $\{s \in \mathbb{R}^n : \Phi(s) \cdot \theta < \Phi(t) \cdot \theta\}$ . Let  $t_0$  be fixed in  $K, t \in U$  and  $t' \in U \cap (\Phi \cdot \theta)_{\Phi(t) \cdot \theta}$ . By the hypothesis  $(\star_0)$  one can find  $q_\theta \in \mathcal{Q}_K \cap F \cap (\Phi \cdot \theta)_{\Phi(t) \cdot \theta}$  in the same connected component of  $\mathcal{Q}_K \cap (\Phi \cdot \theta)_{\Phi(t) \cdot \theta}$  to which t' belongs. Since  $t \in \mathcal{Q}_K \cap \overline{(\Phi \cdot \theta)_{\Phi(t) \cdot \theta}}$  one can take t' arbitrarily close to t.

Taking advantage of the exactness in (2.3) we will choose a path  $\Lambda_{\xi}$  for each  $\xi \in \mathbb{R}^m$  as a sum of two piecewise linear paths,  $\Lambda_{\xi} = \Lambda_{\xi,0} + \Lambda_{\xi,1}$ , where the path indexed by 0 links the fixed point  $t_0$  to  $q_{\theta}$  and the other one links  $q_{\theta}$  to t and lies nearby  $\overline{(\Phi \cdot \theta)_{\Phi(t) \cdot \theta}}$  inside  $\mathcal{Q}_K$ . By 2.5

$$v_{\epsilon}^{\alpha,\beta}(x,t) = 2\pi^{-m} \int_{\Lambda} \int_{\Gamma_{s}} \int_{\mathbb{R}^{m}} \exp\left(i\left[w-z\right] \cdot \xi\right) G(\epsilon \xi) \partial_{y}^{\alpha} L^{\beta} \omega(s, \Re z) \wedge d\xi \wedge dz$$
$$+ \int_{\Gamma_{t}} E_{\epsilon} \left(w-z\right) L^{\beta} \partial_{y}^{\alpha}(\chi u)(t,y) \wedge dy A + B \tag{3.1}$$

where B0 when  $\beta0$ .

We will first estimate the partial sum A in 3.1. Let us write A as

$$A = 2\pi^{-m} \int_{\mathbb{R}^{m}} \left( \int_{\Lambda_{\xi,0}} + \int_{\Lambda_{\xi,1}} \right) \int_{\Gamma_{s}} \exp\left(i \left[w - z\right] \cdot \xi\right) G_{\epsilon}(\xi) \partial_{x}^{\alpha} L^{\beta} \omega(s, \Re z) \wedge d\xi \wedge dz$$

$$= \int_{\mathbb{R}^{m}} \int_{\Lambda_{\xi,0}} \int_{\Gamma_{s}} \exp\left(i \left[w - z\right] \cdot \xi\right) G_{\epsilon}(\xi) \partial_{x}^{\alpha} L^{\beta} \left(\chi d_{\mathcal{L}} u\right)(z) \wedge d\xi \wedge dz +$$

$$2\pi^{-m} \int_{\mathbb{R}^{m}} \int_{\Lambda_{\xi,0}} \int_{\Gamma_{s}} \exp\left(i \left[w - z\right] \cdot \xi\right) G_{\epsilon}(\xi) \partial_{x}^{\alpha} L^{\beta} \left(u d_{\mathcal{L}} \chi\right)(z) \wedge d\xi \wedge dz +$$

$$2\pi^{-m} \int_{\mathbb{R}^{m}} \int_{\Lambda_{\xi,1}} \int_{\Gamma_{s}} \exp\left(i \left[w - z\right] \cdot \xi\right) G_{\epsilon}(\xi) \partial_{x}^{\alpha} L^{\beta} \left(\chi d_{\mathcal{L}} u\right)(z) \wedge d\xi \wedge dz +$$

$$2\pi^{-m} \int_{\mathbb{R}^{m}} \int_{\Lambda_{\xi,1}} \int_{\Gamma_{s}} \exp\left(i \left[w - z\right] \cdot \xi\right) G_{\epsilon}(\xi) \partial_{x}^{\alpha} L^{\beta} \left(u d_{\mathcal{L}} \chi\right)(z) \wedge d\xi \wedge dz +$$

$$(3.2)$$

Denote the first two integrals in (3.2) by the roman numerals I, II respectively and by III the sum of the last two. Then

$$I = 2\pi^{-m} \int_{\mathbb{R}^m} \int_{\Lambda_{\xi,0}} \int_{\Gamma_s} \exp\left(i \left[w - z\right] \cdot \xi\right) G_{\epsilon}(\xi) L^{\beta} \partial_x^{\alpha} \left(\chi d_{\mathcal{L}} u\right)(z) \wedge d\xi \wedge dz \tag{3.3}$$

The set K is connected. For each  $\xi \in \mathbb{R}^n$  fixed one can find a piecewise linear path  $\Lambda_{\xi,0}$  as follows; let  $\nu \in N$  be such that

$$2^{-1}(\exp(-2d \ A(|\xi|))) \le 2^{-\nu} \le (\exp(-2d \ A(|\xi|))) \le \exp(-2d \frac{A}{\sqrt{m}})$$
 (3.4)

where  $A(\rho)\frac{A}{\sqrt{m}} > 0$  if  $\rho \leq A$  and  $A(\rho)\frac{\rho}{\sqrt{m}}$  if  $\rho > A$ .

Let  $\epsilon$  be a positive number and  $N(K, \nu)$  the number of closed diadic cubes  $Q_{\nu}$  in of  $C(\nu)$  whose union is a covering of K. There exist A > 0 such that

$$\sum_{k=1}^{N(K,\nu)} s_{\mathcal{Q}_k}^{n+1} \le 2^{-(n+1)\nu} N(\nu) \le \epsilon \int_{\mathcal{Q}_K} dx$$
 (3.5)

where the last inequality is a consequence from the fact that the upper Minkowski dimension of  $Q_K$  is n. Consider a vertex  $t_1$  in

$$\partial \cup_{k=1}^{N(K,\nu)} \mathcal{Q}_k \tag{3.6}$$

which is at a minimum distance of  $t_0$ . Suppose that the vertex  $t_{k-1} \in \mathcal{Q}_{k-1}$  is defined then select the next vertex  $t_k \in \partial \cup_{k=1}^N \mathcal{Q}_k$  nearby  $t_{k-1}$  (in another cube intersecting the former one), allowing the maximum projection in the direction of the vector  $\overrightarrow{t_0q_\theta}$ . In doing so we find after a finite number of steps, vertices  $\{t_1, \ldots, t_N\}$  of the cubes  $\mathcal{Q}_k$ , with  $N \leq N(K, \nu)$ , such that  $t_{k-1}$  and  $t_k$  lies in the same cube  $\mathcal{Q}_k$ ,  $t_N$  is in the same cube as  $q_\theta$  and  $t_1$  is in the same cube as  $t_0$ . Denote the polygonal line defined by  $\Lambda_{\xi,0}$  these vertices. It follows from the hypothesis on the flatness of  $d_{\mathcal{L}}u$  that for any  $l \in N$ 

$$||L^{\beta} \partial_x^{\alpha} (\chi d_{\mathcal{L}} u)||(y, s) \le C|s - t^*|^{l-1-|\alpha|-|\beta|} \le C 2^{-\nu(l-[1+|\alpha|+|\beta|])}$$
(3.7)

for all  $s \in \mathcal{Q}_k$ ,  $t^* \in \mathcal{Q}_k \cap K \neq \emptyset$  and uniformly in  $y \in B_{R_2}$ . If  $l - (|\alpha| + |\beta| + 1) \ge n + 1$  then by (3.4),(3.5) and (3.7) we obtain

$$|I| \leq \sum_{k=1}^{N(K,\nu)} \int_{\mathbb{R}^m} \int_{\Lambda_{\xi,0} \cap \mathcal{Q}_k} \int_{\Gamma_s} \exp\left[\sup_{s \in \mathcal{Q}_K} |\nabla \Phi(s)| |t_0 - s| |\xi|\right] ||L^{\beta} \partial_x^{\alpha} \left(\chi u\right)||(z,s) dz ds d\xi = \sum_{k=1}^{N(K,\nu)} \sup_{s \in \mathcal{Q}_K} \int_{\mathbb{R}^m} \exp\left[\sup_{s \in \mathcal{Q}_K} |\nabla \Phi(s)| t_0 - s| |\xi|\right] |t_{k-1} - t_k| \int_{\Gamma_s} ||L^{\beta} \partial_x^{\alpha} \left(\chi d_{\mathcal{L}} u\right)||(z) dz d\xi \leq \sup_{s \in \mathcal{Q}_K} \int_{\mathbb{R}^m} \exp\left[\left(|\nabla \Phi(s)| p - s| - 2\mathbf{d}\right) |\xi|\right] d\xi \int_{\Gamma_s \cap \text{supp}\chi} dz \sqrt{n} N(K,\nu) 2^{\nu(l - (|\alpha| + |\beta| + 1))} d\xi \int_{\mathbb{R}^m} \exp(-\mathbf{d}|\xi|) d\xi \sup_{s \in \mathcal{Q}_K} \int_{\Gamma_s \cap \text{supp}\chi} dz \sqrt{n} N(K,\nu) 2^{\nu(l - (|\alpha| + |\beta| + 1))} d\xi \sqrt{n} \leq N(\nu) 2^{n+1} d\xi \int_{\mathbb{R}^m} \exp(-\mathbf{d}|\xi|) d\xi \sup_{s \in \mathcal{Q}_K} \int_{\Gamma_s \cap \text{supp}\chi} dz \sqrt{n} N(K,\nu) 2^{\nu(l - (|\alpha| + |\beta| + 1))} d\xi \sqrt{n} \leq N(\nu) 2^{n+1} d\xi \int_{\mathbb{R}^m} \exp\left(-\mathbf{d}|\xi|\right) d\xi \sup_{s \in \mathcal{Q}_K} \int_{\Gamma_s \cap \text{supp}\chi} dz \sqrt{n} N(K,\nu) 2^{\nu(l - (|\alpha| + |\beta| + 1))} d\xi \sqrt{n} \leq N(\nu) 2^{n+1} d\xi \int_{\mathbb{R}^m} \exp\left(-\mathbf{d}|\xi|\right) d\xi \sup_{s \in \mathcal{Q}_K} \int_{\Gamma_s \cap \text{supp}\chi} dz \sqrt{n} N(K,\nu) 2^{\nu(l - (|\alpha| + |\beta| + 1))} d\xi \sqrt{n} \leq N(\nu) 2^{n+1} d\xi \int_{\mathbb{R}^m} \exp\left(-\mathbf{d}|\xi|\right) d\xi \int_{$$

The path  $\Lambda = \Lambda_{\xi,0} + \Lambda_{\xi,1}$  is fixed for each  $\xi \in \mathbb{R}^m$ . Apply Fubini theorem and the fact  $\exp(i[x+i\Phi(t)]\cdot\xi) = \exp(ix\cdot\xi)\exp(-\Phi(t)\cdot\xi)$ , to write

$$II = 2\pi^{-m} \int\limits_{\mathbb{R}^m} \int\limits_{\Lambda_{\xi,0}} \int\limits_{\Gamma_s} \exp\left(i\left[w-z\right] \cdot \xi\right) G_{\epsilon}(\xi) L^{\beta} \partial_x^{\alpha} \left(u d_{\mathcal{L}} \chi\right) (s, \Re z) \wedge dz \wedge d\xi =$$

$$2\pi^{-m} \int_{\mathbb{R}^m} \int_{\mathbb{R}^m} \int_{\Lambda_{\xi,0}} \exp\left(i\left[x + i\Phi(t) - y - \Phi(s)\right] \cdot \xi\right) G_{\epsilon}(\xi) L^{\beta} \partial_x^{\alpha} \left(u d_{\mathcal{L}} \chi\right)(s,y) \wedge d\xi \wedge dy$$
(3.9)

The integrand in (3.9) is analytic in the  $\xi$ -variable. The exponential decay of  $G_{\epsilon}$  allows change of integration domain from  $\xi \in \mathbb{R}^m$  to  $\zeta \in \mathbb{C}_A^m$ , where

$$\mathbb{C}_{A}^{m} = \{ \zeta \in \mathbb{C}^{m} : \zeta_{j} = \xi_{j} + iA(|\xi|) sgn(x_{j} - y_{j}) \} \text{ for } j = 1, ..., m$$
 (3.10)

Then

$$|\exp\left(i\left[w-z\right]\cdot\zeta\right)|\exp\left(-\left[\Phi(s)-\Phi(t)\right]\cdot\xi-(x-y)\cdot A(|\xi|)sgn(x-y)\right)\leq$$

$$\exp(|\Phi(s) - \Phi(t)| |\xi| - A(|\xi|)|x - y|) \le \exp(|\xi| [|\Phi(s) - \Phi(t)| - (3 + n)d]) \le \exp(|\Phi(s) - \Phi(t)| + A(|\xi|)|x - y|) \le \exp(|\xi| [|\Phi(s) - \Phi(t)| - (3 + n)d])$$

$$\exp\Bigl(\sup_{s\in\mathcal{Q}_K}|\nabla\Phi(s)|t_0-s||\xi|-(3+n)\mathrm{d}A(|\xi|)\Bigr)\leq \exp\Bigl(-(n+2)\mathrm{d}A(|\xi|)\Bigr)\quad (3.11)$$

As w is confined to  $\overline{B_{R_0}} \times K$ , while z is in  $\overline{B_{R_2}} \setminus \overline{B_{R_1}} \times K$ , we get

$$|II| \leq 2\pi^{-m} \int\limits_{\mathbb{R}^m} \int\limits_{\mathbb{R}^m} \int\limits_{\Lambda_{\Re \zeta,0}} \exp\Bigl(-(n+2) \mathrm{d}A(|\Re \zeta|)\Bigr) G_\epsilon(\zeta) \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigr\|_{L^2} \, \|L^\beta \partial_x^\alpha\Bigl(u d_{\mathcal{L}}\chi\Bigr)\|(s,y) \wedge d\zeta \wedge dy \leq C_0 \, \|L^\beta \partial_x^\alpha\Bigr\|_{L^2} \,$$

$$2\pi^{-m} \sup_{s \in \mathcal{Q}_K} \int_{B_{R_2}} \|L^{\beta} \partial_x^{\alpha} \left( u d_{\mathcal{L}} \chi \right) \|(s, y) dy \int_{\mathbb{R}^m} \exp\left(-dA(|\Re \zeta|) d\zeta \, 2\sqrt{n} N(K, \nu) (2^{\nu})^{n+1} \le C \sqrt{n} N(\nu) (2^{\nu})^{n+1} \le$$

by (3.11), (3.4) and the fact that  $G_{\epsilon}$  is bounded in  $C_A^m$  by 1 for  $|\Re\zeta| > A$ . If  $|\Re\zeta| \le A$  we must observe the constrains imposed by (3.4) and (3.5). We choose  $\epsilon$  such that  $2^{-1} \exp\left(-2 d A\right) \le \epsilon \le 4 d \sqrt{m} A^{-1}$ , to obtain  $-dA + 4^{-1} \epsilon m^{-1} A^2 \le 0$ .

This shows in view of (3.12) and (3.8) for  $w_0 = x + i\Phi(t_0)$  and  $w = x + i\Phi(t)$ , that

$$\lim_{\epsilon \to 0} v_{\epsilon}^{\alpha,\beta}(w) - v_{\epsilon}^{\alpha,\beta}(w_0) =$$

$$\lim_{\epsilon \to 0} 2\pi^{-m} \left( \int_{\Gamma_t} - \int_{\Gamma_{t_0}} \right) \int_{\mathbb{R}^m} \exp\left(i \left[ w - z \right] \cdot \xi\right) G_{\epsilon}(\zeta) L^{\beta} \partial_x^{\alpha} \left(\chi u(z)\right) d\xi \wedge dz$$

$$= \lim_{\epsilon \to 0} \left( \int_{\Gamma_t} - \int_{\Gamma_{t_0}} \right) E_{\epsilon}(w - z) L^{\beta} \partial_x^{\alpha} \left(\chi u(z)\right) dz = 0 \tag{3.13}$$

in  $\overline{B_{R_0}} + iK$ . Thus

$$v_{\epsilon}^{\alpha,\beta}(w) = (\pi \epsilon)^{-m/2} \int_{\Gamma_{t_0}} E_{\epsilon}(w-z) L^{\beta} \partial_x^{\alpha} (\chi u(z)) dz + O(\epsilon)$$

if  $n+1 \le l-(|\alpha|+|\beta|+1)$ , uniformly in  $\overline{B_{R_0}} \times K$  and it is well known that

$$\int_{\Gamma_{\epsilon}} E_{\epsilon}(w-z) L^{\beta} \partial_{x}^{\alpha} (\chi u(z)) dz$$

converges uniformly to  $L^{\beta}\partial^{\alpha}u$  in  $\overline{B_{R_0}} \times \{t\}$  as  $\epsilon \to 0$ .

This last step provide a semilocal version of the Baouendi-Treves approximation theorem [5] for jets in  $\mathcal{H}(K)$  where  $K \subset \mathbb{R}^n$  is a compact set having the following property: any two points of K can be linked by a rectifiable curve within K of length bounded by a fixed constant. (In this context the Baouendi-Treves approximation theorem asserts that any  $u \in \mathcal{H}(K)$  can be approximated by a sequence of polynomials  $P_k(Z(x,t))$  in  $\mathcal{H}(K)$ .

We may conclude that  $v_{\epsilon}^{\alpha,\beta}$  converges uniformly to  $L^{\beta}\partial^{\alpha}u$  in  $\overline{B_{R_0}} \times K$ , as long as  $|\alpha| + |\beta| \leq l - (n+2)$ .

Now we estimate the last partial sum. We select a piecewise linear  $\Lambda_{\xi,1}$  path quite in the same way as we did before. We know by hypothesis that we can find t' and  $q_{\theta}$  in a same component of  $\mathcal{Q}_K \cap (\Phi \cdot \theta)_{\Phi(t) \cdot \theta}$  with  $q_{\theta} \in F$  and t' arbitrarily close to t.

Let  $N(\xi, t)$  be the minimum number of closed cubes  $\mathcal{Q}_{\nu} \in \mathcal{C}(\nu)$  whose union covers  $\mathcal{Q}_K \cap \overline{(\Phi \cdot \theta)_{\Phi(t) \cdot \theta}}$  and such that  $\mathcal{Q}_{\nu} \cap \mathcal{Q}_K \cap (\Phi \cdot \theta)_{\Phi(t) \cdot \theta} \neq \emptyset$ . Moreover we choose  $\nu$  such that

$$2(1+|\xi|^2)^{-\frac{1}{2}} \ge 2^{\nu} \ge (1+|\xi|^2)^{-\frac{1}{2}} \tag{3.14}$$

We always have

$$\sum_{k=1}^{N(\xi,t)} 2^{\nu n} \le N(\nu) 2^{\nu} = \int_{\mathcal{Q}_K} dx \tag{3.15}$$

We will select the vertices of  $\Lambda_{\xi,1}$  in  $\bigcup_{k=1}^{N(\xi,t)} \partial \mathcal{Q}_k$ . Consider a vertex  $t_1$  in the boundary of one of  $N(\xi,t)$  cubes in the covering of

$$Q_K \cap (\Phi \cdot \theta)_{\Phi(t) \cdot \theta} \tag{3.16}$$

which contains the point  $q_{\theta}$ . Suppose that the vertex  $t_{k-1} \in \mathcal{Q}_{k-1}$  is defined. Then select the next vertex  $t_k$  in the boundary of another cube  $\mathcal{Q}_k$  in the covering of  $\mathcal{Q}_K \cap (\Phi \cdot \theta)_{\Phi(t) \cdot \theta}$  distinct of  $\mathcal{Q}_{k-1}$ , with  $\mathcal{Q}_k \cap \mathcal{Q}_{k-1} \neq \emptyset$ , allowing the maximum projection in the direction of the vector  $\overrightarrow{q_{\theta}t}$ . As before in the construction of  $\Lambda_{\xi,0}$  we find after at most  $N(\xi,t)$  number of steps, vertices  $\{t_1, \ldots, t_N\}$  of the cubes  $\mathcal{Q}_k$  such that  $t_{k-1}$  and  $t_k$  lies in a same cube  $\mathcal{Q}_k$ . The point  $t_1$  is in the same cube as  $q_{\theta}$  and the point  $t_N$  will be in the same cube as t. The process is fullfilled because there is a cube which contains t and in its interior points t' of  $\mathcal{Q}_K \cap (\Phi \cdot \theta)_{\Phi(t) \cdot \theta}$  which are in the same connected component of  $q_{\theta}$ . Denote the polygonal line defined by these vertices by  $\Lambda_{\xi,1}$ . It follows from (3.15) that

$$(1+|\xi|^2)^{-\frac{1}{2}(n-1)}N2^{-\nu} \le N(\xi,t)2^{-n\nu} \le N(\nu)2^{-n\nu} = \int_{\mathcal{O}_{\nu}} dx \tag{3.17}$$

Integrating III by parts with respect to  $P(\partial_x)$ , where  $P(X) = 1 - \sum_{j=1}^m X_j^2$ , at least  $\mathbf{k} = \left\lceil \frac{m+n}{2} \right\rceil$  times we get

$$III = 2\pi^{-m} \int_{\mathbb{R}^m} \int_{\Lambda_{\xi,1}} \int_{\Gamma_s} \exp\left(i\left[w - z\right] \cdot \xi\right) G(\epsilon \xi) P^{-\mathbf{k}}(-i\xi) P^{\mathbf{k}}(\partial_x) L^{\beta} \partial_x^{\alpha} \omega(z) \wedge d\xi \wedge dz$$
(3.18)

and each point of  $\Lambda_{\xi,1}$  is within  $\sqrt{n}2^{\nu}$  of some point of  $\mathcal{Q}_K \cap (\Phi \cdot \theta)_{\Phi(t) \cdot \theta}$ . Then we can bound the exponential integrand in III by

$$2\pi^{-m} \left| \int\limits_{\mathbb{R}^m} \int\limits_{\Lambda_{\xi,1}} \int\limits_{\Gamma_s} \exp\left(i \left[w-z\right] \cdot \xi\right) G(\epsilon \xi) P^{-\mathbf{k}}(-i\xi) P^{\mathbf{k}}(\partial_x) L^\beta \partial_x^\alpha \omega(z) \wedge d\xi \wedge dz \right| \leq$$

$$C(K, l) \sum_{k=1}^{N(\xi, t)} \int_{\mathbb{R}^m} \exp\left(\sup_{s \in \mathcal{Q}_K} |\nabla \Phi(s)| \sqrt{n} 2^{-\nu} |\xi|\right) n^{\frac{n}{2}} 2^{-n\nu} P^{-\mathbf{k} + \frac{n}{2}} (-i\xi) d\xi \qquad (3.19)$$

where  $C(K, l) = 2\pi^{-m} \sup_{s \in \mathcal{Q}_K} \int_{\Gamma_s} \|P^{\mathbf{k}}(\partial_x) L^{\beta} \partial_x^{\alpha} \omega(s, \Re z)\| dz$ . Now from 3.18 we can estimate 3.19 and get

$$n^{\frac{n}{2}}C(K,l)\exp\Bigl(\sqrt{n}C\sup_{s\in\mathcal{Q}_K}|\nabla\Phi(s)|\Bigr)N(\xi,t)2^{-n\nu}\int_{\mathbb{R}^m}P^{-\mathbf{k}+\frac{n}{2}}(-i\xi)d\xi\leq \\ n^{\frac{n}{2}}C(K)\exp\Bigl(\sqrt{n}C\sup_{s\in\mathcal{Q}_K}|\nabla\Phi(s)|\Bigr)N(\nu)2^{-n\nu}\int_{\mathbb{R}^m}P^{-\mathbf{k}+\frac{n}{2}}(-i\xi)d\xi\leq C(K,\mathbf{k},l)$$

$$(3.20)$$

Finally the partial sum B in 3.1 is given by

$$v_{\epsilon}^{\alpha,\beta}(x,t) = \int_{\Gamma_{\epsilon}} E_{\epsilon}(x-y) L^{\beta} \partial_{y}^{\alpha}(\chi u)(t,z) \wedge dz$$
 (3.21)

which converges uniformly to  $L^{\beta}\partial_{y}^{\alpha}(\chi u)(\cdot,t)$  in  $\mathbb{R}^{m} \times \mathcal{Q}_{K}$ . This proves the first part of the Lemma. We omit the rest of the proof as it uses essentially the same ideas; we only remind that in this case we must construct paths  $\Lambda_{\xi}$  reaching a point in  $F \cap \partial G$  laying inside G and this can be done since  $\partial G$  is a regular manifold. The proof is finished.

# References

- [1] Ehrenpreis, L., Reflexion, Removable Singularities and Approximation for Partial Differential Equations II, Transactions of the American Mathematical Society 302, (1987).
- [2] Hounie, J.; Tavares, J., The Hartogs property for Tube structures, Indagationes Mathematicae 1, (1990), 51 -61.
- [3] Mendoza, G.; Treves, F., Local solvability in a class of overdetermined systems of linear PDE, Duke Mathematical Journal 63, (1991), 355–357.
- [4] Sussmann, H., Orbits of families of vector fields and integrability of distributions, Transactions of the American Mathematical Society 180, (1973),171– 188.
- [5] Treves, F., Approximation and representation of functions and distributions annihilated by a system of complex vector fields, Center de Mathématiques. École Polytechnique Paleiseau, France, (1981).

[6] Treves, F. Study of a model in the theory of complexes of pseudodifferential operators, Annals of Mathematics 104, (1976), 269–243.

[7] Treves, F., Hypoanalytic structures, Princeton Mathematical Series 40, (1992).

Departamento de Matemática Universidade Federal de Pernambuco 50740-540, Recife, PE, Brazil e-mail: joaquim@dmat.ufpe.br