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Abstract

The aim in this note is to present a proof of the existence of the
global attractor of a weakly damped, forced Korteweg-de Vries equation
in the phase space H'(R). Previous results concern the existence of the
global attractor in H%(R) and in spaces of space-periodic functions. It
is well-known that the well-posedness of the KdV in H*(R), for s < 3/2,
requires more than the usual energy-type estimates and depends on subtle
regularization properties of dispersive equations. These properties are
exploited here both for the well-posedness and for the existence of the
global attractor in the presence of weak damping and forcing.

Resumo

O objetivo neste trabalho é provar a existéncia do atrator global de
uma equagao do tipo Korteweg-de Vries com dissipagdo fraca e forga
externa, no espaco de fase H'(R). Resultados anteriores demonstraram a
existéncia do atrator global em H?(R) e em espacos de fungdes periédicas
no espaco. A demonstracdo de que a equacdo de KdV é bem-posta em
H*(R), para s < 3/2, requer mais do que estimativas usuais de ener-
gia e depende das propriedades de regularizacdo do termo dispersivo da
equacao. No caso com dissipagao fraca e forga externa, essas propriedades
sdo exploradas aqui, tanto para a demonstracdo de que a equagao gera um
grupo em H'(R) quanto para a demonstragio da existéncia do atrator
global.
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1. Introduction

Our aim is to prove the existence of the global attractor of a weakly damped,
forced Korteweg-de Vries equation in the phase space H'(R). The equation

reads
U+ Uy + Uggy + YU = f, for (z,t) e R x R, (1)
with the initial condition
uli—o = up € H*(R). 2)

It is assumed that f is time-independent and belongs to H'(R), and that v > 0
is a constant. Equation (1) has been derived by E. Ott and R. N. Sudan [16]
as a model for ion-sound waves damped by ion-neutral collisions. For v = 0
and f = 0, equation (1) is the well-known Korteweg-de Vries (KdV) equation
[10]. From the mathematical point of view, the extra term with the factor v
accounts for a weak dissipation with no regularization/smoothing property.

We use the function spaces introduced by C. E. Kenig, G. Ponce, and L.
Vega [9] for the well-posedness of (1), and the energy equation method of J. Ball
[2] for the existence of the global attractor. The well-posedness in H'(R) of the
forced equation without weak dissipation (i.e., with v = 0) has been considered
by J. Bona and B.-Y. Zhang [3] following the framework of [9]. We follow their
steps for the well-posedness when v # 0.

The existence of the global attractor for hyperbolic equations is usually
obtained by splitting the solution operator or by exploiting suitable energy
equations (see [18, 11], for instance). For equations on unbounded domains
the use of energy equations is particularly suitable since it does not depend
on compact imbeddings of function spaces. It does require, however, the weak
continuity of the solution operator in the sense that if the initial conditions ug,
converge to up weakly, then the corresponding solutions u,(t) converge weakly
to u(t), at all times ¢. This weak continuity is usually obtained by passing to

the limit in the weak formulation of the equation and using the uniqueness of
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the solutions. The uniqueness is a delicate issue, though, for the KdV (and for
(1)) in H*(R), for s < 3/2, and regularity, as well, is limited, so that much
effort is taken here in proving the weak continuity.

The existence of global attractors for the equation (1) was first considered
by J. M. Ghidaglia [5,6], in the spaces Hp>, (0, L) of L-periodic functions in
(0,L). This result was extended to HE, (0,L), with

(0, L), and where

the global attractor was proven to be more regular if so is f (with the attractor

H?, assuming f € H?

er

k € N, k> 3, by I. Moise and R. Rosa [14], with f € Hf

er

as regular as f in the scale of Sobolev spaces Hy (0,L), m € N, m >k > 3).
The whole space case in the phase space H%(R) was first treated independently
by P. Laurengot [12], using energy-type equations and weighted spaces, and by
I. Moise, R. Rosa, and X. Wang [15], using only energy-type equations. To
the best of our knowledge the case H(R) is being treated here for the first
time. During the completion of this work, it was brought to our attention a
recent work by O. Goubet [7] where the space-periodic case is considered in
the phase space L?(0, L), using the framework introduced by J. Bourgain for
the well-posedness of the Korteweg-de Vries equation. The method used is
the splitting of the solution operator and exploits the compact imbeddings in
bounded domains. This is achieved by a suitable regularization property of
the linear part of the equation with respect to the nonhomogeneous term, as it
appears in the framework of J. Bourgain [4] (see also J. Bona and B.-Y. Zhang
[3])- A nice by-product presented in [7] is that further regularity of the global
attractor (it belongs to HJ, (0, L)) is obtained assuming only that the forcing
term f belongs to L%(0, L), thus extending and improving the result in [14]. Tt
seems reasonable to conjecture that a similar result holds in the whole space

(in L?(R)); this will be considered elsewhere.

2. Function Spaces and Preliminary Estimates

We consider the spaces L?(R) and H'(R) endowed respectively with the norms

sy = ([ Ju@) az) "
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and
1/2
lall ey = (lulag + sl )

and the associated inner products (-, -)) r2@) and (-, ) mrr). Weset A = (1-02),
which is a positive self-adjoint operator in L?(R). We denote by H~(R) the dual
of H*(R) and we identify L?(R) with its dual. The operator A can be extended
to an isomorphism from H'(R) onto H!(R), and the norm in H'(R) can be

written as
lullz-1®) = 1A ullm @ = 147 2ull 2wy ®3)

We also consider the space H%(R), of functions v in H'(R) with u, in H(R),
and its dual space H2?(R), with their norms denoted in a similar way, and the
spaces H}(—r,r), of functions in H'(R) which vanish outside (—r,7), where

r > 0, and their dual Hy '(—r,7). Note that for all 7 > 0,
Hy(-r,r) C H'(R) € L*(R) € H™'(R) C Hy ' (-7.7), @)
with continuous injections, and
Hy(=r,7) ¢ L*(R) ¢ Hy'(=r,7), (5)
with compact injections. Other useful relations involving the operator A are

1 .
(Au, v) L2y = (u, v) 1 (w)s §||U||L2(1R) <A ullfemy < llullrom)-
(6)
Another space we consider is the space L*(R) of essentially bounded func-
tions, with its norm denoted by || - || peo(r) = ess.sup | - |. We will often use the

Agmon inequality, which reads

1/2 1/2
lull ooy < Il oty luzll oty (7)

o0

for every u in H'(R). We also consider spaces of the type C°, of infinitely

differentiable functions with compact support.
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We now consider a space similar to that introduced by C. E. Kenig, G.
Ponce, and L. Vega [9]. For each T > 0 and each measurable function u :
R x [-T,T] — R we set

M(T5u) = ess. sup |lu(,t)llmm), ®)
te[—T;T)
- 1/2
(i) = (ossup [ 0P ) ®)
z€R /=T
- 1/6
1 1/2
MTiu) = —— /ess. sup |u(z,t 2d:z:) , 11
) = i (fos s, e a
and
A(T;u) = max{\(T;u), Ao(T;u), As(T;u), Aa(T;u) }. (12)
We then define the space
Xr={u:Rx[-T,T] - R; A(T;u) < oo} (13)
The space Xr is a Banach space endowed with the norm || - ||x, = A(T}-).

It could also have been defined (except for the norm), in a more explicit, and

hopefully self-explanatory, form as the space

L?O(_Tv T; H;(]R)) N szoo(Ra L?(_Tv T))
NLY (=T, T; Wy (R)) N LL(R L (=T, T)).

For a given interval I and a given Banach space E we also consider the
spaces LP(I; E), 1 < p < 0o, of E-valued functions on I whose norm in E to
the p-th power is integrable on I (or is essentially bounded if p = c0), and the
space Cy(I; E) of bounded, continuous functions on I with values in E. Their
respective norms are denoted ||-|| e (7,5 and || - ||¢,(7;5)- When I is an unbounded
interval and 1 < p < oo, it is also useful to consider the functions which are
locally in LP, i.e., the space of functions which belong to L?(J; E) for every

bounded subinterval J C I. These spaces are Fréchet spaces and are denoted
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p
Lloc

to Cy(J; E) for each bounded subinterval J C I.

We turn our attention now to the linear part of equation (1) and the associ-

(I; E). Similarly, we denote by C([; E) the space of functions which belong

ated regularization properties which are fundamental for the well-posedness in
lower order Sobolev spaces. For each v € R we denote by {W,(¢) }er the group

associated with the linear equation
Wy + Wege + yw = 0, w‘t:O = Wo, (14)

The case v = 0 is connected to the KdV equation, and the fundamental es-
timates on the linear group for the well-posedness of the KdV in H'(R) were
obtained by C. E. Kenig, G. Ponce, and L. Vega [9]. We borrow from them the

following estimates:

Lemma 1 [9] There is a numerical constant c¢1, which we can assume greater

than 1, such that

00 1/6
(7 Wo@mollieqey dt) < ol (15)

for all wy € L2(R), and
- 1/2
(/ sup |W0(t)’UJ()|2 d:L') < Cl(]- -+ T)HwOHHl(R), (16)
—00 ¢e[~T,T]
for all wy € HY(R) and all T > 0.

Estimate (15) follows from [10, Theorem 2.4 with § = 1, 8 = 0, and a = 2],
while estimate (16) follows from [10, Corollary 2.9 with « = 2, s = 1, and
p=1].

From the estimates in Lemma 1, and using that W, (¢) = e Wy(t), one can

deduce the corresponding estimates for v # 0:

Lemma 2 Let y € R and T > 0. Then,

" 1/6
(/1 sy ) < e (17
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for all wy in L*(R), and

- 1/2
(/ sup |W,(t)wol|? d:v) <ec(l+ T)eMTHwOHHl(R), (18)
—0 te[-T,T]

for all wy in H(R), where ¢; is the constant in Lemma 1.

The next dispersive-type regularization that we need does not follow directly
from the one in [10, Lemma 2.1 (c, = v/3/3 for a = 2)] for v = 0, but its proof

requires only minor modifications, so we limit ourselves to stating the result.

Lemma 3 Let vy € R, and T > 0. Then,

- 1/2 3
(sup /2 000wl @) < Lo, (19)
z€R /=T

for all wy in L*(R).

Taking the inner product in L2(R) of equation (14) with w one finds also

the estimate

W, (£)woll 2y = € || woll2(r)- (20)
By linearity, we also have

W, () woll iy = € l|wol - (21)

If the initial condition wy belongs to H'(R), the solution is continuous as a

function with values in H'(R), i.e.,
wy € H'(R) = t — W, (t)wp € C([-T,T); H'(R)), (22)

for all 7" > 0.
From Lemmas 2 and 3, and relation (21), it is straightforward to prove the

following result:

Lemma 4 Lety € R, T > 0, and wy € H(R). Let, w(-,t) = W, (t)wo. Then,
w € Xp with

lwllx, < erellwollm ), (23)

where ¢y is the constant from Lemma 1, which is independent of v, T, and wy.
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Now, we proceed essentially as in [9] and we derive estimates for the non-

homogeneous equation associated with (14):
W+ Woze + YW =9, W= =0, (24)
where ¢ is time-dependent and is assumed to belong to L!(—7,7T; H'(R)).
Lemma 5 Lety € R, T >0, and g € L*(=T,T; H(R)). Let
i ) = /Ot W B — g, i, (25)
fort € [-T,T]. Then, w belongs to Xt with

lwllxy < e llgllormm ), (26)

where ¢y s the constant from Lemma 1, which is independent of v,T, and g.

Proof: We need to estimate \;(T;w) for each i = 1,...,4. These estimates
are obtained in a very similar way, so we illustrate only the cases i = 1 and
2. We let x; = x:(7) be the characteristic function of the closed interval with
endpoints 0 and ¢, with t either positive or negative. Hence, we can write w
given in (25) as

il ) = /TTXt(T)WW(t—T)g(-,T) dr. (27)

Then, for i = 1, we use (21):

M(T;w) = ess. sup ||w(-,t)||mw),

te[-T5T)
T
< / ess. sup |Ix¢(T)W,(t —7)g(-,7) || ) d7
T te[-T,T)
T
< / ess. sup [|[W,(s)g(-,7)|lmw) dr
T sel-T/T]
T
< [ e lloC. e dr
< MMlgllprrimy-
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For i = 2, we use (19):
T
M(Tiw) < [ X(T5x@Wyt =)l 7)) dr

- /_i (ess'sup i|aZ(Xt(T)W’y(t—-T)g(-7T))2dt)l/2d7_

Tz€R J/—

IN

i 7 1/2
/ (ess. sup 10, (W, (8) gz (-, 7)) |? ds) dr
—T zeR J T

N
£ 7/4 Mg (- )2y dr
V3
< S e"lglorrm@).
The proofs for ¢ = 3 and 4 follow the same idea and make use of (17) and (18),
respectively, introducing the factor ¢; > 1. Note that for ¢ = 4 the estimate (18)
introduces a factor of (1 + T), but this is absorbed in the definition of Ay(T’;-)

and does not appear explicitly in estimate (26). m|

We now turn our attention to the nonlinear term wu, in the equation (1).
It is a quadratic term which can be written as (u2),/2, and which is associated

to the bilinear term (uv),/2. We have

[ M)l d < V3 [ (l0)ellzoey + wo)erlizge) d.
- - (29)

First, we estimate, using Agmon’s inequality,

T T
[l dt < [ (gl + luvelee) dt

T

< [T(Iluzlle(R)Ilvlle(R) + lullzeo @ llvellz2w)) da
T

< 2 lullmelollmne d

< 2Tjullpoe-ram @)1Vl oo (v s )

= 2T\ (T;u) M (T;v)

< 2ullxellvlxy-

For the second term in the right hand side of (28), we use the “full power” of
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the space X7, i.e., all the terms that make up the norm of Xy,

T T
[ Nzl @t < [ (luasllooge + 2lusvallom + luvsllzz) dt

T 00 3 1/2 T
/ (/ - dx) d + 2/T el e 0 1 2
o0 -

T

- - T 00 1/2
+/ </ [ Uz |2 dx) dt
=T —00
—— 1/2
V2T (/ / [ugzv|? da dt)
T J—o0

i
+2ess. sup ||'Uz||L2(IR)/ l|uol| Lo ) dt
te[-T,T] g

e 1/2
42T < / / |wa|? dz dt)
T J—-x
= 1/2
\/2T</ / um|2|v2dtdx>
—oo J =T
" 1/6
+2T5/%ss.  sup lvell L2 (/ ||uz||6Lm(R) dt)
te[-T,T) =T

55 T 1/2
V2T (/ /T (02 |vga? dt dw)

T 2 oo 1/2
V2T (ess. sup [ttgs|? dt) (/ ess. sup |vf? da:)
—0o0

zeR /T te[-T,T)

IA

IN

IN

IA

+2T%5 )\ (T; v) A3 (T u)
. 12 /o 1/2
+V2T <ess.sup Ve | dt) (/ ess. sup |ul? dw)
T —00

zeR J - te[-T,T)

< V2T (14 T)Xao(T; u)Ay(T; v) + 2T%6 Ay (T u) A3(T; v)
+V2T (1 + T)Xo(T; ) \a(T; w)
< (V2T +T) + 2T%°)||ullxy 0]l .-

Taking the last two estimates together we prove from (28) the following

result:
Lemma 6 Let T > 0 and let u,v € Xp. Then,

[ (W0)ollr—rrsm@y < 401+ V2)TY2(1 + T)lullx, 0]l xy.- (29)
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From Lemmas 5 and 6 it is straightforward to deduce the last result of this

section:
Lemma 7 Letye R, T >0, and u,v € Xp. Let
wit)= | W, (¢ — ) (wv)s dr, (30)
fort € [-T,T]. Then,
lwllxy < e2T2(1+ T)el™ ||l o]l x,, (31)

where ¢y = 4(1 +V/2)c1, and ¢, is the constant from Lemma 1, which is inde-

pendent of v, T, u, and v.

3. Local Well-Posedness

Consider v € R, f € L .(R; H*(R)), and uy € H'(R), throughout this section.

loc

We look for the solution of (1) in the mild sense [8], i.e., as the unique fixed
point of the map ¥ : X — X7 defined by

L 1
E@(O) = Wylthuo + [ Wolt =) (£() = @) dr,  (32)
for t € [-T,T)]. From Lemmas 4, 5, and 7, it follows that

1Z(u)llxr < ClethHuO”Hl(R) + clel’YlT”fHLl(fT,T;Hl(lR))
ST+ e full, (33)
Similarly, by writing u? — v? = (u + v)(u — v), we find
1E(w) — E(v)[|lx, < %Tlﬂ(l + )" llu+vllxpllu—vllx,.  (34)
Let
R = 2c1e (J|uoll iy + 1f Nl o<y (ry)- (35)
For 0 < T <1 and ||ul|x,, [|[v]|x; < R, we have

R
IZ@)llxr < 5 + eg T e R, (36)
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and
I1Z(w) - Z()llxr < 26T |Ju - ] x,- (37)

Take Tx, 0 < Tr < 1, sufficiently small so that

1
§+ CQT}]é/2e|’Y|R2 <R and QCzTé/QeMR < 2 (38)
which is given by

Tr =min{ 1 . 39
R =minqd, m g (39)

With this choice of T, it follows that

1

IZ@lxr, < B, 1E(w) = B)llxa, < 5llu—vllx,, (40)

for every u,v € Xr,, with [lul|x,,[[vllxs, < R. Thus, ¥ is a strict contraction
when restricted to the ball in X7, of radius R and centered at the origin. By the
Banach Fixed Point Theorem there exists a unique u in this ball which is the
fixed point of ¥ and, hence, a solution of (1) in the mild sense. One can check
that there is enough regularity to deduce, by taking the duality product of the
equation for v in the mild sense with a test function, that u is also a solution
in the weak sense, and that, vice-versa, a weak solution which belongs to X
is a fixed point of ¥ and, hence, is the unique mild solution. By the Uniform
Contraction Principle [8], it follows also that for any 7' with 0 < 7" < Tk, the
fixed point u is continuous in Xy with respect to v in R, uy in H'(R), and
fin LY(=T",T'; HY(R)). Working with some 7" << Tg, if necessary, and by
continuation, one can check that the fixed point u is unique within all X7, not
only within the ball of radius R and centered at the origin. Finally, using, in
particular, (22) and the expression for the solution u as a fixed point of ¥, we

find that the solution u is continuous as a function with values in H*(R), i.e.,
t = u(t) € C([—Tr, Trl; H'(R)),

and consequently, the dependence on the data is also continuous in this function

space. Hence, we have proven the following result:
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Theorem 1 Lety € R, f € L (R, H (R)), andug € H'(R). Let R and Tg be
given by (35) and (39), respectively, where ¢, is the constant given in Lemma 1.
Then, there ezists a unique solution u in Xr, of equation (1). Moreover, t —
u(t) belongs to Co([~Tr, Tr]; H(R)) and the map which associates (v, f,ug) to
the corresponding unique solution is continuous from R x L*(=T",T"; H}(R)) x

HY(R) into Xpv NC([=T",T']; H(R)), for appropriate T' > 0.

4. Global Solutions and Energy-Type Equations

Let y € R, f € HY(R), and uy € H'(R) be given throughout this section. We
want to establish the global existence of the solutions obtained in the previous
section. This is achieved with the help of two of the invariants of the KdV,

namely,

Io(u) /_O:O u(z)? dz, (41)
L) = /_ °:o (uz(a:)Q - @) dz. (42)

These are two of the countable number of invariants for the KdV equation (see
R. M. Miura, C. S. Gardner, and M. D. Kruskal [13], for instance). Upon intro-
ducing dissipation and external forcing these integrals are no longer invariants,
but lead to energy-type equations which are crucial for proving global existence
of the solutions. For a smooth initial condition @y € C2°(R), and a smooth forc-
ing term f € C(R), the local solution @ € X given by Theorem 1, for some
T > 0, coincides with the classical solution, which exists globally and belongs
to C®(R x R). Multiplying equation (1) by 24 and —2,, — 42, respectively, we

see that u satisfies the energy-type equations

ditfj(ﬂ(t)) +2v1;(a(t)) = K;(a()), (43)

for all £ € R and for j = 0,1, where

Fo(@) = [ fla)ila) da, (34)
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and

Ry = [ Z (Qf,(x)a,(x) . f(:):)?l(as)Q—f-%ﬂ(x)?) da. (45)
We integrate (43) to find

18(0) + 27 [ (a(r)) dr = 1) + [ Ky(alr)) dr,  (46)

for t € [-T,T) and j = 0,1. Now, let ug € H*(R) and f € H'(R) and consider
approximations of them by smooth functions @y and f converging to uy and f
in H'(R), respectively. By the continuity with respect to the data of the local
solution given by Theorem 1, we have that the solutions % with initial condition
@(0) = i and forcing term f converge in X7, for some appropriate T > 0, to
the solution u € Xy with initial condition ©(0) = uy and forcing term f. Taking
the limit in (46) and using the continuity of the solution with respect to the

data, in particular using that
L(u(®) =im L), and K;(u(t) = lim K (a(2),

for all ¢t € [-T,T], and j = 0,1, where

Kolw) = /:: f(z)u(z) de, (47)

K = 7 (2@ - f@u@? + Juw?) di @)
we find that

L®)+2 [ L) dr = Liw) + [ K@) dr, (@9)

for all t € [-T,T], and j = 0,1. From the energy-type equations (49) one can
extend the solution u indefinitely and obtain a global solution u = u(t), ¢t € R,
with u € Xp N Cy([-T,T], H'(R)) for all T > 0. One can also check that for
each T > 0 and each initial condition uy € H'(R), there exists a constant

C = C(||uo|l m1(r), T) such that

lullx, < C(lluoll, T).- (50)
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This can be obtained by dividing each interval [—T, T'] into small enough subin-
tervals as required by the proof of local existence and using the estimate pro-
vided by the energy-type equations (49) for the norm of the solution in H*(R)
at each instant of time. We omit the details since this is straightforward and
classical. The energy-type equations (49) also hold for all time and the continu-
ity of the solutions with respect to the data can be extended to all large times,

as well. Hence, we have the following result:

Theorem 2 Let v € R, f € HY(R), and vy € HY(R). Then, there exists
a solution u € C(R, H'(R)) of equation (1) which is the unique solution which
belongs to Xr for all T > 0. Moreover, the solution t — u(t) satisfies the energy

equations

%Ij(U(t)) + 29I (u(?)) = K;(u(?)), (51)

for all t € R, and for j = 0,1, where I; and K; are given in (41), (42),
(47), and (48). Furthermore, the map which associates the data (7, f,uo) to the

corresponding unique solution u is continuous from R x H*(R) x H(R) into
XN C([-T,T); HY(R)) for all T > 0, with, in particular,

lullx, < COs 1Ly, lluollzr @y, T), (52)
for some constant C' depending monotonically on the data.
Thanks to Theorem 2 we can define a group associated with equation (1):

Definition 1 For v € R and f € H'(R) fized, we denote by {S(t) }ier the
group in HY(R) defined by S(t)uo = u(t) where u = u(t) is the unique solution
of (1) which belongs to Xp for all T > 0.

5. Bounded Absorbing Sets

From this section on we are interested in the long time behavior of equation (1)

taking the dissipation into account. Therefore, we assume that v > 0. We also
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assume that the forcing term f belongs to H!(R). We want first to obtain the
existence of bounded aborbing sets for the solution operator {S(¢)}icg. This
is achieved with the help of the energy-type equations proved earlier. We first
obtain an absorbing ball in L?(R), then we find an absorbing ball in H'(R).
Since this is a standard procedure, we just outline it here.

Estimating the term Kj given in (47) using Young’s inequality it is straight-
forward to deduce from the energy-type equation (51) for 5 = 0 the following

asymptotic behavior:
: 1
limsup [[u(t)[|z2@®) < po = — [l fllr2w), (53)
t—o00 2y

uniformly for u bounded in L2(R).
For the absorbing ball in H'(R), we need to estimate K;, which is given in
(48). We first estimate the following term using Agmon’s inequality (7):

N 5/2 1/2
/ (@) dz < lull ooy llullF2m) < HUHL/Z(R)”uz”L/?(]R)
o0
10/3
S 28/3||u||L2/(R) T ||U'a:||§ql(R) (54)

Therefore,
2 el = a7l < () < Slluelloey + g ol
(55)
which holds for all u in H'(R).
Now, we use (55) and Agmon’s and Young’s inequalities to obtain the fol-
lowing estimate for Kj:

3 g 10/3
|K1(w)| < yvh(u) + ;IlfzIIizaR) + 1 e el Z2 ey + %IIUIIL/(R)-

Therefore, from the energy-type equation (51) for j =1,

d 0

—-’1(“) +qh(u) < —||fz||L2(1R<) + ||f||L°°(1R)|Iu||L2(]R 25/3”“”22/(]13&)- (56)
56

Applying the Gronwall Lemma and using (53) we find

; 3 1
limsup Iy (u(t)) < ?”fEH%N]R)+$||f||L°°(R)”f”%2(R)

t—00

1 10/3
+ 25/3710/3 ||f||L2(]R)
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Finally, using (55) we obtain

9 3
: 2 2 2 2
hrtri)so;gp lueOllz2@y < Po W”‘fz”LQ(R) + Q_,YQ,Hf”L‘X’(R)”f”L?(R)

9 10/3
+ 211/3,),10/3 ||f||L2(lR)' (57)

Thus, we have proven the following result:

Proposition 1 Let v > 0 and f € HY(R). Then, the solution operator asso-
ciated with equation (1) possesses a bounded absorbing set in H'(R), with the
radius of absorbing ball given according to (53) and (57).

6. Asymptotic Compactness and the Global Attractor

As in the previous section, we are interested in the long time behavior of equa-
tion (1) taking the dissipation into account, so that we assume v > 0. We also
assume that the forcing term f belongs to H'(R). Let {S(¢) };cr be the solution
operator associated with equation (1). From Proposition 1 we know that there
exists a bounded set in H'(R) which is absorbing for {S(¢)}+cr. Therefore, for
the existence of the global attractor it suffices to prove the following property
known as the asymptotic compactness property: If {ug, }» is a sequence bounded
in H*(R) and {¢,}, is a sequence such that &, — 0o, then {S(t,)uon }n is pre-
compact in H'(R). See, for instance, O. Ladyzhenskaya [11], F. Abergel [1], R.
Rosa [17], and R. Temam [18].

Our aim in this section is to show that the asymptotic compactness property
follows from the energy-type equations (51). The idea of proving the existence
of the global attractor by exploiting energy-type equations is due to J. Ball
[2], and it was later used by several authors. The present case fits the abstract
framework given in I. Moise, R. Rosa, and X. Wang [15]. The only delicate point
is the weak continuity of the solution operator. We need enough regularity to
pass to the weak limit in the equation and we need uniqueness to obtain the
weak convergence to the right solution. These are two delicate issues for the

KdV in lower order Sobolev spaces.
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Lemma 8 The solution operator {S(t)}ier s weakly continuous in H'(R) in
the sense that if uy, converges weakly in H*(R) to some ug, as n — oo, then

S(t)ugn converges to S(t)uy weakly in H'(R) for all t € R.

Proof: Let ug, — ug weakly in H*(R). We fix T > 0 and consider u,(t) =
S(t)ugn, for =T < t < T. Since ug, is bounded in H!(R), it follows from
Theorem 2 that

{un}n is bounded in Xrp. (58)
In particular,
{tn}n is bounded in Cy([-T,T]; H'(R)). (59)
From the equation (1), we see then that
{u}} is bounded in Cy(=T, T; H*(R)), (60)

where u;, denotes the time-derivative of u,.

From (58), we have
Uy = u weakly star in Xp (61)

for some element v in X7, for some subsequence {n'}.
On the other hand, from (60) we find that for every v in H2(R) and every ¢
and t+ 7 in [-T,T],
T
(Un(t +7) — un(7),0) 2y = /t (up,(s), v) 2wy ds

||U;1||L°°(—T,T;H-2(R)) ||U||H2(R)

IA

IA

c7l|v|| 2wy (62)
where ¢ is a constant independent of n. Taking
v=A"(up(t +7) — un(1)),

for fixed ¢ and 7, where A = (1 — 92), we obtain, using (3) and (6),

IN

|lun(t + 1) — un(t)”ir—l(R) crl|un(t +7) — un(t)HLZ(R)

A

=~ 267—||un||Cb([—T,T];L2(R)) S CT, (63)
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for a possibly larger constant c.

Let ¢ € C*(R) such that ¢(s) =1, if |s| < 1, and ¢(s) = 0, if |s| > 2. For
each r > 0, let ¢.(s) = ¢(s/r). Then, ¢ u, belongs to H}(—2r,2r) and, from
(59), (63), the compact injections (5), and the continuous injections (4), we see
that {¢,u,}, is equibounded and equicontinuous in Cy([—7,T]; Hy *(—2r,2r))
for every r > 0, with {¢,u,(t)}, precompact in Hy '(—2r,2r). Therefore, by the
Arzela-Ascoli Theorem, for each r > 0, the sequence {¢,uy,}, is precompact in
the space Cy([~T,T]; Hy *(—2r,2r)). By a diagonalization process, and passing

to a further subsequence still denoted {n'}, we find
Uy — u strongly in Cyo([-T, T); Hy *(~r,7)), Vr > 0. (64)

From the weak-star convergence (61) and the strong convergence (64) one
can check that we may pass to the limit in either the weak or the mild formu-
lation of the equation (1) to deduce that the limit function u is a solution of
(1). For this passage to the limit, we do not need the weak-star convergence
(61) in X7. This weak-star convergence in X is only needed to assure that the
limit u belongs to X7, in which case u must be the unique solution provided by
Theorem 2. Hence, u(t) = S(t)up. By contradiction, one can check that in fact
the whole sequence u,, converges to v in the sense of (64) and (61).

It still remains to show that u,(t) converges weakly in H*(R) to u(t) for
every t € [T, T]. We know that the convergence is strong in Hy '(—r,7), for
each r > 0. Thus, taking v € C2®(R), we find that for r large enough, Av
belongs to H}(—r, ), so that

(un(®), )@ = (un(t), Av) 2w
= (u(t), Av) 2w
= ((w(®), V) mr(r)- (65)

Then, from (59) and the density of C2°(R) in H!(R) we find that

(un(®), V) 1y = (u(®); v) ), (66)

for every v in H*(R), which proves the desired weak continuity in H'(R).
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O

With the previous lemma in mind we can proceed as in I. Moise, R. Rosa,
and X. Wang [15]. We let ug, be bounded in H}(R) and let ¢, — oco. From
the existence of an absorbing ball in H*(R) (Proposition 1), if follows that
{5 (tn)uon }n is weakly precompact in H*(R), with

S(tw o — w, weakly in H'(R), (67)
for some subsequence n’ — oo and some w € H*(R) with
lollw < s lwsllz < o (68)
From Lemma 8, if follows that for every ¢t € R,
Sty — t)ugy — S(—t)w, weakly in H*(R), (69)
as n' — oo, with
IS(~Hwlm < oo NS(=HW)allzem < p1. (70)

Applying the variation of constant formula to the energy-type equation (51)
with j = 0 from ¢}, — T to ¢/, for T > 0, to the solution S(-)ug, we find

IS (tarYom |2y = 1S (tw — T)tiow |72y ™"

42 /0 21T (£, 8(r)S (tw — T)tiom ) 12wy dr- (71)

Similarly, for the solution S(-)w, we find

||w||%2(R) = ||S(—T)w||%2(m)€72w

+2 /0 T (£, S(r)S(=T)w) ey dr- (72)

Subtracting (72) from (71), taking the limit as n’ goes to infinity, and using
(69) and (70) we obtain

tim 5up | (b Yt ey < [lfey + 205", (73)
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where T is arbitrary. Letting 7" go to infinity we find that
lim sup [|:S (tn Juon | 72gy < [[0]72m), (74)
n'—o0

which, together with the weak convergence (67), implies, since L?(R) is a Hilbert

space, the strong convergence
S(tp )uow — w, strongly in L*(R), (75)

as n' — oo.
Repeating this argument with ¢, replaced by ¢, — t, for each fixed t € R,

one obtains also
S(tp — t)ugy — S(—t)w, strongly in L*(R), (76)

asn' — oo, for all t € R.

Now, we repeat the argument above for I;(-). Applying the variation of
constant formula to the energy-type equation (51) with j = 1 from ¢/, — T to
t!,, for T > 0, to the solution S(-)ug, we find

L(S(tw)uon) = L(S(tw — Tuow)e "
T
1 /O e T-D K (S(1)S(tw — T)ugw) dr. (77)

Similarly for the solution S(-)w:

T
L(w) = L(S(~T)w)e~ T + / e~ TN K (S(r)S(~T)w) dr.
’ (78)
Subtracting (78) from (77), taking the limit as n' goes to infinity, and using
(69), (76), and (70), we obtain
lim sup I, (S (tn )tuon) < I (w) + ce™ 7T, (79)
n/—o0
where T is arbitrary and c is a constant independent of 7. Notice that in
order to pass to the limit in the term involving K (-) we used not only the weak

convergence (69), but also the strong convergence (76). This strong convergence
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was the main reason for going through the first step with the L?(R) energy
equation.
Letting T go to infinity in (79) we find that
lim sup 17 (S (tp o) < I (w). (80)
n'—o00
Using the strong convergence (75) and the boundedness in H'(R) of the se-
quence S(ty )uon (see (69)), we deduce from (80) that

hn,] sup ||(S(tn’)u0n’)z||2LZ(R) < ”wx”%Q(R)- (81)
n'—oo

This, together with the weak convergence (67) and the strong convergence (75),

implies, since H'(R) is a Hilbert space, the strong convergence
S(tn )uon — w, strongly in H'(R), (82)

as n' — oo. This proves the asymptotic compactness property of the solution
operator and, hence, the existence of the global attractor. We summarize the

result with the following theorem:

Theorem 3 Let v > 0 and f € H'(R). Then, the solution operator {S(t)}icr
in HY(R) associated with the equation (1) possesses a connected global attractor
in HY(R), i.e., a compact (in H'(R)), connected, invariant set which attracts
all the orbits (in the H'(R)-metric) of the system, uniformly on bounded sets of
initial conditions, and is mazimal with respect to the inclusion relation among
the bounded invariant sets and minimal (idem) among the globally attracting

sets.

The connectedness of the attractor follows from the continuity of the indi-

vidual solutions (See Theorem 2).
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