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EXACT SOLUTIONS OF HEAT AND MASS
TRANSFER EQUATIONS

Andrei D. Polyanin®  Alexei I. Zhurov*®

Abstract

We outline generalized separation of variables as applied to nonlinear
second-order partial differential equations. In this context, we suggest
an approach to constructing exact solutions of nonlinear PDEs. The
approach involves searching for transformations that “reduce the dimen-
sionality” of the equation. New families of exact solutions of 3D nonlinear
elliptic and parabolic equations that govern processes of heat and mass
transfer in inhomogeneous anisotropic media are described. Moreover,
the approach makes it possible to construct exact solutions of nonlinear
wave equations. We also present solutions for three families of equations
with logarithmic heat sources; the solutions are obtained by nonlinear
separation of variables.

Introduction

Heat and mass transfer phenomena in a medium (solid, liquid, or gas) at rest are
governed by heat (diffusion) equations [1-4]. For a homogeneous and isotropic
medium, the thermal diffusivity (diffusion coefficient) that occurs in these equa-
tions is constant in the entire domain under study [5-7] and the heat (diffusion)
equation is a linear partial differential equation with constant coefficients. In
anisotropic media, the thermal diffusivity (diffusion coefficient) depends on the
heat (mass) transfer direction and, in inhomogeneous media, can depend on
the coordinates and even on the temperature [8-11]. In the last case, the heat

(diffusion) equation is nonlinear. Various authors suggested many different
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relations to approximate the dependence of the transfer coefficients on the tem-
perature or concentration, including linear, power-law, and exponential (e.g.,
see [8, 10, 12, 13]).

Heat (mass) transfer can be complicated by sources or sinks, which are as-
sociated with various physicochemical mechanisms of absorption and release
of heat (substance). In combustion theory and nonisothermal macrokinetics
of complex chemical reactions [4, 14], it is not infrequent that the power of
heat sources/sinks depends on the temperature, often nonlinearly, e.g., expo-
nentially [14] or in accordance with a power law [15]. In mass transfer theory,
the rate of volumetric chemical reaction is widely approximated by power-law
dependences on the concentration; at the same time, exponential, logarithmic,
and other dependences are also used.

Exact solutions of heat and mass transfer equations play an important role
in forming a proper understanding of qualitative features of various thermal and
diffusion processes. Exact solutions of nonlinear equations make it possible to
look into the mechanism of intricate phenomena such as spatial localization of
heat transfer, peaking regimes, multiplicity and absence of steady states under
certain conditions, etc. Even those particular exact solutions of PDEs which do
not have a clear physical interpretation can be used as test problems for checking
the correctness and accuracy of various numerical, asymptotic, and approximate
analytical methods. In addition, model equations and problems that allow
exact solutions serve as a basis for developing new numerical, asymptotic, and
approximate methods. These, in turn, permit one to study more complicated
problems that have no analytical solution.

Three basic approaches are traditionally used to seek exact solutions of non-
linear differential equations: (i) search for traveling-wave solutions, (ii) search
for self-similar solutions, and (iii) application of groups to search for symme-
tries of the equations. The method of nonlinear separation of variables outlined
below includes the first two approaches as its special cases and, very often, al-
lows finding exact solutions that cannot be obtained by application of groups.

Except for special cases of partial differential equations, the precise connec-
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tion between symmetries and separation of variables is not fully understood at

present, what is especially true for nonlinear cases (e.g., see [15, page xx]).

1. Structure of Exact Solutions for Some Heat and Mass
Transfer Equations

Prior to describing nonlinear separation of variables, we first briefly remind
the procedure of searching for self-similar solutions and that of separation of

variables for linear equations.

1.1. Self-similar Solutions

For simplicity we consider the one-dimensional case. Self-similar solutions of

one-dimensional heat equations are solutions of the form [17, 18]

T(x,t)=t°f (%) (1.1)

where 8 and v are some constants. The unknown function f(z/t”) is deter-
mined by an ordinary differential equation resulting from the substitution of
solution (1.1) into the original PDE.

More generally, self-similar solutions are said to be solutions of the form

T(a,t) = ot f(m> (12)

The functions ¢(t) and 1(t) are chosen for reasons of convenience in the specific
problem.

For illustration, we consider a nonlinear problem describing unsteady heat
transfer in a semiinfinite plate, x > 0, with thermal diffusivity depending on
the temperature, a = (7). Initially, for ¢ < 0, the plate has a uniform tem-
perature 7;. For £ > 0, a temperature 7; is maintained at the plate boundary

2 = 0. Thus, we have the following boundary value problem:

oT 0 oT
o il =T =T T T;
ot ox {a(T) ox ] . ‘t:O By ¥ =0 B2 T—

(13)
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This problem has been the subject of much investigation in heat conduction
theory and seepage theory (e.g., see [4, 19]).

A solution of problem (1.3) is sought in the form 7' = T'(w), w = x/+/%, thus
resulting in the ODE

(D)), + T, =0 T| =T, T|__-T (1.4)

w=

Solutions of problem (1.4) have been obtain for linear dependence of a on T
(2, 20, 21], hyperbolic approximation [3, 22|, and power-law dependence [14, 23].

A detailed list of exact solutions to equations of the form

2 2L +om

can be found in [19] for ® = 0 and [24] for ¢ # 0.

1.2. Separation of Variables in Linear Equations

Many linear PDEs can be solved by separation of variables. For illustration, we

consider a linear second order PDE of the from
oT oT &*T 0°T &*T
Flz,t,T,—, — —, — == | = 1.
(”‘"’ L5 Bt o Bwor o ) = (19)
with two independent variables, = and ¢, and the unknown function 7' = T'(z, ).
The solution procedure involves several stages, which are outlined below.

1. At the first stage, one seeks a particular solution of the form

T(z,t) = p(x) P(b). (1.6)

After substituting solution (1.6) into Eq. (1.5), one rewrites, if possible, the
equation so that its left-hand side depends only on = (involves z, @, ¢!, and ¢
and the right-hand side depends only on ¢ (involves ¢, v, ¢;, and ¢};). The
equality is possible only if both sides are equal to the same constant, k, called
the separation variable. Thus, one obtains ODEs for ¢(z) and t(¢) which
contain the parameter k.

This procedure is called separation of variables in linear equations.
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2. At the second stage, the principle of linear superposition is used—a linear
combination of exact solutions of a linear equation is also an exact solution of
this equation.

The functions ¢ and ¢ in solution (1.6) depend not only on z and ¢ but also
on the separation constant, ¢ = (z; k) and ¢ = 9(¢; k). For various values

ki1, ko, ... of k we obtain distinct particular solutions of Eq. (1.5),

Tl(xa t) = 901('77) wl(t)v Tz(l‘,t) = @2($) ¢2(t)a cee

where ¢; = @(x;k;) and ¢; = ¥(t; k), ¢ = 1,2,... The spectrum of possible
values of £ can be established from the boundary conditions.

According to the principle of linear superposition, the sum

T(a:,t) = Algol(.fll') ¢1(t) =+ AQ(pQ(l') ’Q/)Q(t) 4w 5 (17)

where Ay, Ay, ... are arbitrary constants, is an exact solution of the original
equation. Formally, all A;’s can be set equal to 1, thus combining them with
the ¢;’s.

3. The third stage serves to determine the spectrum of k¥ from the bound-
ary conditions when solving specific problems. Here we arrive at the Sturm—
Liouville eigenvalue problem for ¢. The arbitrary constants A; can be deter-

mined from the initial conditions.

Remark. Note that a lot of linear equations of mathematical physics can also

admit exact solutions of the form
T(z,t) = 9(z) + x(b), (1.8)

where ¥(z) and x(t) are determined by the corresponding ODEs after separating

the variables.

Example. Consider the linear equation

oc_ o
ot Oz

[D(x)%] 4 U(m)% + KoC + ()
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that governs a convective mass transfer at a speed of —U(z), provided that
the diffusion coefficient D(z) depends on the coordinate, a first order chemi-
cal reaction takes place, K,C, and there is a volume absorption of substance
with intensity depending on time, ®(¢). This equation admits solutions of the
form (1.8) but does not have exact solutions of the form (1.6). However, the

equation admits more complicated solutions of the form

C(z,1) = 9(x) x1() + x2(2), (1.9)

where x;(t) = exp(Kot) and the function x5(t) is determined by the first order
ODE x; = Koxz + @(2).

1.3. Separation of Variables in Nonlinear Equations

Just as linear PDEs, some nonlinear equations admit exact solutions of the
form (1.6). In this case, the functions ¢(z) and () are determined by the
ODE:s obtained by substituting Eq. (1.6) into the original equation and followed

by nonlinear separation of variables.

Example 1. The nonlinear heat equation

ar 9 ( ..oT

with the thermal diffusivity oT™, where o and n are constants, admits exact
solutions of the form (1.6) [19].

There are also nonlinear PDEs that admit exact solutions of the form (1.8).

Example 2. The nonlinear heat equation

I _ 8 (o pmOT
ot oz (0‘6 (93:) 1)

with the thermal diffusivity ae®”, where o and B are constants, admits exact

solutions of the form (1.8) [19].

Below we consider generalized separation of variables in nonlinear equations.

Some aspects of this approach were considered in [30].



EXACT SOLUTIONS OF HEAT AND MASS TRANSFER 111

1. Suppose that a nonlinear equation for 7'(z,t) is obtained from a linear
equation for u(z,t) admitting exact solutions of the form (1.6) or (1.8) by a

nonlinear change of variable
T = F(u), (1.12)

where F'(u) is some function. Then the nonlinear equation admits exact solu-

tions of the form

T(z,t) = F(u), u = p(x)Y(t), (1.13)
T(z,t) = F(u), u = 9(x) + x(?). (1.14)

For example, the above self-similar solution to the equation of (1.3) can be
represented in the form (1.13) with ¢(z) =  and ¥(¢) = t~V/2.
Most commonly, solutions of nonlinear equations are sought in the form of

traveling waves,
T(z,t) = F(u), U=+ . (1.15)

Such solutions are special cases of Eq. (1.14) with 9(z) = z and x(¢) = M. Note
that solution (1.15) can also be represented in the form (1.13),

T(x,t) = Fi(v), v=e&™=¢%M, F(v)=F(nv).

Similarly, solution (1.14) can be represented in the form (1.13) by setting u =
Inv and denoting F(u) = F(v).

Usually, the functions ¢ and v or ¥ and yx, as well as the “temperature
profile” F' = F'(u), occurring in Egs. (1.13) and (1.14) can be determined in the

following two ways:

e The profile F' = F'(u) is determined by an ODE resulting from the original
equation after appropriate ¢ and % (or ¥ and x) have been chosen. The
functions ¢ and ¢ (or ¥ and x) also are determined by ODEs. Self-similar

solutions and some more complicated solutions can be found in this way.



112 A. D. POLYANIN A.I ZHUROV

e The profile F' = F'(u) is prescribed a priori on the basis of some consider-
ations (e.g., a solution of a simpler auxiliary equation can be used as the
profile) so that the variables can be separated. This leads to ODEs for ¢
and ¢ (or ¥ and x).

Table 1 presents some specific nonlinear equations that allow exact solutions
of the form (1.13) or (1.14). We do not consider here self-similar solutions with

¢(x) = z and travelling wave type solutions.

2. Suppose a nonlinear PDE for T'(z,t) is obtained from a linear PDE for
u(z,t) admitting exact solutions of the form (1.7) by a nonlinear change of
variable T = F(u). Then the nonlinear equation admits solutions of the form

T(z,t)=F(u), u=pi(z)¥1(t) + () ¥2(t) +--- .
(1.16)

The structural formula (1.16) may now be used as a basis for seeking exact
solutions to nonlinear equations that cannot be reduced to linear PDEs. The
profile F'(u) and the functions ¢1(z), @2(z), ..., ¥1(t), ¥a(t), ... are to be
determined. It should be noted that generally solutions of this form cannot be
obtained by group methods.

It is worth mentioning that in [27] exact solutions of the form (1.16) with
F(u) = u, ¢ =1, and ¢; = 0, ¢ > 3, were sought for PDEs with quadratic
nonlinearities. In [30] a quite general procedure for seeking exact solutions of
equations with quadratic nonlinearities for F'(u) = u is presented. Solutions
of the form (1.16) are a natural extension of equations considered in the cited
papers.

In the analysis of specific equations, it is useful to try the following special

cases of formula (1.16):
T(z,t) = F(u),  u=gi(z)¥a(t) + ¢a(t), (1.17)
T(z,t) = F(u),  u=pi(z) ¥1(t) + @2(2). (1.18)

Table 2 presents some nonlinear equations admitting solutions of the form

(1.16). One can see that solutions of the form (1.17) are most frequent.
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Table 1: Some nonlinear PDEs admitting (1.13) or (1.14) type solutions

‘ Equation Solution structure References |
Z=alZ+o(%) T=p(z) +4(0); 25
=¢Inu, u=p(x)+9¥(t)
Y (7 T= @)l 16,17
%—f:a%(@mg) T=p(z)+9(t) [16, 19, 26]
T —alZ+alInT T=gp(z)¥(t) [16, 24]
Z=22(2"Z)+aT T T=q(z)¥(t) (16, 27]
e ‘%‘fzaeT T=-2lnu, u=p(z)+¥(y) [14]
‘?;Tf %:asinhT T=2In1, u=o(z)y(y) (28]
S +%r=aThnT T=e", u=p(z)+¥(y) [28]
‘?;Tf-fng_asinT T=4arctanu, u=(z)y(y) (28]
2 (aa"B)+ 2 (ym L) =cT* | T=f(u), u=e(z)+v(y) [29]
2 (0™ 8)+ & (0D —ce | T=f(0), u=pl@)+0() | 9]
%( x"‘gi) (beﬂya—:’)zce"*T T=f(u), u=p(®)+(y) [29]
2 (e )+ 2 (0T E)=0 | T=0p(z)$(y) [29]
2 aeAT%)—i- (beBTQZ) 0 T=p(x)+v¥(y) [25]
%; 812-}-@@ T=-2lnu, u=p(z)+(t) [25]
%z%ﬁLasth T=2InP u=p(z)y(t) (28]
=0T +al'InT T=e", u=p(x)+y(t) (28]
%;T axz-i-asmT T=4arctanu, u=p(x)Y(t) [28]

Here a, b, ¢, k, m, n, B, v, and A are constants.

It is important to note that in principle the representation (1.16) permits

one to find exact solutions of nonlinear equations derived from a separable linear

equation by a nonlinear transformation T' = F'(u).

3. Suppose now that a nonlinear equation for 7'(z,t) is obtained from

a linear equation for u(z,t) by a more general nonlinear change of variable



114 A. D. POLYANIN A.I ZHUROV

Table 2: Some nonlinear PDEs admitting solutions of the form (1.16)

Equation Solution structure References

X =aGE+ITE T=1/u, u=¢(z)0(t)+¢(z) [26]

x_ g;€+b(6T) +aT+e | T=p(t)z+v(t)z+x(t) [29]

fg,{—agjggw(g—g) +eT? 4T | T=p(t)0(z)+1(t), [27]
0(x)=e**, 0(z)=sin(\z)

g a%(TW%) T=u'™ u=p(t)z?+1(t) [4, 19)]

=2 (L) +bT T=u™, u=p(t)z>+9(t) [24-26, 30]

I g2 (T +bTm+ T=ul/™, u=0p(t)8(z)+1(t) [16]

%—f aa%(T g—z)—kal m T=ut™ u=p(t)z*+(t) [31]

a(%( E,Q)—l-beT—l-c T=1nu;\u ot )0(33)—!—1&(75), [32]

O(z)=e"", O(x) =sin(Az)

H—aZ (7L )+btceT T=Inu, u=p(t)z2+(t)z+x(t)|  [29]

& — 08T T InT+bT T=e* u=(t)z+1(t); [29]
T=e", u=p(t)z>+1)(t)

L = a@L+T(aln® T+bIn T+c)| T=e", u=p(t)f(z)+y(t), [27]
0(x)=e*, 0(z)=sin(\z)

o= f—n%(x"gz)—FaTlnT T=e* u=p(t)z?+(t) [16]

Here a, b, ¢, ¢y, c1, c3, m, n, and A are constants.

T = g(z,t) F(u) + h(z,t). By narrowing the classes of the functions g(z,t)
and h(z,t), one arrives at more simple dependences, which may be used as a
basis for seeking exact solutions of nonlinear equations that cannot be reduced
to linear equations.

We suggest below structural formulas that are generalizations of relations
(1.17) and (1.18):

T(z,t) =g(t) F(u) +h(t),  u=@i(e)va(t) + (),  (1.19)
T(z,t) = g(z) F(u) + h(z),  u=@i(x)r(t) + pa(a).  (1.20)

In the special case ¢1(z) = x and ¥»(¢) = 0, formula (1.19) corresponds to

generalized self-similar solutions.
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2. Exact Solutions of 3D Nonlinear Heat and Mass Trans-
fer Equations

2.1. Nonlinear Separation of Variables

Consider the following class of m-dimensional PDEs:

L ow
— | pi(z;)=— | = Plw], 2.1
5 - e 3| = Plul 2
where the p;(x;) are some functions to be established below, z1, ..., x, are

independent variables (m > 2). In general, the right-hand side of Eq. (2.1)
is assumed to be a given nonlinear differential operator that depends on w, its
derivatives with respect to independent variables Z,,+1, .. . , ) that do not enter
the left-hand side, and the variables .1, ... , ) themselves. The unknown w
can play the role of temperature, concentration, or some other quantity.

We look for particular solutions of Eq. (2.1) of the form
w:w(r; )a Tz :Z(pz(xz)v (22)
i=1

in which the number of independent variables is reduced by m—1. The unknown
functions ;(x;) and p;(x;) will be determined in the course of the study.
Substituting solution (2.2) into Eq. (2.1), we arrive at the equation
1 [ Pw Ow\E e 1 ow Y
— ([ =_== (o — o) =P 2.3
4r3 (T or? 67") ;pz(%) g 2r Or 121(1%%) fol, (&:3)
where the primes denote the derivatives with respect to x;.
The function of Eq. (2.2) is a solution of the original equation (2.1) only if
the sums in Eq. (2.3) are constants or functions of r alone.

Generally, this is possible if
pi(gi)’ = Api+ Ai, (i) = Bos + B;, (2.4)
where A, A;, B, and B; are some constants (i = 1,... ,m). In this case,

> pi(e)? = Ar’+ Ay, Y (pig})' = Br’+ By, Ay =) A, Bz=) B

i=1 =1 i=1 i=1
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For each i we have a system of two ODEs (2.4) for p;(z;) and ¢;(z;).
Express p; from the first equation in (2.4) in terms of ¢; to obtain
_Api+ A
SN AT
Substituting this expression into the second equation in (2.4) yields the following

(2.5)

autonomous equation for ¢;:
(Api + A))@] + (Boi + ) (¢)” = 0, (2.6)
where p; = B; — A. This equation can be solved by the substitution ¢} = z;(¢;).

For A # 0 the general solution of equation (2.6) can be represented in the

implicit form

BQD‘ Api—BA;
xi+CQ:Cl/exp< AZ)‘A@i—kAi A de;,
2.7
1 (BaY, O
%—Zz‘(%)—aexp A ‘ Pi + Ay )

where C; and Cy are arbitrary constants.

For A =0 and A; # 0 the general solution of equation (2.6) is given by

By? + 2B;p;
.'131"1'02 :Cl/eXp(%> dtp‘”
%

1 By? +2B;y; 28
¢ = zi(pi) = = exp (——)

Cy 24;

In some cases the functions p;(x;) and ¢;(z;) can be represented in explicit

form. For example, if A; = B = B; = 0, from (2.7) and (2.5) we obtain
i+ C = %ln |Agil, ;= Cﬁl%‘) pi= (Ji%
Whence,
pi(x:) = a;ed%,  @i(x;) = be ™,

where a; = +C%e~4C2/C1 \; = —A/C4, and b; = £A1eA%/C1,

Table 3 shows special cases where the p;(z;) and ¢;(x;) can be represented
in explicit form.

On the basis of the preceding, we can formulate results for specific equations.

In this paper, we confine ourself to 3D equations and present exact solutions

obtained using the above approach.
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Table 3: Some cases where p;(z;) and ¢;(z;) can be written out explicitly

# pi(xi) wi(xi) Relations for the parameters
Ai = —1461'7 B= O,
1 ai|x¢+s,~["i bi‘$i+$i|2_ni +c¢; A A
B; = , b=
2—7@ ai(2—n,~)2
2 a;e™ bie i+ cy Ai:—AC,‘,B:BiZO, b,:—z
ai)\i
3 aiaﬁ bz In |.’I,'Z‘+Cz A:O, AZ:a,b?, BZO7 B,:Clzbz
A=ac, A;=(bic—ad;)c
. N2 X i g L4 ) i)Cs
4| (aln |zl +b)z; eln |zi| +d; B=a, B;,=ac+ (bjc—ad;)

2.2. Exact Solutions of Heat/Mass Transfer and Wave Equations

Consider 3D equations corresponding to rows 1 and 2 in Table 3 which de-
scribe heat (mass) transfer or propagation of nonlinear waves in an anisotropic
medium. In cases 1-4 below, we assume the operator P[T] to be a nonlinear

function ®(T).

1. The equation (k,m,n # 2)
0 (1T + 2 (50T 4 O (T
%<a|x %) + a—y(blyl 8y> + Ep (czl 82) =d(T) (2.9)

has exact solutions of the form (A = constant)

|2—k ‘Z—m ’Q—n

|z ly |2
a(2 — k)2 - b(2 — m)? i (2 - ")2] (2.10)

T=T) :A[

The function T'(r) is determined by the ODE

D 4 1 1 1
T;;+—T;=Z<I>(T), D:2(2 =15 £ )—1.
" B el (2.11)

This equation can be solved explicitly for D = 1 and ®(T) = Cexp(aT),
where C' and « are constants. For D = 0 and arbitrary ®(T'), Eq. (2.11) can
be integrated in quadrature. For other exact solutions, see [33].

Note that |z], |y|, and |2| in Egs. (2.9) and (2.10) can be replaced by z + s,

y + s9, and z + s3, respectively, where s, so, and s3 are arbitrary constants.
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Fork=m=n=0and a =b=c, Eq. (2.9) becomes a classical equation of
heat (mass) transfer in an isotropic medium with heat release (volume reaction).

In this case, solution (2.10), (2.11) corresponds to a spherically symmetric case.

2. The steady-state heat equation (Auv # 0)

D (0T 4 2 (10T, 0 (0T
ax<ae 6x>+6y<be 6y>+82<ce Bz)_q)(T) (2.12)

admits solutions of the form

2

-z —py —vz
e e e
T=T -4 e
(), T (a)\ﬁ + b2 + ),

where T'(r) is determined by the ODE
1 4
T — =T = —=®(T).
T r T A ( )

3. The equation (n,m # 2 and v # 0)

0 orT 0 or 0 or
il n-" il mZ" il [Z il R T 1
o0z (ax Bx) * oy (by oy * 52 (ce Bz) (1) (213)

admits solutions of the form

T=T(), r’= A[a(

xQ—n y27m e~ v®
+ +
2—-n)2 b2-m)? a? }

where T'(r) is determined by the equation

D 4 1 1
T + =T = —®(T D=2 — | - 1.
"+7" A (), (2—n+2—m>

4. The equation (n # 2 and uv # 0)

O (0 + 2 (3w 4 2 (o?TY oz
ax<az 8x>+8y<be 8y>+8z<ce aZ)-‘:D(T) (2.14)

has solutions of the form

%" e H  eTV?
T=T G | P U R T
r), " {a(Q —n)? T bu? R }
The function T'(r) is determined by the ODE
D 4 n
TII _TI — _(b T D — .
i + r A ( )7 2 — T

For example, this equation is integrable in quadrature for n = 0 and arbitrary

®(T) and explicitly for n = 1 and ®(T) = Ce®?, where C and « are constants.
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5. Assume that P[T] = % — &(T). Consider the unsteady heat equation
(k,m,n #2)

or o ( T\ o, 0T\ o[ 0T
O _ 0 o#9TY  O (m0TY, 0 a0TY | 5(p).
o ax(‘”’ 8x>+6y<by ay)Jraz(CZ 8z)+ @

Following the approach of Subsection 2.1, we find that this equation has solu-

(2.15)

tions of the form

2—k 2—m 2—-n

B 5 T Yy d
I

The function T'(¢,7) satisfies a simpler PDE with two independent variables,

specifically,
oT T DoT 2 2 2
— =A==+ == (T D= —-1.
ot (87"2+7"67")+ (T), 2—k+2—m+2—n

For exact solutions of this equation, see [25].

Remark 1. Solutions of unsteady equations corresponding to Egs. (2.12)-

(2.14) can be constructed in a similar manner.

6. Assume that P[T] = 8*T/0t?—®(T). Consider the following 3D equation
describing the propagation of nonlinear waves in an inhomogeneous anisotropic
medium (Apv # 0):

2
3_T — 3 (aema_T) + 3 (beuya_T> + i(ceula_T) +®(T).

otz 0Ox Ox Y dy 0z 0z (2.16)

It admits solutions of the form
67)@ N e 1y N e V?
a2 bu? c? |’

1
T=T(r), = A[—Z(t +0)* +
where A and C are arbitrary constants and T'(r) is determined by the ODE
4+ dem =0
T A ?

which is integrable in quadrature for any ®(T').
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Remark 2. Solutions of wave analogues of the heat equations (2.9), (2.13),

and (2.14) can be constructed using similar considerations.

Remark 3. Two-dimensional analogues of the 3D equations considered above

can be treated in a similar manner.

3. Nonlinear Equations with a Logarithmic Source

Following the method of nonlinear separation of variables outlined in Subsec-
tion 1.3, we found solutions of a number of other nonlinear equations. We chose

to present three families of equations.

3.1. A 2D Steady-State Heat Equation

Consider the two-dimensional equation (oo = const, 3 = const)
T 0T ,
W + a—y2 =alln ﬂT (31)
1. This equation can be treated as a 2D special case of Eq. (2.9) with m =

n=0and ®(T) = oI In ST. Thus, Eq. (3.1) has solutions of the form
1
T=T(), Th+-T;=3TWBT, r*=Ala+C)*+u+0C))

where A, Cy, and C, are arbitrary constants.
2. Exact solutions of Eq. (3.1) can also be sought in the form T = %eU(”’).
With this change of variable, Eq. (3.1) becomes
U U | (oUN  (aUY?
—+t == — — | =al. 3.2
6372+By2+<6$) + Ay = 8:2)

Equation (3.2) admits traveling-wave solutions:
U(z,y) = F(u), u= A1z + Ay + 43, (3.3)

where A;, Ay, and Aj; are arbitrary constants. Substituting solution (3.3) into
Eq. (3.2) and integrating the resulting equation, we obtain the dependence F'(u)

in the implicit form

—-1/2
U:Clﬂ:/|:026_2F+ 2a 2<F—l):| / dF,
A2t A2 2
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where C; and C5 are arbitrary constants.

3. In addition, Eq. (3.2) has solutions of the form

Ulz,y) = p(x) +9(y).

Substituting this expression into Eq. (3.2) yields
P+ 0 — ap = —thy, — Y + agh.

It follows that the variables separate and both sides must be equal to the same
constant, which here can be set equal to zero. Solving the resulting equations,

we obtain

~1/2
=y 4 /(Ble*%’ +ap—3a) " do, (3.4)
~1/2
s et /(BQe—w + ot —1a) Py, (3.5)
where A;, By, A, and B, are arbitrary constants.

4. Equation (3.2) admits also more complicated solutions of the form
U(z,y) = (&) + ¢¥(n), E=zcosA—ysin\, np=uzsin\+ycosA,

where A is an arbitrary constant and ¢(£) and ¢(n) are determined by relations

(3.4) and (3.5).

3.2. A 1D Unsteady Heat Equation

Consider the one-dimensional equation

o a 0 ( ,0T
— =——|z
ot zFozx

(%) +f(®)TInT, (3.6)

where a and k are some constants and f(t) is an arbitrary function. Note that
the values & = 0, 1, and 2 correspond to the plane, cylindrical, and spherical

cases. The variables separate with the transformation

T(x,t) = P Uz, t) = o(t) 2% + 9(t).
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Analysis shows that ¢(t) and ¢(¢) are determined by the following system of
first order ODEs:

oy = fo+4ap®, ¥ = fip+2a(k + 1)g.

The first, Bernoulli equation is integrable in quadrature for any f = f(¢).

Whenever ¢(t) is found, the second, linear equation can be easily solved.

3.3. A 2D Unsteady Heat Equation

Consider the following two-dimensional heat equation:

oT <B2T 0*T
=i(

E wﬁ-a—zﬂ) — ol InT.

We carry out the change of variable T = V@),
1. Exact solutions for U can be sought in the form U(z, y,t) = p(z, y)+1 ().
The time-dependent term is expressed as ¥(t) = Ae®, where A is an arbitrary

constant. The function ¢(x,y) satisfies the steady-state equation

e  FPop oo\* | (9¢\* _
a<w+a—y2)+a[<a—x + @ —ap =0,

which was considered in Subsection 3.1.
2. The equation for U admits other exact solutions, for example, U(z,y,t) =
©(x,t)+1(y, t). The two unknown functions are determined by two independent

one-dimensional nonlinear equations of the parabolic type,

dp Py dp
E W + a(a—x — ap,
oy %y | (9v)

3. The following more sophisticated solutions are also possible:

U(l‘,y,f)z(p(§7t)+’l/)(77,t)7 £=I+ﬁt7 77=Z/+7t-

Here, § and vy are arbitrary constants. The unknown functions ¢(¢, t) and ¥(n, t)

are determined by two independent one-dimensional nonlinear equations of the
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parabolic type,

9 _ Py AL
at_aa§2+"<a§ e — e
oy %y | (oY 9y
8t_a67]2+a<3n 'ya—n o).
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To the special case ¢(£,t) = (&), ¥(n,t) = ¥(n) there correspond au-

tonomous ordinary differential equations.

4. Conclusions

Let us summarize the basic conclusions and results of the paper:

The paper outlines the method of generalized separation of variables for

nonlinear partial differential equations.

In the context of this method, an approach is suggested which allows
constructing exact solutions for some families of nonlinear PDEs. The
approach is based on searching for transformations that reduce the equa-

tion to one with fewer independent variables.

With this approach, new families of exact solutions of 3D nonlinear elliptic
and parabolic equations that govern processes of heat and mass transfer

in inhomogeneous anisotropic media are described.

Exact solutions of some 3D hyperbolic equations describing the propa-
gation of nonlinear waves in inhomogeneous anisotropic media are con-

structed.

For three families of equations with logarithmic heat sources, a number

of exact solutions are obtained by nonlinear separation of variables.
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