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DECAY ESTIMATES FOR SOLUTIONS OF VARIOUS
PARABOLIC PROBLEMS

G. A. Philippin® S. Vernier-Piro*®

Abstract

In this paper we establish a maximum principle for solutions of some
1-dimensional parabolic equations. This maximum principle is then ap-
plied to construct exponential decay bounds (in time) for solutions of two
classes of related boundary value problems.

1. Introduction

In a previous paper [8] we have constructed exponential decay bounds for some
quantity involving u(z,t) and wu,(z,t) where u(z,t) is the classical solution of

the following initial-boundary value problem

[G(W)]ez + f(u) =uy, x| <L, t>0, (1.1)
u(£L,t)=0,t>0 (1.2)
u(z,0) = h(z) , |z| < L. (1.3)

This paper may be considered as a continuation of our previous work when the

parabolic equation (1.1) is replaced by
g, u)ugy + fu) =u;, 2| <L, t>0, (1.4)

with
9(u,uz) = r(u) ¢(u7) , (1.5)
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or with
g(u,u2) = r(u) + q(u2). (1.6)

The first case (1.5) is investigated in Section 3, whereas the second case (1.6)
is investigated in Section 4. Section 2 contains some preliminary computations

pertinent to both cases (1.5) and (1.6).

2. Maximum principles

In this section we want to establish some maximum principles for auxiliary
functions ® appropriately chosen in terms of the solutions u of the parabolic
equations under investigation, of their first space derivatives u, and of time
t. In order to unify the next calculations we start with the general parabolic
equation

(U, u2) gy + fu) =uy, |z| <L, t>0, (2.1)

where f and g are stictly positive differentiable functions and we consider some

auxiliary functions ® of the form
®(x,t) = U(u, u2) >t (2.2)

where U is a positive function to be specified later and « and 8 are positive

parameters to be selected appropriately. We compute

Uy = (Vg + 2V gty )P (2.3)
ov . ov
ith O = 2 o= o
W ou ouz ’

T 20 ]
O, = {\ll”u; + 20 U2 Uy + WUy + (guz> GUgz + 2Euz(gum)$}e2‘15t (2.4)

x
— \11” 2 1!, ,2 ! 2 \Ij ! 2,2 ‘Il '
= uy, + 2V U Upy + Wty + 29U U ; + dguzug, ;

. 20 20
+20u2 4+ “—ugug — —f’ui} e2eht,
g g
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From (2.3) we obtain

i —2apt o’
LR WS (2.5)
20 ' 20, 20

Ugr =

In (2.5) and later , dots stand for terms of the form w(z,t) ®, where w(z,t)
is some function singular at critical points of u(z,t). Making systematic use of

(2.5) in (2.4), we arrive at

TEAWA AW
o (5) (5) -2

Moreover we compute

A A AN
U g —*— [ — 2.6
g 95 93 (g) (2.6)

uZ + 2\i!uzuzt} e2eht,

B, = (V'uy + 2Vugug + 208) e, (2.7)
From (2.1) and (2.5) we obtain
v

From (2.7) and (2.8) we have

g 2 .
O, +---= {_(2\12 g+\IJ’f+2\Ilu$um+2a5\11}62°’ﬂt. (2.9)

Combining (2.6) and (2.9)we obtain after some reduction

LY := gDy, — Dy +--- (2.10)
2\ - 2
= {|:(g\lj/)l_ (g‘\IIJj > _2@‘}(-!] ui"_%g‘é —QCM,B\II—\PIf} quﬂt'

The first class of parabolic equations considered in this paper is obtained from
(2.1) when we choose g(u,u2) = r(u) g(u2) where r and ¢ are two given positive
functions :

r(w)g(ud)ugs + f(u) =u;, 2| <L, t>0. (2.11)

In this case we establish the following maximum principle:
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Lemma 1. Let u(z,t) be a classical solution of (2.11). Assume that q(o) is
a nondecreasing function of ¢ > 0, and that the functions f and r satisfy the

condition

f/ud—J—Q/uf(U)dazo. (2.12)
o 7(0) o (o)
We then conclude that the auxiliary function ®(z,t) := We?*#! defined on solu-

tions of (2.11) where « is an arbitrary nonnegative parameter with

(u,ul) = /Oug g(o)do + « (/Ou %)2%—2/0“ %do (2.13)

and with

B < < ) (2.14)

Tmaz

takes its maximum value either at © = £L for somet > 0, or initially at t = 0

for some |z| < L , or at some critical point (T,t) of u , i.e. at (T,t) such that

uy(Z,T) = 0.The above assertion may be formulated as follows

B(£L, 1), (i)
®(z,t) < max{ max®(z,0), (i) (2.15)

&(z,t) with u,(Z,t) =0. (iii)
For the proof of Lemma 1 we insert ¥(u,u?) defined by (2.13) into (2.10)
with ¢ = rq . This leads to

20q 2 v do ?
Ld={"Zu2+= — — 2apV 2.1
{r“”r[“/o Ao 1] —208 (2,16
2 U Z
_2af v do 2f° aape
r Jo r(o) T

Since ¢ is nondecreasing , we have

ug
quZ > / q(o)do. (2.17)
0
Combining (2.16) with (2.17) we obtain, after adding and subtracting the quan-
4 U
tity (—ae%"ﬁt/ Mda) ¢**P! at the right hand side of (2.16)
T o o
1 2 U U
Ld > 200 [— - 5] + {—a [f/ 2 s @da] } Bt (2.18)
T 0

T r(0) o (o)
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so that L® > 0 in view of (2.14), and (2.12). The conclusion of Lemma 1 then
follows from an application of Nirenberg’s maximum principle [4,9].
The second class of parabolic equations considered in this paper is obtained

from (2.1) when we choose g(u,u2) = r(u) + q(u2) > 0 :
[r(u) + q(u2)]ues + f(u) = ug, |z| < L, t > 0. (2.19)

In this case we establish the following maximum principle:

Lemma 2. Let u(z,t) be a classical solution of (2.19). Assume that (o) is

f(o)

a nondecreasing function of ¢ > 0, and that —— is nonincreasing. Assume
o

moreover that f and r satisfy the two conditions

P pyzo, (220)
and
1
et — ETIQ =10, " =1 (2.21)

We then conclude that the auxiliary function ®(z,t) := U 2** defined on

solutions of (2.19) with
= u? u f(O')
U (u, u2) == r(u)u + / q(o)do + au® + u/ —=do, (2.22)
0 o o

where « is an arbitrary nonnegative parameter , takes its maximum value either
at r = +L for some t > 0 , or initially at t = 0 for some |z| < L , or at some
critical point (T,T) of u , i.e. at (Z,%) such that u,(T,t) = 0.The above assertion

may be formulated as follows

D(£L,t), (i)
®(z,t) < max \Iﬁgi{&)(x’o) ; (ii) (2.23)

®(z,7) with u,(z,7) =0. (iii)
For the proof of Lemma 2 we insert W(u,u2) defined by (2.22) into (2.10)
with g = r + ¢ . Using the inequality (2.17) we are led to

Lo > { {(r +q)r" — %rﬂ us + [(r + q)(F' = 2f) — fr']u2 (2.24)
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+20[(F' - f)u— F] + %F’(F’ - f)} et

with
F(u):= u/ou @dg : (2.25)
Using the assumptions on f , we compute from (2.25)
F':/O"@Jrf(u)zo, (2.26)
F’-Qf:/ou@—f(u)zo, (2.27)
(F'—2f) = @ — f'(w) = —u (5) >0. (2.28)

Making use of the inequalities (2.20), (2.21), (2.27) and (2.28) in (2.24), we
conclude then that
L® >0, (2.29)

so that the conclusion of Lemma 2 holds true, in view of Nirenberg’s maximum

principle [4,9].

In the next two sections , we apply Lemmas 1 and 2 in order to derive
exponential decay in time of the quantities W(u,u2) and W(u,u?) (for some
values of « ) associated to positive solutions of some initial-boundary value

problems involving the parabolic equations (2.11 ) and (2.19).

3. r(u) q(u?) u + f(u) = uy

In this section we consider the following initial- boundary value problem

r(w)q(ui)uge + f(u) =, || <L, t>0), (3.1)
wEL,t)=0,t>0, (3.2)
u(z,0) =h(z) >0, |z| < L. (3.3)

We assume that 0 < rp < r(o),0 >0, 0 < g < ¢(o), 0 > 0, and that

f(8) >0, s>0, f(0)=0. Moreover we make the assumptions of Lemma 1,
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so that the conclusion (2.15) of Lemma 1 holds . However the first possibility
(1) in (2.15) can be eliminated since we have ¥' = 0 and u,, = 0 at z = £L ,
implying that

B, (L, t) = (V'uy + 2Vuyuy,) et = 0, (3.4)

so that ® cannot take its maximum at x = +L in view of Friedman’s maximum

principle [3,9]. Moreover depending of the behaviour of the ratio % we may
r(s

select o small enough in order to eliminate (iii) in (2.15).

We first consider the following particular case:

@ = us, p = const. (3-5)

r(s)
Suppose now that (iii) holds in (2.15) , i.e. suppose ®(z,t) < ®(Z,7) with

uz(T, ) = 0. Evaluated at ¢ = 7, we obtain
U(u, u?) < U(uy,0), (3.6)

with up := maxu(z,t) and with
|z|<L

U (u,ul) = /Ou2 q(o)do + a </0u %)2 + p?, (3.7)

ie.

/Oug q(o)do < p(uly —v?) + { (/OuM %)2 B (/O" %)2} - 69

From the monotonicity of ¢(c) we have the inequality

ol < /0 * 4(0)do . (3.9)

Using the mean value theorem , we have for some intermediate values i, &, &3
/"M_d” ‘_ /“d_" ‘_ /uM—dU +/u—d0 /UM—da (3.10)
o 7(0) o 7(0) o r(o) Jo r(o)]Ju (o)

= [ L)
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U do u d
_—1 (u2 —u2) 0MT(0)+I TZ
r&) M Uy +u

<k e (0[5 1 )

1 1 1 2 .2 1 W2 — u
_r@onmx(mg>’maﬂ (g =) < gluhy =) -
From (3.8) , (3.9) , (3,10) we obtain

- (07 3
(oD < (1 + ) 0 - o2(a.0). (311
0
Rewriting (3.11) as
d t 1
L_)_ I (/H‘ a2> dr (3.12)
u3; — u?(x, %) o o

and integrating from the critical point T to the nearest endpoint of the interval

[-L, L] we obtain the inequality

a g
bt > 4T§ =: ay . (3.13)

The above inequality is a necessary condition to make (iii) possible in (2.15).
If (3.13) is violated , (iii) cannot hold , i.e. ® must take its maximum value
at t = 0. Suppose that u < ag.Then for each a < (o — u)rg =: oy we have

D(z,t) < |111|a)L<<I>(ac7 0). Increasing « to a; we obtain the desired inequality
z|<

/ou% q(0)do + o (/0“ 7"62_2))2 + pu < HeT2 (3.14)
with
HE = max{/hl2 q(o)do + oy (/h d_a)2+uh2}, (3.15)
lz)<L | Jo o r(0)
and
o = (g — p)ra = (% - u) . (3.16)

It is worthwhile to mention that the decay bounds (3.14) hold even in the more
general case corresponding to

fls)

sr(s)

<pu< ao::<4£}§) Vs > 0. (3.17)
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Clearly if (3.17) holds , we have

7(u)q(u2) gy + pu r(u) — ug = u r(u) {u — jr((uu))} >0, (3.18)

so that u(z,t) is not greater than the solution of (3.1)-(3.3) corresponding to

the particular case (3.5). Moreover we can repeat the preceeding argument
with only minor modifications. In fact with (2.13) , inequality (3.8) has to be
replaced by

Fraomw sl ([ ) (L)oo Hego 0

Using (3.17), the last term in (3.19) may now be estimated as follows

2 /uuM %da =2 /uuM ;;(ETU))ada < 2 /uuM odo = p(uy —v’).  (3.20)

Combining (3.19) and (3.20) we obtain (3.8), and the subsequent computations

remain valid without any change.

Finally we want to investigate the problem (3.1)-(3.3) under the assumption
flo)
or(o)

that is nondecreasing for o > 0, i.e. under the assumption

(f(°)>lzo,a>o. (3.21)

or(o)
In this case we want to show that u(x,t) cannot blow up if the initial data h(x)
are small enough . Our first analysis will be confined on any time interval (0,7
with T prior an (hypothetic) blow up time . In a first step we establish the

following comparison result:

Lemma 3. Under the assumption of Lemma 1 and assumption (3.21) , the

solution u(z,t) of problem (3.1)-(3.3) may be estimated as follows
0 < u(z,t) <Ue @Ml |g|<L,0<t<T, (3.22)

with

U := max l/h’2 (a)da+ﬂ /hd_a 2+h2 (3.23)
T al<z \ e Jo ¢ pw \Jo r(0) ’ ’
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f(uM)
=M - &, 3.24
unr(upg) (fL,r?)i)fo,T)u(x ) 82
2
Vs
ao:= T 0y := (o — ir3, (3.25)
1
B < . (3.26)
Tmax

For the proof of Lemma 3, we note that (3.18) is valid with p defined in
(3.24). It then follows that u(z,t) is not greater than the solution of (3.1)-
(3.3) with f(u) in (3.1) replaced by pur(u), for which we have established the
estimate (3.14) with y defined by (3.24). This establishes Lemma 3.

In a second step , we establish the next result:

Lemma 4. Assuming the hypotheses of Lemma 3 and that h(xz) > 0 is small

enough in the following sense

fU) _ ™
@) <%= 12 (3.27)

412”7
where U is defined by (3.23),we then conclude that the solution u(z,t) of (3.1)-
(3.3) exists for all time (i.e. T = 00). Moreover we have

f(u(z, 1))

_ . 22
e Oy 2 >0 (3.28)

For the proof of Lemma 4, we observe that (3.21), (3.23) and (3.27) imply
the inequality

f(h) _ fU)
hr(h) — Ur(U)

Suppose now that (3.28) does not hold for all time. In view of (3.29) there must

&

<ay. (3.29)

be a first time T at which we have

) L feeT)
ui= upr(uar) = lzl<Z wu(z, T)r(u(z,T)) 0- (3.30)

It then follows from Lemma 3 that

w(z,t) <Ue @ WPt <y |g|<L,0<t<T. (3.31)
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From (3.31) and (3.27) we obtain

fu(z,T)) f0)
B2 we, Dl D))~ Tl — ™ e

from which we conclude indeed that (3.28) cannot be violated for any finite
value of T. This achieves the proof of Lemma 4.
In a third and last step we establish the desired decay bound for ¥(u,u?2)

formulated in the next theorem:

Theorem 5. Assuming the hypotheses of Lemma 3 and that the data h(z) are

small enough in the sense that there exists a constant ay such that

f(0) o T o
Ur@@) “® " T T (2-38}

where U is defined by (3.23),we have the following decay estimate:
2

r(a

with 8 defined in (3.26) and with

HE = e {/Ohrz g(o)do + oy (/h i ) / flo) } . (3.35)

For the proof of Theorem 5, we first observe that (3.33) implies (3.27), so that
the solution u(z,t) of (3.1)-(3.3) does not blow up in any finite time. We want
now to eliminate the third possibility (iii) in (2.15) for the auxiliary function
®(z,t) = U(u,u2)e?*2P with U defined in (2.13). Suppose on the contrary that
we have ®(z,t) < ®(z,?) with u,(T,7) = 0. With ¢t = ¢ we obtain, using again
(3.9) and (3.10)

qou’(z,1) < )+ 2/ f (% + u) (ui, —u?), (3.36)

0

from which we obtain as usual

Qg T™q0
— > —. 3.37
T8 tH 2 412 (837}



100 G. A. PHILIPPIN  S. VERNIER-PIRO

It remains to show that (3.37) cannot hold under assumption (3.33). Indeed
from (3.28) we have the strict inequality

= f(UM)

AN o 3.38
U (Unr) . i)
so that up < U by (3.22). It then follows from(3.21) , (3.38) , and (3.33) that

f(0)
)

< ap— a—; ) (3.39)
o
in contradiction to (3.37).This achieves the proof of Theorem 5.

4. [r(w) + qu2) e+ £(u) = u,

In this section we consider the following initial-boundary value problem

[r(u) + q(u2)] Uge + f(u) =us, |2| <L, t>0, (4.1)
w(EL,t)=0,t>0, (4.2)
u(z,0) =h(z) >0, |z|< L, (4.3)

with
r(o) +q(r) > € in Rt x Rt ¢ := const. > 0, (4.4)

and with f(o) > 0,0 > 0 such that

2
f(0)=0,‘17%@=:7<a0:=%. (4.5)

Moreover we assume that the conditions of Lemma 2 are satisfied so that the
conclusion (2.23) holds. Assuming in addition that 7'(0) = 0, we have from
(2.22),(4.2) and (4.3)

&, (xL,t) = U (2L, 1) =0, (4.6)

so that the first possibility (i) in (2.23) cannot hold as a consequence of Fried-

man’s maximum principle [3,9]. We now investigate two cases for which the
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nonnegative parameter o can be selected small enough in order to make (iii)

impossible in (2.23). We first consider the following case

@=7§a0,V0>0. 4.7
In this case we have
- u2
D(z,t) = {r(u)ug + / g(o)do + (o + ’y)u2} e, (4.8)
0

Suppose now that (iii) holds in (2.23) i.e. suppose ®(z,t) < &(z,I) with
u4(T,%) = 0. Evaluated at ¢ =7 we obtain using (4.4)

o2 _
eul(z, ) < r(u)ul +/ q(0)do < (a+ y)[ul, — u?(z, 7)), (4.9)
0
with up == lrrTwL(u(a:, t). From (4.9) we obtain as usual the inequality
z|<

m2e

a+vy> iz = (4.10)
We then conclude that if o < cg — 7y, (iii) in (2.23) cannot hold so that we must
have (ii) in (2.23). With o  ap — 7 we are led to the following exponential

decay estimate

r(u)u? +/ o)do + (e — )u? < H2e 20t (4.11)
with
H? := max {r h)h'* + / o)do + (g — fy)h2} (4.12)
|z|<L
Finally let us consider the case where the ratio f(o) is nonincreasing with
o

respect to o . In this case we have

@}zo, gl <L,t>0, (413)

() + q(02)] tam + 70— e = 4 {v _

so that the solution of (4.1)-(4.3) is dominated by the solution associated to the

previous case and exists therefore for all time. Suppose now that (iii) holds in
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(2.23) with ®(z,t) := W (u, u2)e?*, where W is defined by (2.22).We then obtain
using (4.4)

eul(z,7) < ofut; — u?(z,7)] + un /OuM @do - u/ou @da. (4.14)

Using the generalized mean value theorem and the monotonicity of @ we
have
uM/ " mda —u/ mda (4.15)
0 o 0 o
u [0) g g [u L) g [ fadg
u o do —u o do —do + f(&
e e M A (L PR, P el
ud; —u 2

Combining (4.14) and (4.15) , we obtain again (4.9) , so that if @ < ag — 77,
(iii) cannot hold in (2.23), implying that we must have (ii) in (2.23). With

a / ap — v we obtain the following exponential decay estimate
ug v f(o) 72 -2 t
r(u)ug + / q(0)do + (e — 7)u* + u/ S o <H e (@0t (4.16)
0 0
with
772 2 w2 2 h f(o)
H = g r(h)h +/ q(o)do + (ag — y)h* + h/ ——do,. (4.17)
T|< 0 0 g

It is worthwhile to mention that if one of the two functions r and ¢ is constant,

we may apply the results of Section 3.
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