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RATES OF DECAY OF A NONLINEAR MODEL IN
THERMOELASTICITY

A. F. Pazoto® G. P. Menzala*®

Abstract

We consider a coupled system of equations arising in nonlinear
thermoelasticity. They consist of a nonlinear hyperbolic equation with
a heat type equation considered in the whole line. We prove the well-
posedness of the above problem and analyse the behavior of the total
energy as t — 400 . The main ingredient in the proof is the Fourier
splitting method introduced by M.E. Schonbek [8] while analyzing simi-
lar problems for the Navier-Stokes equations.

Resumo

Consideramos um sistema acoplado de equagoes que aparecem em
termoelasticidade nao linear. O modelo é descrito por uma equacao
hiperbélica nio linear e uma equagdo parabdlica (tipo calor). Ambas
equagdes sdo consideradas na reta real e os tempos positivos. Mostramos
que o problema de Cauchy é bem posto e analisamos o comportamento
da energia total quando ¢ — +o00. Para a demonstragdo do resultado
central usamos a técnica chamada de “Fourier splitting” introduzida por
M.E. Schonbek [8] quando ela fez uma andlise similar para problemas
tipo Navier-Stokes no R™.

1. Introduction

The nonlinear evolution equation

where Q@ C R, ¢ > 0, is usually known as Timoshenko’s model and has been

recently studied by several authors. It is associated with nonlinear vibration of
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beams. Related models have also been intensively studied in recent years and
much of the efforts have been focused in showing local smothing effects of the
solutions (see [1], [5], [6] and the references therein). If one adds a term due to

rotational inertia, equation (1) is writen as

Ut — Uggtt + Uggzz — M (/Q Uid-fl:) Uge = 0 (2)

Let @ = R. We can easily show that
1 2, 2 2 la 2
E(t) = 5/ (ut + ui, —i—um) dz + —M (/R%dﬂf> = E(0),

where M / M((s)ds, for all t > 0, that is, the total energy associated with
(2) is conserved

A more realistic model, from a physical point of view, it is the case with
some dissipative effect, say a heat flux is acting on the beam. A natural question
then is to ask if we can obtain a uniform rate of decay as ¢t — +o0. In other
words, if the thermal effect is strong enough to stabilize the solutions.

In this paper we will consider the solution-pair {u, 8} of the following initial

value problem

{ Ut — Ugatt o Ugzre — M <-/Ruidz) Ugy + aezz =0 (3)
0,5 - amx — QUgg = 0

for —oo < & < 400, t > 0, and initial data
u(z,0) = uo(2), w(z,0) =wi(z), 6(z,0)=bo(x) (4)
The parameter « is a positive real number and the function M(-) satisfies
M(-) € C*(R") and M(s) > 0 for any s > 0 (5)
The total energy associated to (3)-(4) is given by
B(t) = / ul +uzt+um+92)dw+M</ de) ,

with M (t) = / M(s)ds. It is easy to show that
0

—A@m
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As a consequence, the decay of solutions is expected. The problem is to find a
uniform rate of decay as t — +o0. In order to do that we also assume that M (-)
satisfies an additional monotonicity condition. To the best of our knowledge,
the rates of decay for such solutions has been studied only in bounded domains.
The main purpose of this paper is to investigate the asymptotic behavior of
E(t) as t — +o0.

Our main results (Theorems 1 and 2) will only be given in the one-dimensional
case, but as will become clear during our proofs, most of the ingredients are
valid in any dimension.

This paper is organized as follows: In section 2, we prove existence and
uniqueness of global (weak) solutions. To obtain this result we consider a weak
formulation of (3)-(4) in suitable function spaces and then use semigroup the-
ory. In section 3 we obtain some estimates of the solutions via the Fourier
transform together with a choice of a convenient Lyapunov function which has
some resemblance to a technique due to M.E. Schonbek [8] who studied similar
problems for the Navier-Stokes equations.

The notation we use is standard. The symbol (, ) means the inner product in
L?(R) and the notation (f,¢) means the value of f € Z' at ¢ € Z. By H™, we
denote the Sobolev space (class of) of functions in L?(R) which together with
their partial derivatives (in the sence of distributions) up to order m belong to
L*(R). Subscripts denote partial differentiation. The Fourier transform of a

function f is denoted by f.

2. Existence and Uniqueness
We assume that
M() e CHR') and M(s) >0, Vs e Rt ;
Consider the Hilbert space X = H? x H' x L? with the inner product given by

((w,v,0), (5,,0)) = (u,8) + (tga, llaz) + (4, ) + (vs, T) + (6,6)
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whenever (u, v, ) and (i, 7, ) belong to X where (,) denotes the inner product
in L?. The norm in L? is denoted by || ||
With the above considerations, the first step to use semigroup theory is to

rewrite (3) as a first order system, letting u; = v:

u—v =0
Vg — Vgzt + Uzgez — M (/]R Uid.’l)) Ugr + aezz =0 (6)

0 — O — Uz, =0

Now we consider a weak formulation of (6) taking in the first equation the
inner product in H? with a function ¢(-,#) € H2 In the second and third
equations we take the inner product in L? with functions ¢(-,t) € H' and
o(-,t) € L?, respectively.

Integrating the second term in the second equation of (6) by parts, we arrive

to the variational system:

(uta <P)H2 - (U7 QO)H'z =0
(Utv w)Hl 25 (uzmcza w) + a(é’m, ¢) =M (/R uida:) (uz:m 1/)) (7)
(eta ¢) e (0.1‘1‘7 ¢) - a(Uzz, ¢) =0

that can be seen as an abstract equation in X: Let us introduce the following

operators

A: H—H? | u— (Au,w) = (v,w)pg2 , Yw € H?
C: H —H', u— {Cu,w)= (u,w)n , Ywe H*

N : H*—[*, u—><N(u),w)=—M(/Ruidx) (tgg,w) , Yw € L?

A and C are isometric isomorphisms (Riesz isomorphism) and N is a locally

Lipschitz function, as we show in lemma 1.

Lemma 1. Let M(-), satisfy the assumptions given at beginning of this section.

Then N, is a locally Lipschitz function.
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Proof: Let u,v € H? such that, |[u(-)||zz < ¢ and |Jv(-)]|zz < ¢ Since

M(-) € CH(R*), the mean value theorem and triangle inequality give us that

IN(w) = N@)||] < M (/Ruidx> [tge — Vol + | M (/Ruidm>
—M( 2 ) "
[ 2z ) | vz
< M (/Rumx) = ollae + maux [ M),

| [ (2 = v2)da o]l (8)
Using Hoélder’s inequality we get
| /R(Ui —v)dz| < |lu —vllm (lulla + vlla)
which implies that the right-hand side of (8) is less than or equal to
o ([ i) lju = olle -+ max M) ol (fall -+ ol s = vl

Hence, the function N is locally Lipschitz from H? into L?. This completes the
proof of Lemma 1.

We introduce the operators

0 A 0
A0 O 5 d d?
D=0 Co|, J=| ga~l 0 ~0gs
00 1 o o
asz dx?
~ 0 U
and NU)=| N(u)+u | where U=| v | and
0 0

D : H*xH'xL* — H’xH 'xL* J: H*xH*xH* — H *xH 'xI?
N : H*xI*xL* —LPxL*xL?
With these considerations, we can rewrite (7) as abstract evolution equation in

X:

d . =
= DU = JU = N(U) 9)



76 A. F. PAZOTO G. P. MENZALA

and since D is an isometric isomorphism (Riesz isomorphism), we can invert D

in (9) obtaining

av

= (D~1J)U =D7'N (V) (10)

Observe that the choice of the domain of .J was such that D~'.J in (10) to make

sense.

Lemma 2. Consider the operators D and J defined above. Then, D~*J and

(D~YJ)* are dissipative operators.

Proof:

u
Let U= v [and V =
0

definition of J and D, that

3 A1 0 0 Av
(D' hHu,v)=[|0o ¢cto Ugpze — U — 0y |
0 0 I QVgy + Oz

v
= C_l (_uzzzz —Uu-—- aezz) P
Vg + bag H2xH!xxL?

W, W) p2 = (O (tazaa), 7) ,, = (C7'0,8) = @ (C 7000, D), +
@ (v:0,0) 1, + (00:0)
(U, ﬂ)Hz — (umm, 6>H-1><H1 — (u, ﬁ)H'le—l - Ol<0m:, ﬁ)H—le—1 +a (Um, é)

+ (Hm, é) Lz’

S

) be in H? x H? x H?. It follows from the

T <
T < £

+

because C : H' — H™! and (Cu,v)g-1ym = (u,v)g , Yu € H'.
Now, we rewrite (u,0)g-1xm as (4, 0) g1, (Ozgs V)15 = (0gg,0) 12, tO

obtain

(DHUV) = (@,@) 52 + (Uawe, Ta)r2 — (4, 0) 1 — 0(Bra, D) 12
+ a(v:m:a é)L"’ + (gxwa é)LZ

))H'szlez

L2
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After integration by parts, we deduce that

(Ua a)HZ + (uwwwv ﬂz)L2 - (Ua ®)H1 = - [(rDv U)H? - (av U)Hl - <ﬂz$$z7 U)H*1><H1]
and
—(0pz, V) + @(Vga, é) = — (g, 0) + a(ém, v)
Consequently,
(D HU, V) = =[(@wa> — (fssas V) -1xm — (i 0) i1 — (faa, v)
(Vgg, 0)] + (ém, 0)p2

v u
C_l (—ﬂzzzz —Uu— aé;m) ) ( v )
0

yy + Oz

—+

H2xHx L?

((07'L)yv,U)
The above calculations show that
(D HU,U) = ((D7HJ)U,U) = —||6][* < 0
which completes the proof of Lemma 2.

Lemma 3. Let D, J and N as before, where M and « satisfy the assumptions
given at the beginning of this section. Then, if Uy € H> x H? x H?, there exist
a function U(t) and Ty > 0, such that

U € L>(0, Ty; H® x H? x H%) U, € L*(0, Ty, X)

which solve the problem

dU s .
& — (DU =R)

(11)
U = U,

Proof: Lemma 2 implies that D] is the infinitesimal generator of a semigroup

of operatores {T'(t)};>0. Therefore to prove local existence it is sufficient to
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show that the right hand of (11) is a locally Lispchitz function but this is a

consequence of Lemma 1 and the fact that D~! is an isometry.

Theorem 1. (Existence and Uniqueness). Assume that M(-) and « satisfy

a) M(-) € CY(R) and M(s) >0, Vs € RT;

b) « is a positive constant.

If (uo,u1,6p) € H3 x H? x HY, then there exists only one pair {u,0}
satisfying

u € Lin(0,+00; H) , wy € Lfy, (0,00, H?) , uy € Li5,(0,+00; H')

loc loc loc

0 € Ly, (0,+00; H?) , 6, € Li%,(0,+00; L?)

(utt7 90) = (uztt, Qoz) + (uzzzv (pz) - M (IR Uidil?) (uzm QO) o a(gz;m @) . 0

0 — Ozz — QUzge =0

for every ¢(-,t) € H'(R), and
u(z,0) =up(z) , w(z,0)=ui(z) , 6(z,0)=0(z)

Proof: First, observe that if we return to the original model (that is (7)), lemma
3 and integration by parts guarantee that (12) is satisfied for all 0 < ¢ < Tg.

By Zorn’s lemma we can assume that Ty = Ty, that is we have local
existence in the maximal interval of existence. We want to show that Tj,.x =
~+oo. Suppose (by contradiction) that T < +00. Let 0 < T < Tppax with T
as close to Ti,.x as we want. To show global existence it is enough to prove that
the solution {u, 0} of (12) remains bounded in 0 < ¢ < T by a positive constant
C' (which may depend of T') in the norm of the space which is the one where
{u,uy, 0} lies, i.e. H3 x H? x H?.

We need to find some apriori estimates. The energy method give us that

%%{/R[uzmgﬁugﬁo?] do+ 0 [ ukdo)} = - [ 2o
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where M (t) = [ M(s)ds. Thus
Bl (2 2 2 7 2
/R[ut+uxt-|—um+6]da:+M(/Ruzdx)SQC (13)

where C' > 0 depends only on the initial data.

Holder’s inequality and the above estimate implies that
1/ wtdz < 2(20)Y2|[ul] .
dt Jr -

Gronwall’s inequality gives us that ||u||? is bounded by a constant C, = C,(T),

which together with (13) that
llull + [luellF + 116> < CL(T) (14)

Now, differenciating both equations in (12) with respect to = and letting
¢ = ug, multiplying the second equation by 6, and integrating in z € R we
obtain after adding both identities that

14
2 dt Jr

Due to (14) we know that fp u2dz < C1(T) therefore M ([ u2dz) is bounded
in 0 <t <T. Holder and Gronwall’s inequalities together with the estimate
(14) give us that

[uit + U’izt + uim + 93] dz + / Q:dez =M (/ U;dex> / Uz Ut AT
R R R

lulls + [luell < Co(T) (15)

for some positive constant Co(T').

Now, differenciating both equations in (12) with respect to ¢ and letting
¢ = uy, multiplying the second equation by 6; and integrating in x € R we
obtain after adding both identities that

1d
oo [ [ud+ v+ i+ 0] da+ [ 02da = [ vgritinda ( / ugdx) +

+ 2M' (/ uidw>/uzumdw/umuttdx
R R R

Arguing as in (15) and using the above estimates we obtain

el + 161* < C5(T) (16)
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for some positive constant C3(T"). Finally we want to estimate ||0||z2. Using

the second equation in (12) we know that
Ore = 0 — Qg

Estimates (15) and (16) give us an estimate for ||6,,||z2 which together with
our previous estimates give us that ||6||g2 < Cy(T') for some positive constant
Cy(T). Thus, {u,uy, 0} is bounded in H? x H? x H? for any 0 < t < T < Tyax-
This completes the proof of global existence.

Remains to show uniqueness. To do that we suppose that (2.7) has two
solutions, say {u,u, 8} and {, 1,0} with the same initial data at time ¢ = 0.

The difference w = u — @ and z = 6 — 6 will satisfy

(wtt, QD)Hl wzz, Wzm) = a’(zzz, ) + (’UJ, (P) =

( ( u dac) Ugy — M </R ﬂidl") ﬂm#ﬁ) + (w, )

(Zt, 1//') + (sz %) (w$$t7 ¢) =0

for any ¢(-,t) € H? and 9(-,t) € V. Notice that just for convenience we added
to both sides of the first identity the term (w, ).
Letting ¢ = u; — @, ¥ = 0 — 0 and adding the identities we obtain

1d i _ ) ~
5 {llue = el + lltze — sl + 116 — 611 + lu — a2} + 162 — 6| =
= (M(/Ruidas)uu—M</Rﬂidx) ﬂu,ut—ﬂt> +u—1a, uu—1t)=A

(17)

We want to obtain a bound for A. Adding and substracting M (fg u2dz) e

and using Holder’s inequality we obtain that

A< {01 ([202) Yuge — all + 01 ( [[0220) = 31 ([ 202 el } x

Xlue = il + flu = @l lue — @l (18)

Recall that for any T > 0 we know (see (14)) that ||u,|| < Ci(T) and
l|igl| < Ci(T) for 0 < t < T. Therefore M</uid;v) < Co(T) for some
R
positive constant Co(T').
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Using the mean value theorem and Holder’s inequality we also obtain that

| (/Rugda:> M(/Ra;dx) |< [OMQ;,UJM’(S)'] | [ (a2 = @2) da| <

i ~ =
< Max (M(s)] ||z — el| lua]| + [1c])
S CS(T) ”uw - am“ (19)

Using again (14) and Gagliardo-Niremberg’s interpolation theorem we obtain
that the right hand side of (19) can be bounded by C||lu — @ [|tge — Uzl <
CCy(T)||tgg — Tzz||- Consequently, returning to (18) we deduce that

A < Cy(T)|uze — Uaalllwe — @ll + [lu — G| [Jue — @]

for some positive constant Cy(T). Going back to (17) we conclude that

d - . ~ -
e =l + otz = P+ 110 = 02 + u = )P} <

< O5(T) {llue = ielli + Nuse = GasI” + 110 = 01 + [lu — @}

for some positive constant Cs(7"). Gronwall’s inequality implies that u = % and

0 =6 for all 0 < ¢ < T because they have the same initial data at ¢ = 0.

3. Asymptotic behavior as t — +o0

Let us consider system (3), (4) in Rx R*. Taking the Fourier transformation

in z we obtain

{ (L +y?)vu + 2y +a(t))v — ay*p =0
(20)

i+ Y’ +ay’n =0
where a(t) = M(fgu2dz) = M(fgy?|v]’dy) due to Parseval’s identity. Here
v=1uand ¢ = 6 denote the Fourier transforms of u and 0 respectively. Besides

the assumptions on M(-) given in theorem 1 we will also assume that M(s) is

an increasing function and M (0) # 0.

Lemma 4. Let D = 1 {(1+v?)|v|* + (> + a(t)) [v|* + [¢[*}. Then, we can
find r > 0 such that

D = D(y,t) < CD(y,0)exp(—wt)
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holds whenever |y| > r where C and w = w(r) are positive constants.
Proof: We consider the Lyapunov function £ = L(y,t) given by
L(y,t) = Ny*D(y,t) + J(y,1)
where N is a suitable positive constant to be chosen later and
J(y1) = Re{(1 + )00 + 7 v*(1 +17)urv)

Clearly, |J(y,t)| < (% + 1) (1+y?)D(y,t). Consequently,

(=G ry))v-Grylpses|ve(Gy))rege

(21)
We claim that the following estimate
ac
e 22
< —uln)L (22)

holds whenever |y| > r for some r > 0 where w(r) > 0 . Clearly, from (21) and
(22) we can conclude the proof of Lemma 4 choosing N large enough. In order
to prove the claim we proceed as follows: Let us multiply equation (20); by o

and (20)2 by @. Adding the corresponding identities we obtain

d 91 2 22 da

Next, we multiply equation (20), by (1+ y®)7; and replace the term (1 +y?)vy
given in (20); to obtain

d
(1+ yz)a{w@t} = —*(1+v*)Re{ot:} — ay’(1 + v°)|ve|* — y*Re{ot}
+ oy|ol® — a(t)y*Re{pv} (24)

Let us multiply equation (20); by y*¥ to obtain

d .
5l V(14 ), =y 1+ )|l — o +

+ay" Re{pv} — a(t)y'[v]” (25)
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We use identities (24) and (25) together with Young’s inequality with p = ¢ = 2

to obtain
1
S < =T+ Pl + (@t 50) 2L+l +
o’ 4 = X g o2 * 4912 2 -
+ 7~ 1)y Relwt} — 2y lol” = 2a(t)y vl — a()y"Re{pv} (26)

Again, Young’s inequality give us that for any 6 > 0 we have

a? 5 _ o? o I
(T - 1) y Re{pv} < (I - 1) oY lel" + 5v’l] (27)
and
—a(t)y’Re{pv} < % yPlel” + ga(t)y2|v|2

From (26) and (27) we deduce that

dJ a B 5 a 6\ ¢ 9
- (===
7 S 7V A+ YDy LA

2
oy 1) a(t

e+l - (28 - Sl + Wil 9
4 2 26

where ¢; = % (— — 1) +a+ % > 0. We choose 0 < § < §. Thus, for any

[46 L) 2
ly| > 1/ — we have that s .. > &Y and from (28) we obtain
o 4 2 8
dJ a 0
— L — 2 2 ) Bl 2
o y(1+y)\vt| <4 2)ylvl

«
—gV @l + ey’ (1 + 1) el + ey’ (29)

where ¢, is a positive constant (depending only on the initial energy) such that
a(t) = M(fzu2dx) < cp which is possible due to (13) and the fact that M is

increasing in R. Now, we estimate — using (23) and (29):

dt

dL ,dD dJ Ao 1 5
i 4L
T Ny? i + 7 —Ny*|o|? + Ny

_& o 2 2 g_é 6,2
SR+ - (§ - 5) e

§ + e |ul? (30)

da(t)

(07
—gv el + e’ (1 + 7)o
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We choose N such that N > ¢;. The inequality

—Ny* + a1’ (1+ 97 + ey® < -9

¢+ c+1) 12

will be true whenever |y| > < N ) . With this choice
=5

2 2d 2 2,12 _
= S Vel + Nyl — 4y (1 +y) vl
a 0\ g o 4 2
e e 1
(&-3) ¥ 8ywm\ (1)
1/2 1/2
1 46
for all |y| > Max & +e-1) | = Ep>0and0<5<g. Ob-
N—Cl « 2

serve that

—| = ‘M' </Ruid:r> Z/Ruzumdx‘ = ‘—Q/RUMUtd:cM' </Ruid:r>‘

< B(0) Max |M(5)] < +00

because (23) implies that M(0) [z uldz < 2E(0) for any t. Thus, we take
c¢=2E(0)/M(0). From (31) it follows that

ac

E S _C3y (y,t) + NE(O)D(y,t) (32)

for some positive constant c3 = c3(p,d, @) and all |y| > p. To complete the

r= Maz {p, (%ij)) 1/2}

proof of (22) we choose

to obtain from (32)

ac
— < —=¢*D
=& y W)V |yl >r
Using (21) we can find w = w(r) > 0 such that
W < ()Ll

Lemma 5. Let {v, ¢} the solution of (20), and D as in Lemma 4. Then, same
conclusion of Lemma 4 holds whenever 0 < 67 < [£|? < 7% for any 6% > 0 and

some 11 > 0.
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Proof: We consider the Lyapunov function £, = £;(y,t) given by
El(ya t) = NlD(y: t) Al J(ya t)

where NV, is a suitable positive constant and J(y,t) is as in Lemma 1. Clearly
[J(y,t)] < (% + 1) (1+y?)D(y,t) therefore

[N1—(%+1> (1+y2)]D§£1§ [N1+<%+1> (1"‘1/2)}17 (33

3 ; . ac : g
we will proceed as in the proof of Lemma 4 to estimate d—tl Thus, the inequality

corresponding to (30) will be

dl da «
071 < =Niy’lo|* + N192\U\25 = ZZ/2(1 + %) |vy)?

a 0 «@
‘(Z—ﬁy%ﬂ—g¢MMW+qwu+wmﬂ+@fw2(M)

1/2
for any |y| > —) and 0 <4 < %. Furthermore, if we choose N; such that
a

N1 > ¢ + ¢ + 1 then, in the interval

N.E(0)\'* Ny — gy — ty— 152
( . ® ) <yl < <—) (35)
172 Cl
with 0 < i< %, we obtain from (34) that
ac o e
B < —yPloP - S0+ Pl — Stabl ~ P (36)

for any “y” satisfying (35) and 0 < 0 < %. From (36) and (33) we get

aL,

1
7 < —ay’D(y,t) < —csy° Flﬁl(y’t)

for some positive constant cs which together with (33) give us
Li(y, 1) < L1(0,t)ezp(—coy®t)

ot et 2 1/2
for some positive cg and 0 < 62 < y? < r? where r; > Max {7", (ﬂl—cql—”u) ,{%} } )

r being as in Lemma 4 and N; = ¢,6% + ¢; + ¢ + 1 with &; > 0 arbitrary.
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Theorem 2. Let us consider the solution-pair {u, 0} of system (20) obtained in
Theorem 1 with (ug,u1,0) € H*(R) x H?(R) x H'(R). We assume additionally
that (ug, u1,0) € [L*(R)]® and M(:) is an increasing function with M(0) # 0.
Then, the total energy
1 5
E(t) = 5 / (u? +u2, + w2, +6%)dr + M (/ uida:)
R R

satisfies

E(t) < cE(0) {ea:p(—wt) + %} Vi > 1

where ¢ and w are positive constants and M(s) = [ M(7)dr.

Proof: Via the Fourier transform we can write E(t) as

B(t) = [ D(y.t)dy

where D(y,t) is given in Lemma 4. Let § > 0 and write

/Ddy:/ Ddy—i—/ Ddy+/ Ddy
R ly|<d 0<|y|<ry r1<|y|

Due to Lemmas 4 and 5 we know that

/ Ddy + Ddy < cE(0) exp(—wt)
o< y|<r r1<|y|

for some positive constants w and c. Remains to get an estimate for the term

Jwi<s Dlly.-
In fact, as we observe from (30) for any 0 < < % we can obtain the bound

ac N
= ey’ D(y,t) < &y*L(y, t) (37)

some positive constans ¢ and ¢. We are only interested in (37) when |y| < 6.

Clearly from our above discussion we can obtain from (37) that
L(y,t) < er exp(cy’t)L(y, 0)
or

D(y,t) < caezp(cy®t)D(y,0) (38)
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for some positive constants ci, c;. Integration of (38) in |y| < § give us

/‘y‘gD(y, t)dy <eo exp(c(52t) / |<§D(y7 (])dy (39)

ly|<
we claim that supp<sD(y,0) < F(0) < 4oo for some constant F'(0) which
(independent of ¢) depends on the initial data (uo, u1, ). In fact, since we are

interested only with ¢ small let us take 0 < § < 1. Using the fact that
5 % A 1
sup {12+ liol? + 10017} < o1 {llus s + ol + 6ol } = F(0)
it follows from (39) that
/| ;D 1)dy < o2 exp(c ) F(0)5 (40)
y|<o

We take § = % in (40) and conclude that
F(0)

t

/lylsaD(y’t)dy < e E(0)exp(cE*(0)) " VE>1.

which concludes the proof of theorem 2.
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