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BOUNDARY BEHAVIOUR AND INTEGRABILITY
OF LARGE SOLUTIONS TO p-LAPLACE
EQUATIONS

Ahmed Mohammed Giovanni Porru *®

Abstract

Consider the problem div(|Vu[P~2Vu) = f(u) in D, u — 00 as z —
0D, where D C RY is a bounded smooth domain, p > 1, and f : [0,00) —
[0,00) is increasing and satisfies suitable growth conditions. First we
prove a boundary behaviour result of the solution u(z) in a general do-
mains D. Next we discuss the integrability of u(z) in D according to the
growth of f.

1. Introduction

Let D C RY be a bounded smooth domain. We investigate the following

problem
div(\Vu\”_ZVu) = f(u) in D, u— o0 as z — 0D, (1.1)

where p > 1, and f : [0,00) — [0,00) is increasing and satisfying f(0) = 0.
It is known [8,13] that a necessary and sufficient condition for the existence

of a solution to problem (1.1) is that f(¢) satisfies the generalized Osserman

condition
00 ds s
/1- W < 00, F(S) = /(; f(t)dt (12)
Note that if condition (1.2) holds then the function
o0 ds
t) = / —— ___ g=p/lp-1 1.
vit)= | WFe ¢ p/lp—1) (1.3)
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is well defined, decreasing and convex.

For p = 2 problem (1.1) has been widely studied, see [3,4,9,10,12] and the
references therein. For general p and D convex we refer to [8,13].

In section 2 of this paper we shall find a precise estimate near the boundary
9D for a solution u(z) to problem (1.1), extending a result from [8] where D was
assumed to be convex. In section 3 we study the integrability of u(z) according

to the growth of f.

2. Boundary estimate

We shall make use of the following Lemma.

Lemma 2.1. Let g(s) € LY(R, p), g(s) > 0, k(s) = oo as s = R, k'(s) < 0.

We have
0
o gk (s)ds

) . @1)

Proof. Arguing as in the proof of Lemma 2.1 of [10] we have, for € > 0,

If g(s)k(s)ds _ [T g(s)k(s)ds n Srcg(s)k(s)ds
k(r) k(r) k(r)

< [ gloyas + Lisc BN

The result follows easily.

We also need the following result proved in [8].

Lemma 2.2. If condition (1.2) holds for some p > 1 then we have

. F)5

tlg& OB 0, (2.2)
¥
L) (2.4)
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Let D be a ball centered at the origin and of radius R and let condition
(1.2) hold. A radially symmetric solution to problem (1.1) is a function v(r)
satisfying

(TN_1|’UI|p_2UI)I =rV1f(v), v'(0)=0, v(r) > 00 asT — R". (2.5)

One can prove that a solution to problem (2.5) is increasing and convex in
(0, R). See [8] and the references therein.
Let ¢ = p/(p — 1). Define

1 gt 1

Ot) = 7 /0 (¢F(n))*dr, (2.6)
where F is the integral function introdued in (1.2). By using (2.2) or (2.3) we
find that I'(¢) — 0 as t — co.

Lemma 2.3. Assume condition (1.2) and let F(t)t™P be increasing for large t.

If v(r) is a solution to problem (2.5) then there is a constant 8 > 0 such that
u(r) < ¢(R—r)+ (R—r)B¢(R—r), (2.7)

where ¢ is the inverse of the function v defined in (1.3).
Proof: We refer to Lemma 2.2 and Lemma 2.3 of [8].

To prove the next Lemma we make the following further assumption (see
[4]). There exists a constant K such that for all § > 0 we have
/
$0) . g
¢'(26) ~
Now let D be an annulus centered at the origin with radii R and R, R < R'.

(2.8)

A radially symmetric solution to problem (1.1) is a function z(r) satisfying
(TN_1|z'|p_2z')l =rV1f(2), Z(0)=0, 2(r) = 00 asr — RY, (2.9)

for some p with R < p < R'.
Lemma 2.4. Assume conditions (1.2) and (2.8) and let F(t)t™? be increasing
for large t. If z(r) is a solution to problem (2.9) then there is a constant 3 > 0
such that

z(r) > ¢(r — R) — (r — R)Bé(r — R). (2.10)
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Proof: By (2.9) one finds easily that 2/(r) < 0 for R < r < p. Hence, in this

interval we have

—(r" =) =Y (),
or
N —
(= 1)(~2P 22" = T2 (= = £(2),

Note that the last equation implies z”(r) > 0. Multiplying by —z' and integrat-

ing over (r, p) we find

I%(—z')p - (N=-1) /Tp é(—z'(s))pds =F(z) —F(\), A=z(p). (2.11)

By Lemma 2.1 with k(s) = (—2'(s))?, we get

- J (=2 (s)ds
lim =2 =

R

Hence, by (2.11) we have
(=) < c1gF(2), g¢=p/(p-1).

Here and in the sequel we denote by ¢; suitable positive constants. We may

rewrite the latter inequality as

1/q

(=) < ey (aP(2))
Using (2.11) together with the last estimate we find

(=2 N =1 O (n)p-ldr
) ST TR 7(2)

50 (gF () ar

70

=1+ 3T (2(r)).

As a consequence,
!

(qF(Z))l/

> < 1+ csl'(z(r)).
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Integration over (R,r) leads to

o0 ds T
——— <r—R+c3 | T(2(s))ds.

Recalling the definition of ¢ given in (1.3) we have
W(z(r) < — R+ c3 /R T(2(s))ds. (2.12)
Putting
2 =5 /R T(2(s))ds,
inequality (2.12) reads as

P(z(r)) <r— R+ w,

whence

2(r) > ¢(r — R+w) > ¢(r — R) + ¢'(r — R)w.
Using condition (2.8) and recalling that ¢’ < 0, we have
Ar) > ¢(r — R) + K& @(r — R))cs /R T(2(s))ds. (2.13)
On the other hand, since F(¢) is increasing we find

sl 1/q 2(r)
() < ¢

Using the latter estimate and the monotonicity of z(r)/F(z(r))"/?, (2.13) yields
1p z(r)
2(r) > ¢(r— R) — s F(6(2(r — R))) " (r - R)W. (2.14)
Finally, by (2.12) we find, for 7 near R,
¥(z(r)) <2(r — R), whence z(r)> ¢(2(r — R)).
Hence, from (2.14) we get

2(r) > ¢(r — R) — ca(r — R)z(r).

The lemma follows easily.
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Theorem 2.5. Let D C RY be a bounded smooth domain satisfying a uniform
interior and exterior sphere condition. Assume conditions (1.2), (2.8) and sup-
pose F(t)t™P is increasing for large t. If u(x) is a positive solution to problem

(1.1) then there exists a constant 8 > 0 such that

|u(z) — ¢(6(2))| < B(x)$(5(z))-

Here, 6(z) = dist(z,0D).

Proof: Take a point P € 0D. We may assume that P = (R,0,...,0), that D
is contained in the annulus A(R, R') with center at (2R,0,...,0), and that D
contains the ball B(R) with center at (0, ... ,0). Note that A(R, R') and B(R)
are tangent to 0D at P. If u, v and z are solution of (1.1) in D, B(R), and
A(R, R') respectively then, by the comparison principle, we have

z(z) <u(z) <wv(z) Vz € B(R).
The result follows now by Lemmas 2.3 and 2.4 using a comparison principle.

Remark. For a convex domain D, Theorem 2.5 has been proved in [8] without

using condition (2.8).

3. Integrability

By Theorem 2.5 one gets
lim )
8(z)—0 ¢(d(x))

As an application of this fact we prove the following result of integrability.

=1. (3.1)

Theorem 3.1. Let D C RY be a bounded smooth domain satisfying a uniform
interior and exterior sphere condition. Assume (2.8) and suppose F(t)t7? is
increasing for large t. If the condition

o dt

holds for some a > p and if u(zx) is a positive solution to problem (1.1) then

uwe L5 (D).
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Proof: Note that condition (3.2) implies (1.2). By (3.1), the solution u(x) near
the boundary 0D behaves like the corresponding solution in one dimension.

Therefore, it suffices to prove that the solution v(r) to the problem
(W) = 1), V() =0, v(R)=oo (3.3)

belongs to L7 (0, R).

By (3.3) we find, for a positive constant ¢; and r near R

B— L. opaim Y o Flv
Wy = [ F0d > aFw)

whence,

F(u(r))? < cpv'(r). (3.4)

By (2.3) of Lemma 2.2 (with p replaced by «) we have, for all r greater than

v(r) < F(u(r))=.

Using the latter inequality and (3.4) we find

/:v(r)a%pdr < /TlR F(v(r))%_aldr

R ! o0
<o L)drl:c?/ LI
rn F(v(r))a o(r) F(t)a

The theorem is proved.

Remarks. 1) If D is convex then Theorem 3.1 holds without condition (2.8).
2) Osserman condition (1.2) does not imply that the solution v(r) to the problem

(@) = f), (R =00 (3.5)
belongs to L¢(0, R) for any € > 0. Indeed, using the function
v(r) = e (3.6)

we find
v'(r) = v(logv)2
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and
((v'(r))p_l)l =(p—1)oP! [(log v)zp + 2(log v)%il].

Hence, the function v(r) is a solution to problem (3.5) with

f)=(p— 1) [(logv)zp + 2(10g v)Qp_l].

A primitive of such a function is

F(v) = p; lvp(logv)zp,

which clearly satisfies condition (1.2). Note that the function v(r) defined in
(3.6) does not belong to L¢(0, R) for any € > 0.
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