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ON THE TREND TO EQUILIBRIUM FOR THE
FOKKER-PLANCK EQUATION : AN INTERPLAY
BETWEEN PHYSICS AND FUNCTIONAL
ANALYSIS

P. A. Markowich C. Villani *®

Abstract

We present connections between the problem of trend to equilibrium
for the Fokker-Planck equation of statistical physics, and several inequal-
ities from functional analysis, like logarithmic Sobolev or Poincaré in-
equalities, together with some inequalities arising in the context of con-
centration of measures, introduced by Talagrand, or in the study of Gaus-
sian isoperimetry.

1. The Fokker-Planck equation

The Fokker-Planck equation is basic in many areas of physics. It reads

ap n

where D = D(x) is a symmetric, locally uniformly positive definite (diffusion)
matrix, and V = V(z) a confining potential. Here the unknown p = p(t, z)
stands for the density of an ensemble of particles, and without loss of generality
can be assumed to be a probability distribution on R" since the equation (1)
conserves nonnegativity and the integral of the solution over R™. The phase
space can be a space of position vectors, but also a space of velocities v; in the
latter case the potential V' is usually the kinetic energy |v|?/2.

We refer to [32] for a phenomenological derivation, and a lot of basic refer-

ences. The Fokker-Planck equation can be set on any differentiable structure,
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in particular on a Riemannian manifold M, rather than on Euclidean space R™.
It can also be considered in a bounded open set, with (say) a vanishing out-flux
condition at the boundary.

Far from aiming at a systematic study of equation (1), our intention here
is to focus on some tight links between this equation, and several functional
inequalities which have gained interest over the last decade, and especially in
the last years. In order to simplify the presentation, we restrict to the case
when the diffusion matrix is the identity — but in order to keep some generality

in (1), we allow any underlying Riemannian structure. Thus we shall study
— =V (Vp+pVV), t>0, zeR or M. (2)

Moreover, we do not address regularity issues, and shall always assume that V
is smooth enough, say C?, perform formal calculations and do not deal with
their rigorous justifications in this paper.

As dictated by physical intuition, we mention that the stochastic differential

equation underlying (2) is
dX; = dW, — VV(Xy) dt,

with W; a standard Wiener process (or Brownian motion). Thus the Fokker-
Planck equation models a set of particles experiencing both diffusion and drift.
The interplay between these two processes is at the basis of most of its proper-

ties.

2. Trend to equilibrium

Let us begin an elementary study of the Fokker-Planck equation. From (2) we

see that there is an obvious stationary state : p = e~V (adding a constant to V'

if necessary, one can always assume that e~V is a probability distribution). It

is then natural to change variables by setting p = he~". Then we obtain for (2)

the equivalent formulation

%:Ah—vv.vm t>0, ze€R orM. (3)
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The operator L = A — VV - V is self-adjoint w.r.t. the measure e~V. More

precisely,
(Lh, g)e-v = —(Vh,Vg)e-v. (4)

(we use the obvious notation for weighted L2-scalar products and norms).
In particular,
<Lh,h>e—v = _“thiz(e“’)?

so that L is a nonpositive operator, whose kernel consists of constants (since eV

is a positive function). This shows that the only acceptable equilibria for (2)
are constant multiples of e=" — the constant being determined by the norm of
h in L*(e”"), which is preserved.

Now, consider the Cauchy problem for the Fokker-Planck equation, which

is (2) supplemented with an initial condition

p(t=0,-) = po; po = 0, /Po=1-

We expect the solution of the Cauchy problem to converge to the equilib-
rium state e”", and would like to estimate the rate of convergence in terms
of the initial datum. Let us work with the equivalent formulation (3), with
the initial datum hy = ppe. Since L is a nonpositive self-adjoint operator, we
would expect h(t,-) to converge exponentially fast to 1 if L has a spectral gap
A > 0. This easily follows by elementary spectral analysis, or by noting that
the existence of a spectral gap of size A for L is equivalent to the statement that

e~V satisfies a Poincaré inequality with constant ), i.e
Vge L), [/ge‘v dz =0 = / |Vgl|2e™V > /\/g e_V] . (5
Indeed, knowing (5), and using (3), one can perform the computation
. dit/(h ~ 1P ¥ = 2/|Vh|26_v > 2) /(h — 1%V, (6)

which entails
[(h—12e < e [(ho—1)%".
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Thus, if A solves (3) with initial datum hy,

ho € L*(e™V) = ||h(t,-) — | p2(e-vy < & 2|y — 1| z2(e-v)-
Equivalently, if p solves (2) with initial datum py,

po € L) = ot ) — eV luzery < €0 — e Vlagery. (D)

This approach is fast and effective, but has several drawbacks, which are
best understood when one asks whether the method may be generalized :

1) Note that the functional space which is natural at the level of (3) (h €
L%(e7")) is not at all so when translated to the level of (2) (p € L?(e¢")). For
mathematical and physical purposes, it would be desirable to be as close as
possible to the space p € L' (which corresponds to the assumption of finite
mass).

2) The physical content of the estimate (7) is quite unclear. Strongly based
on the theory of linear operators, this estimate turns out to be very difficult,
if not impossible, to generalize to nonlinear diffusion equations (like porous
medium equations, or the Fokker-Planck-Landau equations) which arise in many
areas of physics, cf. Section 8.

3) Also, it is often quite difficult to find explicit values of the spectral gap
of a given linear operator. Many criteria are known, which give existence of a
spectral gap, but without estimate on its magnitude the results obtained in this

manner are of limited value only.

3. Entropy dissipation

Instead of investigating the decay in L?(e~") norm for h, we could as well con-
sider a variety of functionals controlling the distance between h and 1. Actually,

whenever ¢ is a convex function on R, one can check that

/qﬁ(h)e*V dr = /¢ (%) e Vdx (8)
e
defines a Lyapunov functional for (3), or equivalently for (2). Indeed,

% / d(h)e~V dz = — / " (h)|Vh|%eV da. (9)
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Our previous computation in the L? norm corresponds of course to the
choice ¢(h) = (h — 1)?; but to investigate the decay towards equilibrium, we
could also decide to consider any strictly convex, nonnegative function ¢ such
that ¢(1) = 0.

For several reasons, a very interesting choice is
¢(h) = hlogh — h+ 1. (10)
Indeed, in this case, taking into account the identity f(h — 1)e~" =0, we find

[ o = [plog L5 = [ pliogp+V). (11)

This functional is well-known. In kinetic theory it is often called the free energy,
while in information theory it is known as the (Kullback) relative entropy of p
w.r.t. e”V (strictly speaking, of the measure pdz w.r.t. the measure e~ dz).

As we evoke in section 8, the occurrence of the relative entropy is rather
universal in convection-diffusion problems, linear or nonlinear. So an assump-
tion of boundedness of the entropy (for the initial datum) is satisfactory both
from the physical and from the mathematical point of view. We shall denote
the relative entropy (11) by H(ple™"), which is reminiscent of the standard
notation of Boltzmann’s entropy.

The relative entropy is an acceptable candidate for controlling the distance

between two probability distributions, in view of the elementary inequality

H(olp) 2 =llo— A% (12)

Inequality (12) is known as Csiszar-Kullback inequality by (many) analysts,
and Pinsker inequality by probabilists (cf. [2] for a detailed account).
By (9), if p is a solution of the Fokker-Planck equation (2), then

SHGle ) =~ [ |7 (18 L) =16, (3)

The functional I is known in information theory as the (relative) Fisher in-

formation, and in the theory of large particle systems as the “Dirichlet form”
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(since it can be rewritten as 4 [ |[Vv/h|?e~"). In a kinetic context, it is simply
the entropy dissipation functional associated to the Fokker-Planck equation.
Now, let us see how the computation (13) can help us investigating the trend

to equilibrium for (2).

4. Logarithmic Sobolev inequalities

Let v(z) = (2r)""/2e~1*"/2 denote the standard Gaussian on R”. The Stam-
Gross logarithmic Sobolev inequality [23, 33] asserts that for any probability

distribution p (absolutely continuous w.r.t. ),

H(pl) < 51(61). (14)

By a simple rescaling, if 7, denotes the centered Gaussian with variance o,

(2mo)~"/2e~1e1/(20)  then

H(plv,) < %I(pl%)-

In the study of the trend to equilibrium for (2), this inequality plays precisely
the role of (5). It implies that (by (13) with V(z) = %';), if p is a solution of

dp T
i G v = 1
ot v (Vp+pa), 5}

then p satisfies an estimate of exponential decay in relative entropy,

H(p(t,")|70) < H(polvs)e 2. (16)

Why is (14) called a logarithmic Sobolev inequality ? because it can be

/u?logu2 dry — (/ u2d'y> log (/u2d7> < 2/\Vu|2d7.

rewritten

This asserts the embedding H'(dy) C L?log L*(dry), which is an infinite-dimensional

version of the usual Sobolev embedding H'(R") C L**(R").
Now, of course, (16) is a quite limited result, because it concerns a very

peculiar case (quadratic confinement potential). All the more that the solution
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of (15) is explicitly computable ! So it is desirable to understand how all of this
can be extended to a more general setting.
By definition, we shall say that the probability measure e~V satisfies a log-

arithmic Sobolev inequality with constant A > 0 if for all probability measures

3
H(ple™) < 5 T(ple™). (17)

By a computation completely similar to the previous one, we see that as soon
as e~V satisfies a logarithmic Sobolev inequality with constant A, then the
solution of the Fokker-Planck equation (with V' as confining potential) goes to
equilibrium in relative entropy, with a rate e=?* at least. So the question is

now : which probability measures satisfy logarithmic Sobolev inequalities ¢

5. The Bakry-Emery reversed point of view

In 1985, Bakry and Emery [3] proved the basic following result, which goes a

long way towards the solution of the preceding question.

Theorem 1. Let eV be a probability measure on R* (resp. a Riemannian
manifold M), such that D*V > M, (resp. D?V + Ric > M\I,), where I, is
the identity matriz of dimension n (and Ric the Ricci curvature tensor on
the manifold M). Then, e~V satisfies a logarithmic Sobolev inequality with

constant .

(In the Riemannian case, D?V stands of course for the Hessian of V.)

Moreover, there is room for perturbation in this theorem, as can be seen
from the standard Holley-Stroock perturbation lemma [24]: If V is of the form
Vo + v, where v € L* and e~ " satisfies a logarithmic Sobolev inequality with
constant ), then also e" satisfies a logarithmic Sobolev inequality, with con-
stant Ae=®(") with osc (v) = supv — infv. By combining the Bakry-Emery
theorem with the Holley-Strock lemma, one can generate a lot of probability
measures satisfying a logarithmic Sobolev inequality. We also refer to [2] for

more general statements with a non-constant diffusion matrix D.
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But what is striking above all in the Bakry-Emery theorem, is that its proof
is obtained by a complete inversion of the point of view (with respect to our
approach). Indeed, while our primary goal was to establish the inequality (17)
in order to study the equation (2), they used the equation (2) to establish
the inequality (17) ! Here is how the argument works, or rather how we can
understand it from a physical point of view, developed in [2] (the original paper
of Bakry and Emery takes a rather abstract point of view, based on the so-called
Ty, or carré du champ itéré).

1) Recognize the entropy dissipation (in this case, the relative Fisher infor-
mation) as the relevant object, and analyse its time evolution. For this purpose,
compute (under suitable regularity conditions)

Tele™) = - S, (19)

2) Prove that under the assumptions of Theorem 1, the following functional

inequality holds

1
I(ple™) < o= J(ple™), (19)
2
so that the entropy dissipation goes to 0 exponentially fast,
I(p(t,-)|e™") < e I(pole™). (20)

3) Integrate the identity (20) in time, from 0 to +o00. Noting that [;"* e dt =
1/(2X) and ;7 I(ple™") dt = H(pole™"), recover

1
-Vy <« & -V
Hple™) < 531 (mle™),

which was our goal.
4) Perform a density argument to establish the logarithmic Sobolev inequal-
ity for all probability densities py with bounded entropy dissipation, getting rid

of regularity constraints occured in performing the steps 1)-3).

The reader may feel that the difficulty has simply been shifted : why should
the functional inequality (19) be simpler to prove than (17) ? It turns out
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that (19) is quite trivial once the calculation of J has been rearranged in a

proper way :

J(ple™) =2fptr ((D2 log E,LV)T (D2 log e%))

(21)
+2 [ p((D* + Ric) Vlog (;% ), Vlog (&)

The first term in (21) is obviously nonnegative without any assumptions, while
the second one is bounded below by 2 [ p|V1og(p/e™V)|2 = 2X (ple”"), if A is
a lower bound for D?V + Ric. Of course, the difficulty is to establish (21) ! As
we shall see later, there are simple formal ways towards it. Let us only mention

at this stage that the Ricci tensor comes naturally through the Bochner formula,

—Vu-VAu+A%|Vu|2 = tr((D*w)"D%u) + (Ric- Vu, Vu).

6. Log Sobolev = Poincaré

The reader may wonder what price we had to pay for leaving the L?(e") theory
in favor of the more general (and physically more natural) framework of data
with finite entropy. It turns out that we lost nothing : this is the content of the

following simple theorem, due to Rothaus and Simon :

Theorem 2. Assume that e="

satisfies the logarithmic Sobolev inequality (17)
with constant A. Then e~V also satisfies the Poincaré inequality (5) with con-

stant .

Actually the Poincaré inequality is a linearized version of the logarithmic
Sobolev inequality : to see this, it suffices to notice that if g is smooth and

satisfies [ ge™V dz = 0, then as ¢ — 0,
—V| -V g 2
H((1 +egle e ) =~ S l9llze-v)

(1 +eg)eVe™V) = Valdaev)

In [2] a more general study is undertaken. Actually one can define a whole

family of relative entropy functionals, of the form (8), whose “extremals” are
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given by ¢(h) = hlogh —h+1 at one end, ¢(h) = (h — 1)2/2 at the other end.
For each of these entropies one can perform a Bakry-Emery-type argument to
prove logarithmic-Sobolev-type inequalities; and they are all the stronger as
the nonlinearity in the relative entropy is weaker (the strongest one correspond-
ing to the hlogh nonlinearity). Corresponding variants of the Holley-Stroock
perturbation lemma, and of the Csiszdr-Kullback-Pinsker inequality are also

established in great generality in [2].

7. The nonuniformly convex case

So far we saw that the combination of the Bakry-Emery theorem and the Holley-
Stroock perturbation lemma is enough to treat the case of confining potentials
which are uniformly convex (+L*-perturbations). What happens if V' (z) be-
haves at infinity like, say, |z|* with 0 < a <2 ? If 1 < « < 2, then there is
no logarithmic Sobolev inequality, while a Poincaré inequality still holds. This
seems to indicate that the linear approach is better for such situations. This
is not the case : a simple way to overcome the absence of logarithmic Sobolev
inequality is exposed in [37]. There, modified logarithmic Sobolev inequalities
are established, in which the degeneracy of the convexity is compensated by
the use of moments to “localize” the distribution function. For instance, in the

situation we are considering,
H(ple™") < CI(ple™")' " My(p)’,
where M;(p) is the moment of order s of p,

Mp)= [ p@(1+ o) de (s> 2)

and
2—a

T22-a)+(s—2)
Combining this estimate with a separate study of the time-behavior of mo-

0

€ (0,1/2).

ments, one can prove convergence to equilibrium with rate O(¢7°°) (this means

O(t™*) for all k) if the initial datum is rapidly decreasing. A striking feature of
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the argument is that it is not at all necessary to prove that the moments stay

uniformly bounded : it only suffices to show that their growth is slow enough.

8. Generalizations to other physical systems

Let us now give a short review of some physical models for which the method-
ology of entropy dissipation estimates has enabled a satisfactory solution of the
problem of trend to equilibrium :

1) nonlinearly coupled Fokker-Planck equation, like the drift-diffusion-Poisson
model (see [2], the references therein and [1], [7], [8]). This is a Fokker-Planck
equation 0;p = V - (Vp + pVV), in which the confining potential is equal to
the sum of an external potential (say, quadratic), and a self-consistent potential

obtained through Poisson coupling. In other words,

Vz) = g + W(z), —AW = p.
Once uniform in time L* bounds on V are established, the use of logarithmic
Sobolev inequalities leads to the conclusion that solutions of this model converge
exponentially fast to equilibrium. For the corresponding bipolar problem we
refer to [7].
2) nonlinear diffusion equations of porous-medium or fast diffusion type,

with a confining potential, like

%:Ap"‘+v-(pw), t>0, zeR", (22)

where the exponent « satisfies

1
a>1l——.
n

For this model one can establish logarithmic Sobolev-type inequalities of the
same type as for the linear Fokker-Planck equation, see [19, 20, 28]. More
generally, if one considers the equation

op _

v V- (VP(p) +pVV(x)), t>0,zeR" (23)
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under the assumptions

P(p)

pl—l/n

v 3., Xz=0 nondecreasing; P(p) increasing,

one can prove [17] exponential decay to equilibrium with rate at least e=2**. We
shall elaborate on this example in the next section’

3) nonlocal diffusion models, like the spatially homogeneous Fokker-Planck-
Landau equation in plasma physics. In this model the phase space is a velocity
space, and the unknown f = f(t,v) satisfies

of _

< —Vv-(/Rndv*a(v—v*)[f*Vf—f(Vf)*D, £>0, v ER

(24)

where a is a matrix-valued fonction,
a(z) = ¥(|2DI(z),  ¥(]2]) 20,

and T1(z) is the orthogonal projection upon 2+,

o

IL;(2) = 6y

Standard choices of the function ¥ are the power laws ¥(|z]) = |z|7*2, —n <
~v < 1. After a careful study of the structure of this equation, and due to the use
of the Stam-Gross logarithmic Sobolev inequality, explicit rates of convergence
to equilibrium are established in [21] for the case v > 0 (like t~2/7).

Another nonlocal model linked to the Fokker-Planck equation is

99 _

with W strictly convex. This model arises for instance in the context of granular
media [6]. A general study will be performed in [18].

4) the spatially homogeneous Boltzmann equation :

of
S =QU )= [ du [  doBo-w.o)ff~ 1), (29)
ot R» gn-1

!Note added in proof: equations like (22) naturally arise as rescaled versions of porous-
mediun equations, 0p/0t = Ap*. The rescaling method is robust even for more general

equations of the type 0p/0t = AP(p): see recent work by Biler et al.




THE FOKKER-PLANCK EQUATION 13

where f' = f(v') and so on, and

o VY |v—v*la
2 2 ’

(26)
v,_U-i—U* |v—v*|0
* 2 2 '

Equations (26) yield a convenient parametrization of the (n — 1)-dimensional
manifold of all the solutions to the equations of elastic collision, where v', v! are
precollisional velocities and v, v, postcollisional ones.

Logarithmic-Sobolev-type inequalities do not hold for this model; but there
are slightly weaker substitutes, which enable to prove convergence to equilibrium
with an explicit rate. This was proven in [36], after a careful study of the
symmetries of the operator Q(f, f). Let us mention that the proof makes use
of two auxiliary diffusion processes : the (non-local) Fokker-Planck-Landau
equation, but also the plain Fokker-Planck equation with quadratic confining
potential. We refer to [39] for a detailed and elementary review of entropy-
dissipation methods in the context of the Boltzmann equation.

5) Finally, we also mention the study of spatially inhomogeneous kinetic
models, in which both space and velocity variables are introduced, and a collision
operator acting only on the velocity variable is coupled with transport and
confinement. A typical example is the (kinetic) Fokker-Planck equation

of

a-«—v-vzf—VV(azyV,,f=V,,~(va+fv), t>0,zeR", veR".

The fact that the diffusion acts only in the v variable changes drastically the
physical situation and makes the study considerably more delicate. We refer
to [22] for a physical analysis, complete proofs of trend to equilibrium with
an explicit rate (like O(¢~*°)), and comments. Here we only mention that
both the Stam-Gross logarithmic Sobolev inequality (in the v variable) and the
W

logarithmic Sobolev inequality for the potential e in the z variable) are used

in the proofs.
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9. An example : generalized porous medium equations

In this section we comment on equation (23), and see how a simple approach
enables to treat this a priori quite complicated problem.

First of all, there is a variational principle hidden in equation (23). From
thermodynamical considerations, it is natural to introduce the “generalized free
energy”,

Ep(p) = [[p(V (@) + (o) - P(o)) da,

where the enthalpy h = h(p) is defined by
Pl
h(p) := / ﬂda.
1 o

The free energy is nonincreasing under time-evolution of the equation (23),
and one easily computes the dissipation of free energy (or entropy dissipation

by abuse of terminology) :

Ip(plpso) = /p\V(V + h(p))\2dw-

It is therefore natural to assume that the solution p = p(¢,z) of (23) con-
verges towards the minimizer of Ep, if it is unique. Under the condition of fixed

mass [ p =1 and nonnegativity, minimizers have to be of the form
poo() = h7H(C = V()),

where C is some normalization constant associated with the mass constraint,

and h~! is the generalized inverse

0, s < h(0+)
h7l(s) :=1¢ h7(s), h(0+) < s < h(oo)
+00, §> h(+00)

We assume that there is one unique such minimizer (only one possible value of
C).

Example : For the case P(p) = p*, V(z) = J%E, we compute

1
1 — a—1
Poo(T) = ((E - 2aa$2)+) for a # 1,
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with E > 0 obtained from normalization in L'(R"). Clearly, ps, > 0 is C®
for 1 — 1 < a < 1 (fast diffusion case) but only Lipschitz continuous with
compact support for 1 < o < 2 and C%&T with compact support for a > 2
(Barenblatt-Prattle profile, cf. [28], [19], [20]).

We now have all the elements required to perform a study by means of
entropy dissipation, generalized logarithmic Sobolev inequalities, and Bakry-
Emery arguments. In order to make the analogy more apparent, we work with

the relative free energy, or, by abuse of terminology, “relative entropy”,

HP(ﬂ'ﬂoo) 2= EP(/)) - EP(poo)a

and we also use the notation Ip(p|pw) for the entropy dissipation.
A lenghty calculation then shows that the time-derivative of the entropy

dissipation, under evolution by (23), is given by the functional

T(ploe) =2 f{(P'(p)p ~ P()(V -9’ + P(p) tr((Dy)TDy)] &
+2/p(D*V -y, y) dz
with y := V(V + h(p)), and of course Dy = D?(V + h(p)).
As in the case of linear diffusion, the first integral is nonnegative, and the sec-
ond integral is bounded below by 2AIp(p|pe)- Using the condition “P(p)/p~—/™

is nondecreasing” and
V-y=tr(Dy), tr(2)? < ntr(Z?)
for all symmetric n X n-matrices Z, it is immediate that the first integral is
nonnegative. Thus,
EP(p(t)‘poo) < EP(/’O'poo)e—z)‘t

follows by proceeding as in the linear diffusion case. Moreover the Bakry-Emery
approach gives the generalized Sobolev-inequality:

1

A
for all probability densities p (after a somewhat involved approximation/density

Ep(plp) < o3I (plpo)

argument, cf. [17]). Obviously this inequality is identical to (17) in the linear
case P(p) = p.
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10. Gaussian isoperimetry

In this and the next sections, we continue our review of links between logarith-
mic Sobolev inequalities, Fokker-Planck equations and some areas of functional
analysis.

It is well-known that the usual Sobolev embedding W' (R*) ¢ L™/~ (R")
can be interpreted in geometrical terms as an isoperimetric statement. Now,
what about the logarithmic Sobolev inequality ? It turns out that the Stam-
Gross logarithmic Sobolev inequality can be viewed as a consequence of the
Gaussian isoperimetry. The Gaussian isoperimetry [11, 34] states that in Gauss
space, for fixed volume, half-spaces have maximal surface. We recall the defini-

tion of the surface : if B is a measurable set, define
B ={zeR'; d(z,B)<t}. (27)

Here d(z, B) = infyep ||z — y||gn. The gaussian surface S(B) of B is defined in
a natural way as

S(B) = lim jnf Y8 = 7(B)
t}0 t

A functional version of the Gaussian isoperimetry was established by Bobkov
[9]; it can be stated as follows. Let I denote the Gaussian isoperimetric function,
ie. U =pod ! where p(z) = (2r) '/2e~1#I’/2 is the one-dimensional standard
Gaussian, and ®(z) = [% ¢(s) ds. A few moments of reflexion show that U (x)
is the Gaussian surface of the half-space with Gaussian volume z. Then, for all

function h : R® — [0, 1], the inequality holds

U(/Rnhdv) < /R JUE () + |VhE dy, (28)

where + still denotes the n-dimensional Gauss measure. It is not very difficult
to see that (28) is equivalent to the isoperimetric statement. For instance, if
in (28) we replace h by (an approximation of) the characteristic function of a
set B, we find

U(y(B)) < 5(B),

which is precisely the gaussian isoperimetry.
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This inequality was generalized by Bakry and Ledoux [4]. They prove that
under the assumption D?V > AI,, then

u( [ he? d:v) < /R U2 () + §|th2 5" i (29)

The proof is again based on the Fokker-Planck equation ! Actually, it is
a direct consequence of the (non-trivial) observation that the right-hand side
of (29) defines a Lyapunov functional under the action of (3).

Now, as was noticed by Beckner, from (29) one can recover (17) by a simple
limiting procedure (just like the Poincaré inequality follows from the log Sobolev
inequality). Namely, it suffices to replace h by ¢h, expand it for ¢ close to 0,

and use the fact that, for = close to 0,

U(z) ~ zv/210g (1/2).

11. Talagrand inequalities and concentration of the Gauss
measure

Let us now turn to other inequalities with an information content. Most of the
material for the remaining sections follows [29].
M being still a given Riemannian manifold, we define the Wasserstein dis-

tance between two probability measures by

€(puw) JMxM

Wiy, v) = wf inf d(z,y)?dnr(z,y), (30)

where II(u, v) denotes the set of probability measures on M x M with marginals

u and v, i.e. such that for all bounded continuous functions ¢ and ¢ on M,

/MdeW(w,y) () + ¥ ()] = /Msodqu/deu. (31)

Equivalently,

Wy, v) = mf{./E dX, Y, law(X)=p, law(Y)= z/} ,

where the infimum is taken over arbitrary random variables X and Y on M.
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It is a well-known fact that the Wasserstein distance (actually known under
many names : Monge-Kantorovich-Fréchet-Hoffding-Gini-Tanaka...) metrizes
the weak-* topology on P»(M), the set of probability measures on M with finite
second moments. More precisely, if (ux) is a sequence of probability measures
on M such that for some (and thus any) z, € M,

lim sup/ d(wo, 2)* du(z) = 0,
d(zo,z)>R

R—o0

then W (ug, n) — 0 if and only if up — p in weak measure sense.
Developing an idea of Marton [25], Talagrand [35] showed how to use the
Wasserstein distance to obtain rather sharp concentration estimates in a Gaus-
sian setting, with a completely elementary method, which works as follows.
With # still denoting the n-dimensional Gauss measure, Talagrand proved the

functional inequality

W (i, v) < v/2H (uly). (32)

Now, let B C R" be a measurable set with positive measure v(B), and
define B; as in (27). Moreover, let |, denote the restriction of v to B, i.e.
the measure (1p/v(B))dy. A straightforward calculation, using (32) and the
triangle inequality for W, yields the estimate

1 1
Wls: Vlres,) < 42108 — + /2108 T
(75> Ylzms,) \/ 8B \/ ET(B)

Since, obviously, this distance is bounded below by ¢, this entails

—1(¢— /210g L ; 1
Y(By) >1—e z(t 2lg7(B)) fOftZﬂ?lOgv(—B)- (33)

Thus, the measure of B, goes rapidly to 1 as t grows : this is a standard result
in the theory of the concentration of the measure in Gauss space, which can
also be derived from the Gaussian isoperimetry.

Other applications of inequalities like (32) can be found in statistics or in

statistical mechanics.
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12. Log Sobolev = Talagrand =- Poincaré

Inequality (32) was generalized in the recent work [29], solving (unwillingly)
a conjecture of Bobkov and Gotze [10], namely that a logarithmic Sobolev in-

equality implies a Talagrand inequality. More precisely,

Theorem 3. Assume that e~V satisfies a logarithmic Sobolev inequality with

constant \, eq. (17). Then it also satisfies a Talagrand inequality with constant

Wi(p,e™") < \/M. (34)

As the reader may have guessed, the proof in [29] is based on the Fokker-

A, namely

Planck equation... The basic tool is the following estimate; we denote by (d/d¢)*
the right-upper derivative (which is introduced only because the Wasserstein

distance is not a priori differentiable).

Proposition 4. If p(t,z) is a (smooth) solution of the Fokker-Planck equation
Oip =V - (Vp+ pVV), with initial datum p(t = 0) = py, then
+

Wipo, p) < /1(ple”"). (35)

Interestingly enough, the proof of Proposition 4 relies on considering (in a

dt

somewhat non-natural manner) the linear, diffusive-type Fokker-Planck equa-

tion as a linear transport equation, i.e of the form

ap _

with a nonlinearly coupled velocity field, £ = —V(logp + V). Then one solves
this equation a posteriori by the methods of characteristics?
Theorem 3 follows readily from Proposition 4 and a few technical lemmas

(that we skip). We present the proof because it is so short.

2Note added in proof: this procedure is very much reminiscent of the “diffusion velocity
method” in numerical analysis (see works by Mas-Gallic and coworkers).
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Assume that e™V satisfies a logarithmic Sobolev inequality, and consider the
solution p(t, z) of the Fokker-Planck equation starting from some initial datum
po. Then, from (35) and (17),

(ple‘V)

W(po, p) <
’ J2AH (pleV

But, applying (13), we see that

CI(ple™) /2H(p|e
V2AH(ple V) a

W(po, /2H(ple

In particular W(pg,e™") = ¢(+00) < ¢(0) = \/ﬂ%il since p(0,-) = po
and p(t,-) — eV as t — +o0. Disregarding rigorous justification here, we just

proved (34).

(36)

dt

Thus,

It is interesting to note that the inequality (34) is still stronger than the

Poincaré inequality. Namely, as shown in [29],

Theorem 5. Assume that eV satisfies the Talagrand inequality (34) with
constant . Then e~V also satisfies the Poincaré inequality (5) with
constant .

We remark that the Talagrand inequality (34) allows in a canonical way to
generalize the concentration estimate (33) to probability densities e~V which
satisfy a logarithmic Sobolev inequality with constant A (e.g. log-concave den-
sities with log-concavity constant —A < 0). Proceeding as in Section 11 one

obtains the inequality (already proven by Bobkov and Gétze [10])

2
A 2 1 2 1
V(B)>1- “Zr—=, /21 > 127
(Be} 21 eXp( 2<t )\Oge-V(B)))’ e Py

for all measurable sets B C R" with positive measure e~V (B).
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13. Related PDE’s

Before going further, let us introduce a few new tools. The theory of the Wasser-
stein distance is related to other famous PDE’s. For the following we consider

the n-dimensional Euclidean case.

13.1. The Monge-Ampeére equation. One can prove (see for instance [13,
26, 31] and the references therein) that if the measure y is absolutely continuous
with density p, then the optimal 7 in the (Monge-Kantorovich) minimization

problem (30) has to be of the form

dr(z,y) = p(z) dz 6(y — Vo (z)), (38)

where ¢ is a convex function. If we insert (38) into (31), and assume dv =
p(x) dz, we find [ p(z)(Ve(z))dz = [(z)p(z)dx for all bounded and contin-
uous test-functions ¢, which means that ¢ is a weak solution (actually solution

in Brenier sense) of the Monge-Ampere equation
p(z) = p(Ve(z)) det D*p(z). (39)

See Caffarelli [16, 15], and Urbas [38] for a study of regularity properties :
in particular, one can prove C** smoothness of ¢ (for some a € (0, 1)) if p and

p are C% and positive everywhere.

13.2. The Hamilton-Jacobi equation. Starting from the relation (39), a
natural interpolation (p;)o<t<1 between two probability distributions p and p,

introduced by McCann [27], is given by
p(@) = po((1 = t)z + tVip()) det (1 — 1)1, + tD?p(x)), (40)

so that py = p, p1 = p.
Actually, equation (40) is a Lagrangian way of interpolating between p and
p: from a physical viewpoint, it means that the mass of p is transported onto the

mass of p, with all particles describing straight lines. The equivalent Eulerian
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point of view is given by a transport equation coupled with a Hamilton-Jacobi
equation :
0
£+V-(qu):O, 0<t<l,
(41)

ou 1 o
E —+ §|Vu| =0,

supplemented with the initial condition p(t = 0) = po, uo(z) = p(z) — |z|*/2. A
simple calculation gives p(t = 1) = p. For this approach consult in particular [5].
It should be noted that this procedure still yields the “right” interpolation

equation when considering the Wasserstein distance on a Riemannian manifold
(see [29, 30]).

13.3. The sticky particles system. Formally (in R"), the system (41) is

equivalent to the system of sticky particles (pressureless gas dynamics)

@+V-(pv)20, 0<t<l,

ot
(42)
%+V~(pv®0)=0;
with v = Vu (see [14, 12] and the references included).
14. HWI inequalities
The interpolation (40), or equivalently (41), applied with p = e~V is used

in [29] to establish a partial converse to Theorem 3. In particular, it is proven
that if e~V satisfies a Talagrand inequality with constant A, and V is convex,
then e~ also satisfies a logarithmic Sobolev inequality, but with constant /2.

This converse statement actually arises as a consequence of what is called
HWTinequalities in [29]. These inequalities mix the relative entropy, the Wasser-
stein distance, and the relative Fisher information; a particular case of it was
first proven in [28], and used in the study of porous-medium type equations.

Let us give a general statement :
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Theorem 6. Let V be a confining potential on R, satisfying D?V > X,
(A is not necessarily nonnegative). As usual, assume that e=V is a probability
distribution. Then, for any two probability distributions py and py, the HWI
inequality holds

H(pole™) < H(prle™") + W (po, pr) /1 (pole™") — gW(poym)? -

Inequality (43) is quite powerful. Note in particular that if A > 0, the choice

2H (pyle—V
W(pi,e™") < \/—(p/l\|e )7

which is essentially what one obtains by combining the Bakry-Emery Theorem

with Theorem 3. On the other hand, the choice p; = e~V yields

A
H{(pole™") < W(po,e™")y/ L(pole ") = 5W (po, e™")*. (44)
Then, if A > 0,

W (po, €'V)\/ I(ple=V) <

so that (44) implies

po = e~V yields

| >

1
V2 - -V
W(po,@ ) + 2)\I(p0|€ )7

1
-y« = -V
Hple™) < 35 1(ple™),

and we recover the Bakry-Emery theorem !

15. Displacement convexity

Even if the Wasserstein distance is not present in the formulation of logarithmic
Sobolev inequalities, it generates a very appealing way to understand them,
through the concept of displacement convexity, introduced by McCann [27] and
developed in [28, 29]. We still use the notation (p;)o<i<i for the interpolant
defined in subsection 13.2, between two probability distributions py and p;. By
definition, a functional J is displacement convex if ¢ — J(p;) is convex on [0, 1],
for all probability distributions py and p;. We also say that J is uniformly

displacement convex, with constant A, if

d2
ﬁ‘](pt) Z )‘W(p07p1)27 0<t<l.
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Let us give some examples of displacement convex functionals; here the

probability distributions are defined on R" :

V(p) = /p(:c)V(:c) dz, V convex;

Wip.p) = [ p@)py)W (z —y)dudy, W convex;
U(p) = /A(,o)7 P(p)/p"~'/™ nondecreasing, A(0) =0,

where P(p) = pA'(p) — A(p). What is more, in the first example above, if
the potential V' is uniformly convex with constant A, then also p — V(p) is
uniformly displacement convex with the same constant. As a consequence,
the relative entropy, H(ple™V) = [plogp + [ pV also defines a (uniformly)
displacement convex functional. As for W (p, p), see [18].

These examples can also be translated to a Riemannian setting, under some
assumptions on the Ricci curvature of the manifold (again, coming naturally
through the Bochner formula). For instance, p — [ pV is displacement convex
if D*V + Ric > 0.

Like standard convexity, the notion of displacement convexity can be formu-
lated in a differentiable manner. This construction was performed in Otto [28] :
a formal Riemannian structure is introduced on the set of probability measures,
in such a way that displacement convexity (resp. uniform displacement convex-
ity) of the functional J is equivalent to the nonnegativity (resp. the uniform
positivity) of the Hessian of J. We refer to [28], or to [29, section 3] for details.
We only mention that the formal calculus exposed in these references gives a
very efficient way to perform computations like the one which yields (21).

Given a functional F on the set of probability measures, Otto’s formal cal-

culus enables to define in a natural way a functional |grad E|?, by
lgradB () = [ VP, (45)
where ®[= §E/dp] is the solution of

/CI>g =F'(p)-g [functional derivative].
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In the case when E(p) = [plogp+ [ pV, i.e E(p) = H(ple™"), then one easily
checks that |gradE|*(p) = I(ple”"). Assuming now that D?V > AI,, the

Bakry-Emery result can be rewritten as
lgradH (-|e=V) |2 > 2AH (-|e™).

But, formally, this inequality is a very easy consequence of the fact that the
relative entropy is uniformly displacement convex with constant .

Similar considerations also apply to the inequalities of sections 12 and 14;
we refer to [29] for a detailed exposition. The study of displacement convexity

is still at an early stage; more applications of this notion are to be expected.
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