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HYPERBOLIC-PARABOLIC PROBLEM WITH
DEGENERATE SECOND-ORDER BOUNDARY
CONDITIONS *

G. G. Doronin® N. A. Larkin® A. J. Souza

Abstract

The initial boundary value problem for a hyperbolic-parabolic equa-
tion with nonlinear second-order degenerate boundary condition is con-
sidered. Existence and uniqueness of a global generalized solution are
proved.

Resumo

Neste trabalho é considerado o problema de valores iniciais e de fron-
teira para uma equagao hiperbdlica-parabélica com uma condigao de fron-
teira nao linear degenerada envolvendo derivadas de segunda ordem no
tempo. E provado um teorema de existéncia e unicidade de solugao global
no sentido generalizado.

1. Introduction

In [1], J.L. Lions considers nonlinear problems on manifolds in which the un-
known function satisfies the Laplace equation in a cylinder () and a nonlinear
evolution equation of the second order on the lateral boundary ¥ of Q. This
problem models water waves with free boundaries [2,3]. The dissipative first-
order boundary condition of the type considered in [1] arises when one studies
flows of a gas in channels with porous walls [4,5]. The presence of the second
derivative with respect to ¢ in the boundary condition is due to internal forces

acting on particles of the medium.
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A similar problem for the wave equation has been considered in [6]. The
coefficient of the principal second-order term of the boundary condition is a
strictly positive function. From the physical point of view, it means that vacuum
is forbidden. Our purpose here is to omit the condition of strict positivity and
to consider the degenerate case when the coefficient is only nonnegative.

We study in the present paper the hyperbolic-parabolic equation
Poy—Av+avy=f, in @ (1.1)

with nonlinear boundary condition

7]
= + K(v)ve+g(v)) =0, on X (1.2)
v
and with initial data
v(z,0) = vo(x), vi(z,0) =v1(x). (1.3)

The type of equation (1.1) depends on the sign of the function P > 0. This
is a hyperbolic equation when P > 0 and parabolic when P = 0.

The term K (v)vy with K (v) > 0 models internal forces when the density of
the medium depends on the displacement. When K(v) = 0, vacuum occurs.

Notice that the boundary dissipation g(v;) in (1.2) is more general than the
corresponding dissipative term in [6].

In this article we use the ideas from [6] and [7] to prove the existence of
global generalized solutions to the problem (1.1)-(1.3). We exploit the Faedo-
Galerkin method, a priori estimates and compactness arguments. Uniqueness

is proved in the one-dimensional case.

2. The Main Result

For T' > 0, let 2 be a bounded open set of R™ with sufficiently smooth boundary
I'and Q = Q x (0,7). We consider the following hyperbolic-parabolic problem,

Pz, t)vy — Av+ av, = f(z, 1), (2,t) € Q; (2.1)
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(% + K(v)vy + g('vt)> ) = 0; (2.2)
v(z,0) = vo(x); wvi(x,0) =vi(x), z€ (2.3)

Here P(z,t) and K(u) are continuously differentiable non-negative functions of
their arguments; « is a strictly positive constant; v is the outward unity normal
vectoron I'; ¥ =1 x (0,7 .

We use the usual notations,
(u,v)(t) = /ﬂu(a:,t)v(:c,t) dz, (u,v).(t) = /Fu(x,t)'v(:v,t) dr,

[lP(0) = (wu)(t),  Au=3" 6%u/0a?

A=l

and impose the following compatibility conditions,

—Avo(z) + avi(z) = f(z,0), =z €Q, (2.4)
Jvg
B +g(v1)=0, zel. (2.5)

We consider functions K'(v) satisfying the assumptions
0 < K(v) <C(1+v]”), (2.6)

|K"(0)|77 < i+ C(n)K(v), (2.7)

where p € (1,00) and 7 is a sufficiently small positive number.

These conditions mean that the density of the medium can not increase
“too rapidly” as a function of displacement. The condition (2.7) appears quite
naturally because functions with polynomial growth, such as K(v) = |v|* with
1 < s < p, satisfy it. Besides, the inequality K'(v) > 0 means that vacuum is
not forbidden.

Function g(§) satisfies the folowing conditions,
9(E)E > enl€]”*? + anlé[?, (2.8)

9'(€) 2 aslél® + au, (2.9)

lg(€)] < C(1+ [€]PH) (2.10)
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with ; >0, 1=1,...,4.

Finally, coefficients P(x,t) and « satisfy the hypothesis,
P>0 and 20— |P| >4, in Q, (2.11)
where § is some positive number.

Definition. A function v(z,t) satisfying conditions

v e L7(0,T; H'(%),

ve € L*(0,T; HY(Q)) N LPH2(Y),

VPuy € L*(0,T; L*(Q)),

Uy € L2(O, T; LQ(Q) N L2(F))’

v(z,0) = vo(x), ve(x,0) =v1(x)
is a generalized solution to (2.1)-(2.3) if for any functions h € H'(Q)N LA+*(T)
and ¢ € CY(0,T) with p(T) = 0 the following identily holds

/OT {(Pvﬁ, R)(E) + (o, VR)(E) + alvs, b)(t) + /F [gve) = K'(0)0?] b dr} (1) dt

+/F1((v0)v1¢(0)hdr_ /OT @'(L)A[(('U)'UJL(ZF dt = /OT (f, h)p(t) dt . (2.12)

The main result of this paper is the following.

Theorem. Let the conditions (2.4)-(2.11) hold and suppose that [ €
HY0,T; L*(Q)). Then for any vy € H*(Q), vy € H*(Q) N LFT2(T) and for all
T > 0 there exists at least one generalized solution of the problem (2.1)-(2.3).

If n = 1, this solution is unique.

Proof. We prove the Theorem by reducing the original problem to a homoge-
neous one [8]. The existence of solutions of the transformed problem is proved
by the Faedo-Galerkin method. First, using the regularization P. = P 4 ¢ with
e > 0, we construct approximations of the generalized solution. Then we ob-
tain a priori estimates necessary to guarantee convergence of approximations.

Finally, we prove the uniqueness in the one-dimensional case.
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3. Approximate solutions

First of all we transform the problem (2.1)-(2.3) into an equivalent one with

zero initial conditions. In fact, the change of variables

u(z,t) =v(z,t) — Hz,1), (3.1)

where
Oz, t) =vo(z) +ori(x)- t, (2,0)€Q (3.2)

gives rise to the equivalent problem for the unknown u(z,t):

Pz, )uy — Au+ auy = F(z,t) in Q; (3.3)
g—z + K(u+ ¢)uy + g(ue + ¢1) = G(z,t) on X; (3.4)
u(z,0) = w(z,0) =0 in Q. (3.5)

Here F(z,t) = f+ A¢ — a¢y and G(x,t) = —0¢/0v are given functions. If
u(z,t) is a solution of (3.3)-(3.5) at any interval [0,T], then v = u + ¢ is a
solution of the original problem (2.1)-(2.3) in the same interval. Thus, in order
to prove the Theorem, it is sufficient to consider the problem (3.3)-(3.5). This
is done by the following algorithm.

Let {w;(x)} be a basis in H'(2) N L*+*(T') and € be an arbitrary positive

number. We define approximations as follows,
Po=Pig uY ng Jwi( (3.6)
where g¥ (1) are solutions of the Cauchy problem,
(Pt 3)(1) + (T, F03)(0) + aul, )1

+/{[\ +¢ 5tt+g( st+¢t}w1dr
= (Fyw;)(t) + (G, w;)r(t) 5 (3.7)

a(0) = (gX)(0)=0; j=1,..,N. (3.8)
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It is easy to see that (3.7) is not a normal system of ODE. However, using the
method of [6] and the positivity of P, we conclude that (3.7) can be reduced
to normal form and, by the Caratheodory theorem, problem (3.7),(3.8) has
solutions gg(L) € H*(0,tx(¢)), so that all the approximations (3.6) are defined
in (0,¢x(¢)) for each ¢ > 0.

4. A priori estimates

Next, we need a priori estimates to show that ty(¢) = 7" and to pass to the
limit as N — oo and ¢ — 0. To simplify the exposition, we omit the indices N
and e whenever it is unambiguous.

Multiplying (3.7) by g} and summing from j = 1 to j = N, we obtain

2dt (||\/_ut||2—|—||Vu||) 2/ (20 — P,)u? d:c—l—/ (us + dr)us dT

1 d 4 2 i 2
-I-E/F{E (Ix(u+ ¢)ut) — K'(u+ ¢)(us + ¢t)1lt} dI’
= (Fug)(t) + (G ue) (1) - (4.1)
Estimating integrals over I' from below, we get

Zdt/A u+ P)uy dr+/{g (ur 4 1) (we + b)) — gl + d1) s

I, 3
—Elx'(u + @) (us + ¢)u; — Guyy dU > id_/ K(u 4+ ¢)u? dT

+ /F{Olﬂut + ¢)t|p+2 + anlus + ¢l)t|2 — g(us + &)y

—% (0 + ) (s + o)l — exu? — Coy G2} dT. (4.2)

Here and later in this paper, ¢; are arbitrary small positive numbers and C,;, =
C(¢;) are positive constants independent on N.

The Young inequality, together with (2.7) and (2.10) imply that
lg(us + ¢i)ps| < C (1 + ofuy + ¢+ C€2|¢t|p+2) ; (4.3)

aglug + il* > aqui — esu? — Coy (14 14*?) ; (4.4)
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— SVt @) o+ bl > —u? (calue+ i1+ K (u 4 6)]7%7)
> —uleslus + ¢)° — nCau? — Ce, C(n) K (u + S)u?. (4.5)
We observe that the first term of the right hand in (4.5) satisfies
—equif [ug + B¢|” > —es|ug + |+ — Coy ||, (4.6)
Indeed,
|ue + 6ol = |us + S (uf + 2urgy + 4’?) )

therefore

U?|Ut + ¢t|p = |Ut + ¢t|p+2 — (2Ut¢t + C/b?) Iut + ¢t|p
< Jug + ™2 + 2 (eoluel + Ceglél?) e + 64l°
. 1 = .
<ue + |t + guflut + &l” + exlus + 7T + Cer | 4]

which gives (4.6).
Taking into account (2.11),(4.2)-(4.6), setting all the ¢; > 0 sufficiently small,

we conclude from (4.1) that
d d R "
= (IVPull? + [190l) (1) + 3 [ K (4 @)ud dU + 6(u w)(2)

)
—||Ut + (/)t||ffrfz(r)( I 7||Ut||iz(r)(t)

<ot [Ku+ pudr +1FIP0) + 16w (0 + 165w 0}

Integrating the last inequality over ¢ € [0,7] and using Gronwall’s lemma,

we obtain the first a priori estimate:

(IVPull? + IVal®) (1) + [ K (u+ @)u ar

[ () + e+ Gl <T>+||uf||%z(r)<r>}dvs ¢, @

where the constant C' does not depend on N.

In order to obtain the second a priori estimate, we observe that

(Ptge, wer)(0) + /r K (vo)u?(z,0)dl’ = 0. (4.8)
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Indeed, multiplying (3.7) by ¢7(0), summing over j and setting ¢ = 0, we obtain
(Putsyui)(0) + [ (K (@)l + g(r)ua) (2,0) dT = (F,u)(0) + (G, i) (0)

Using (2.4) and (2.5), we conclude that

(Fyuw)(0) = (G uw) (0) — (g(e), ue)r (0) = 0

which implies (4.8).
Differentiating (3.7) with respect to ¢, multiplying by g7 and summing over
7, we are led to the identity:

/ﬂ (Ptuft + Pugge + VueVauy + auft) dz

[ AR et @)+ o)+ K+ St + ' (e + )u} dT

= (P un)(t) + (G wa)r (1). (4.9)
Notice that

Poul + Pugtizy > %% (Pu) - %|Pt|uft; (4.10)
' (ue+ Ge)ugy > (aslur + ¢el” + cu)uiy; (4.11)
K-+ @ = 5o (K(ut o) = 2Kt 6)(ue+ 6uds (4.12)
(EMMQS/@@+QJ%® (4.13)
(G, ze), </@%+aﬁ% (4.14)

K'(u+ ¢)(ue + 1) utt’ < (crolue + ul” + Coo | K'(u + 6)[77)
< eroul|us + @] + 1Ceo3uZ + C(n, €10) K (u + )uZ. (4.15)

Using (4.10)-(4.15) we obtain from (4.9) that
i/ (Pu2 + |Vu |2) dz + i/ K(u+ ¢)ul dl + (6 — 2¢ )/ ul, dz
dt Jo tt t dt Jr tt 8 ot

+(2a3 — 610)/r |t + 1| ugy dT + (s — 2¢9 — nClyy) /F ugy dl
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< C(n,cm)/r[((u + ¢ui dl + C,, /F G4 |2 dT + C., /ﬂ |F[Pde.  (4.16)

Choosing es, ..., €19 and then > 0 sufficiently small, integrating (4.16) over

t, using (4.9) and Gronwall’s lemma, we obtain the second a priori estimate

(IVPuall + I¥7l)) (1) + [ K(u+ @)

t q q
[ { ) + el ey (r) + [l i dry dr <o @)
Thus, we obtain the following a priori estimates

u € L*=(0,T; H'(R));

u € L0, T; H'(Q)) N LPH2(T);

Pustt € L*(0,T; LQ(Q))v

ustt € LA(Q) N L*(X); (4.15)
0

Sl € 12(3);

["I/Q(U/N

Null, € L=(0,T; LX(T)).
5. Passage to the limit

Let us multiply (3.7) by ¢ € C*(0,T) with ¢(T) = 0 and integrate with respect
to ¢t from 0 to T. After integration by parts, we obtain

T
[ { Pty + (vl V) 4 atulfyw) + [ gl + g dr} () de

T T
— [ @) [ K@l + g)ulbwy(o) dU dt + p(t) K (u + @)l
T
-/ S0(1,)/le"( i+ $)(ull + di)uw; dT dt
= [ w) + (@) Je(0) i (5.1)

The estimates (4.18) imply that a subsequence u# can be extracted from ul¥
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such that:
u? — u weakly star in L*(0,T; H'(Q));
uty = uy weakly star in L=(0,T; HY(Q)) N LPH2(3);
P.uty, — Puy weakly star in L°(0,T; L?(Q));
uly — ugy weakly in L2(Q) N LA(X);
ub, ul, — u, a.e. on X;
Therefore,

g(ul, + ¢:) € L1E), g=(p+2)/(p+1) and converges a.e. on X;
K(u! 4 ¢)ul; € LY(X), and converges a.e. on X;
K'(u¥ 4+ ¢)(uly + ¢r)uly € L9(Y), and converges a.e. on .

Thus, we are able to pass to the limit in (5.1) to obtain

/OT {(Putt, w;) + (Vu, Vw;) + au, w;) + /Fg(ut + & )w; dF} o(t)dt

_/ { / K(u+ ¢)ugw; dl' + (1 / K’ (v 4 @) (s + ¢1)urw; dr} dt

—/ (F,w;) + (G, w;),Je(t) dt. (5.2)

It can be seen that all the integrals in (5.2) are defined for any function
w(t) € C1(0,T) with ¢(T) = 0. Taking into account that {w;(z)} are dense
in H'(Q) N L**%(T), we conclude that for any A € H'(Q) N L2 the equality
(2.12) holds.

If n = 1,2, one can get more regular solutions. In this case, v € L>(0,7T; L1(T))
for any g € [1,00). Hence, K(v)vy € L(0,T; LP(T')), with arbitrary p € [1,2).
This allows to rewrite (2.12) in the form

(Pug, h)(8) + (Yo, VR)(t) + afvr, h) + /F{K(v)vﬁ + g(v)}hdT = (£, h)(2),

where £ is an arbitrary function from H'(£).
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6. Uniqueness

Let n =1and Q = (0,1) x (0,7T). Let v and v be two solutions of the problem
(2.1)-(2.3) in Q and z(z,t) = u(x,t)—v(z,t). Then for fixed ¢, for every function
¢ € H'(0,1), we have

(Pzit, @)(1) + (22, 62)(1) + alze, 9)(1)

- {[K(u)zu + vu(K(u) — K(v)) + g(us) — g(v; d)}l =0.
Since (z,z)(z,t) € L*°(0,T; H*(0,1)), we may take ¢ = z;, and this equa-

tion can be reduced to the inequality,

%[E(t) + (K () (2] + (o = Pif2), 22)(8) + 022 (1)

1

+ {U”Zt([\"('u,) — K(v)) — 2] "(u )ut(zt)z} : (t) <0.

Here we set B(t) = ||v/Pz|*(t) + ||2.]|3(t) and use (2.9), the differentiability of
K and the regularity of K(u)uy (see the end of previous section). Condition
(2.7) then implies that

L1+ (K=l + lzd2(0) + 2042213(1) < e+ max el - =

DO | —

1
£a®
. . . 211

+C.max [K (u) = K(o)l03]. (1) + C.[ (0 + C, K (w)=2] | (1)

< [e(1 + max Ju?) + nc:]-zf] (1) + C.Cy(K (w)22)] (1)
KORIERORS PARO)! (6.1)
Taking into account that ||z]|2(t) < ¢ f§ ||z||*(7) dr, choosing in (6.1) first ¢ > 0
then n > 0 and 77 > 0 sufficiently small, for all ¢ € (0,7}) we obtain the

+Cemax | K'(u) [Pz

inequality

D186 + (K@) + 2’0 + aaci],

< C’[vft -E(t) + K(u)zt] ’(1)

Since

T
f [vi(1,t) — v(0,2)]dt < C,
0
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then by Gronwall’s lemma,
1 {1
E(t) + [Is"(u)Zf”o+f0 2|2 dr = 0, Vte (0,T)).

Therefore z(z,t) = 0, in (0,1) x (0,77). Splitting, if necessary, (0,7") in a finite
number of intervals (0,7}), we prove the uniqueness result and complete the

proof of the Theorem.
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