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ON SEMILINEAR PARABOLIC PROBLEMS WITH
NON-LIPSCHITZ NONLINEARITIES

Flavio Dickstein ®

Abstract

We consider a semilinear reaction-diffusion equation with nonlinear
terms of non-Lipschitz type. We state and prove some comparison prin-
ciples for this problem when its domain of definition € is bounded. We
apply those results to discuss uniqueness and nonuniqueness of solutions.
These comparison arguments are also used to obtain analogous results
when @ =RV,

Resumo

Consideramos a equacao semilinear de reacdo-difusdo com termos
nao-lineares de tipo nao-Lipschitz. Estabelecemos ¢ demonstramos al-
guns principios de comparagao para este problema quando seu dominio
de definicdo Q é limitado. Aplicamos estes resultados para discutir a
unicidade e nao-unicidade de solugoes. Estes argumentos de comparagao
sdo também utilizados para obter resultados analogos quando = RV,

1. Introduction

In this paper we discuss the following semilinear parabolic equation

up — Au = g(u) (t,2) € (0,7) x Q,
u=0 (t,2) € (0,T) x 09, (1.1)
u(0,2) = ug(x) x €.
where 0 C RY has smooth boundary 9Q. More technical details will be given
later on. Problem (1.1) has been extensively investigated since the early sev-

enties. The study of the existence of solutions, their regularity and asymptotic
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behavior have called the attention of a large list of researchers. We cite [3], [4],
[9], [10] with by no means any intention of covering the subject. One of the
main features of parabolic problems is that they preserve some ordering and
this a key property to study (1.1). For example, assume that g : R — R verifies
the Lipschitz condition |g(u) — g(v)| < k|lu — v| for all u,v € R and that @ is a

corresponding supersolution, i.e., @ satisfies

u — Au > g(u) (t,x) € (0,T) x Q,
u>0 (t,z)€(0,T)x 0%, (1.2)
(0, ) > up(w) z € Q.

(Subsolutions are defined analogously, with reversing signs.) To prove a max-
imum principle in this situation, we note w = (v — %)* = max(u — %, 0) and,
assuming that u and W are regular, we subtract (1.1) from (1.2), multiply both

sides by w and integrate over {3 to obtain

& [+ [190f < [latw - g <& [t

Since w(0, z) = 0, we can then apply Gronwall’s Lemma to conclude that w = 0,
that is, v < u. We remark that it suffices to assume that g is locally Lipschitz
for the argument to work. On the other hand, this condition is essential (if
Q = RY, then any solution of the ODE v/ = g(u) also satisfies (1.1), and it is
well known that there is no comparison principles for such a problem when g is
not locally Lipschitz).

The purpose of this work is to discuss some comparison principles when
g is not necessarily Lipschitz. Non-Lipschitz semilinear problems were first
studied considering g(u) = u?, ¢ < 1, in [8], for @ = RV, and in [7], for bounded
domains, both works dealing with uniqueness and non-uniqueness results. Their
arguments, however, rely strongly in the precise form of g and it is not clear how
to extend them to even mild perturbations of u?. Extensions of the results of
[7] more general functions have been considered in [5]. They are consequence of
some comparison principles that hold in the non-Lipschitz case. One interesting

example is the function g(u) = Au? 4+ u”), where 0 < ¢ < 1 < p and X >
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0. The stationnary (elliptic) problem associated to (1.1) has been treated in
some works, see e.g. [1], [2]. The convergence of the trajectories of (1.1) to
these stationnary points is investigated in [5]. We also remark that comparison
principles for non-Lipschitz systems of parabolic equations, and some of their
consequences, can be found in [6].

In this work we describe some maximum principles presented in [5], some of
their applications, and we also prove new results. This in done in section 2. We
consider the whole space case ! = RY in section 3, showing that the uniqueness

and non-uniqueness results of [8] can also be extended to more general functions.

2. Bounded domains.

In this section we describe, and extend, the results obtained in [5] for positive
solutions of the problem (1.1) in bounded and smooth domains @ C RY, N € N.
We assume that

g:[0,00) = [0,00) is continuous. (2.1)

Given ug € L™(£), uo > 0, we call a solution of (1.1) a function v € L*((0,7") x
) for some T' > 0, u > 0 which satisfies

) = T(t)u0+/0t T(t - s)g(u(s)) ds, (2.2)

for all ¢t € [0,7], where T is the linear heat semigroup. Note that the above
definition makes sense. Indeed, if uw € L*=((0,7) x ), then g(u) € L*((0,T) x
), so that the right-hand side of (2.2) is well-defined. Moreover, since g(u) €
L>((0,7) x Q), standard regularity results imply that v € C([0,7],L"(Q)),
that u — T (t)uo € L"((0,T), W?(Q) N Wy (Q)) N W ((0,T), L™ (2)) for every
r < oo and that u satisfies the first equation of (1.1) for a.a. ¢ € (0,7).

Before discussing any comparison principles, the following result of [5] en-
sures that (1.1) has a (local) solution, for any regular domain @ C RY, not

necessarily bounded.

Proposition 2.1. Assume (2.2). Given Q C RN a regular domain and uy €
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L>(Q), up > 0, there exisls a larger solution u > 0 of (1.1) defined for some
time interval [0,T), u € L>((0,00) x Q). u is the larger solulion in the sense
that if v > 0 is any subsolulion of (1.1) on some interval [0,T] and if v is smoolh
enough (i.e. v € L®((0,00) xQ)NC([0,T], L*(Q)) and v € L ((0,T), H(2))N
WL2((0,T), H-(Q))), then v(t) < u(t) for all t < T.

We limit ourselves to give the idea of the proof of (2.1), which can be found in
[5]. Extending ¢ as g(u) = 0 for u < 0, we consider gas the standard truncation
of g. It is easy to see that gas can be approximate by a nonincreasing sequence
of smooth functions g, . Using the standard theory for each g, ar we produce a
nonincreasing sequence of approximate solutions u, a7, converging to a solution

up of (1.1) for g = gar. uns is in fact the desired solution for M large enough.

We introduce the following condition on g.

For all M > 0, there exists Ly < oo such that

2.3
g(u) —g(v) < LTM(u —o)forall 0 <v<u< M, )

Note that (2.3) is a one-sided condition, which means when g is C*' that ¢'(u) <

Lyju for all w € (0,M). To present our first comparison priciple we define

dao(z) = inf{||z — y||,y € 9N} the distance to the boundary of £ function.

Proposition 2.2. Assume (2.1) and (2.3) and let ug € L=(Q), ug > 0. Sup-
pose u is a supersolulion of (1.1) and v is a subsolulion of (1.1) on some in-
terval [0,T]. If v and v are sufficiently smooth, i.e. u,v € L*((0,T) x Q)N
C([0, T, L*(R)) and u,v € L2 ((0,T), H'(Q)) N WL2((0,T), H-1(Q)) and if

u(0) > ddg for some § > 0, then u(t) > v(t) for all L €]0,T].

The proof is based on Hardy’s inequality

2
v 2
< !
/Qdé_cfﬂwﬂ, (2.4)

for all ¢ € H}(£2). For more details, see [5], where it is also proved the following

corollary of Proposition 2.2, treating the case ug = 0.

Corollary 2.3. Assume (2.1) and (2.3). Lel uo = 0 and T' > 0. Lel u,v €
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(0.7) x 0) n C@OTLIAQ) with we € La0.T),
H'(Q) N VV&’B((O,T),H'I(Q)). If u is a positive supersolution of (2.1) and
if v is a subsolution, then u(l) > v(t) for all0 <t <T'.

Curious enough, a second comparison principle holds for g having derivatives
bounded from below. So, instead of (2.3) we consider the following assumption.
Given M > 0, there exists Kp; < oo such that (25)
g(u) —g(v) > Ky(u—wv) forall 0 < v <u< M,
Proposition 2.4. Assume (2.1) and (2.5) and let v = 0. Suppose u is a
positive supersolution of (2.1) and v is a corresponding subsolution on some
interval [0,T]. If v and v are sufficiently smooth, i.e. w,v € L=((0,T) x
Q)NC([0,T), L3(R)) and u,v € LE ((0,T), H'(Q)) NWL2((0,T), H1(Q)) then
u(t) > v(t) for all t € 0,T].

Proof: It clearly suffices to prove the result for any 77 < T, so we may assume

that ||ul|eo, ||v]lee < M, for some M > 0. Using (2.5), we replace —A by

Ly = —A + Kyl and g by gy = g + Ky, so that gy is a nondecreasing
function. Let s > 0 and consider @(t) = u(t + s). It follows from the standard
maximum principle that @(0) > 0 in 2, with external normal derivative %ﬁ <0
at Q. Consider T. = sup{r € [0,T"],@(t) > v(t), for all ¢t € [0,7]}. We claim
that T, = T". Indeed, since #(0) = u(s), we have that T, > 0. Moreover,

(@ —v)e + Ly(t —v) > gu(@t) — gu(v) = 0.

Therefore, from the usual maximum principle we obtain that @ > v in €, with

(92& & agv at 99 for ¢ < T,. Hence, we clearly can not have that T, < T".
i U]

Therefore, @ > v for all ¢ and we let s — 0 to finish the proof.
O
We now show that the comparison principles (2.3) and (2.4) are efficient
tools to analyze the number of solutions of (1.1). Having in mind the model

function u?, we also suppose that

J+
g is concave on (0,a) for some a > 0 and Tg(O) = +o0. (2.6)
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Theorem 2.5. Suppose g salisfies (2.1), (2.3) and (2.6). Then,

() i b
/0 - (2.7)

9(s)
for some b > 0, then for all uyg € L*(Q), ug > 0, there exists a unique,
posilive solulion w of (1.1) defined on a mazimal time inlerval [0,7T,,),

w € L=((0,T) x Q) for allT < T,;
G
b ds
/ K I—— (2.8)
0 g(s)
Jor any b > 0 then u = 0 is the only solulion of (1.1) when uo = 0. If ug €
L>(Q), up > 0 and ug # 0, then there exists a unique, positive solution u

of (1.1) defined on a mazimal time interval [0,T,,), v € L=((0,T) x Q)
forall T <T,.

Proof: (i) was shown in [5] so we prove here only (ii). The existence of a solution
has already been discussed and the existence of a maximal time interval [0, 7},)
comes from the standard semilinear theory, see e.g. [9]. We need only show
the uniqueness result. Consider first u(0) = 0 and let z(¢) satisfy the ODE
z' = g(z), with 2(0) = 6 > 0. Then z() is a positive supersolution of (1.1)
and we can use Proposition 2.2 to write that v < z. It follows from (2.8) that
z(t) = 0 as 6 — 0, for all ¢ > 0, showing that u = 0. Observe that the above

argument shows that
there is no positive subsolution w with w(0) = 0. (%)

Let now u and v be two solutions of (1.1) such that «(0) = v(0). We claim that
« = v in some small time interval [0,7") and this clearly implies that uniqueness
holds in [0,7,,). To show the claim, we remark that (2.3) and (2.6) imply (3.2)
below, that is, given M > 0 there exists ¢ > 0 such that g(u)—g(v) < g(u—v) for
all 0 < v < u < M verifying u—v < ¢ (this is shown in the proof of Theorem 3.1,
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Step 4). Using Propositon 2.1, we can assume that w = u —v > 0. Take T
small so that ||u||ee < M, with [|w||e < e. Therefore, w, — Aw < g(w), and
the result follows from (*) above.

O
Remark 2.6. Under the hypothesis of Theorem (2.5) (i), (1.1) has infinitely
many solutions leaving ug = 0. In fact, we can describe all such solutions in the
following way. Let u be the unique positive solution of the problem, s > 0 and
define uy(t) as us(t) = u(t —s), if t > s, u,(t) =0 for 0 <t < s. Then v solves

(1.1) with v(0) = 0 if and only if v = u, for some s.

We refer to [5] for some applications of Proposition 2.2 to the study of the

asymptotic behavior of the solutions of (1.1).

3. The whole space case

Let again g satisfy (2.1) and uo € L*°(R™N), ug > 0. In this section we consider
the problem

{ us— Au=g(u)  (t,z) € (0,T) x RV, 5.1)
u(0,7) = uo(z) z€Q.
Given T' > 0, we say that v € L*®((0,7) x Q) is a solution of (3.1) if

u(t) = T(uo + [ T( = s)g(u(s)) ds, (3.2)

for all ¢ € [0,T], where T is the linear heat semigroup. Standard regularity re-
sults imply that u € C([0, T, L}, (RN)), that u—T (t)ue € L"((0,T), W2 (RN))N

loc loc

W ((0,T), L;, (RY)) for every r < oo and that u satisfies the equation (3.1)

loc

for a.a. L € (0,7).

We will show how comparison arguments can be used in relation to (3.1).
Proposition 2.2, as stated, does not make sense in this context and we don’t
know how to obtain a corresponding result. However, we can use it to show the

following equivalent of Theorem 2.5.

Theorem 3.1. Suppose g salisfies (2.1), (2.3) and (2.6). Then,



118 F. DICKSTEIN

b d

(i) o % < 00, for some b > 0, then for all ug € L=(R™N), ug > 0, there
o g(s

exisls a unique, posilive solution u of (3.1) defined on a mazimal lime

interval [0,T,,), u € L=((0,T) x Q) for all T < T,,;

b
(ii) of % = oo for any b > 0 then u = 0 is the only solution of (3.1) for
o g(s

up = 0. Ifug € L®(RY), up > 0 and up £ 0, then there exists a unique,
positive solulion u of (3.1) defined on a mazimal lime interval [0,T,,),

ue L®((0,7)x Q) forall T < T,,.

Proof: We recall that the existence of a maximal interval [0, 7},] is given by

the standard theory [9]. The rest of the proof will be given by steps.

Step 1. We claim that if u is a positive supersolution of (3.1) then for all
s < Ty, there exists d; > 0 such that u(x,s) > J; for all z € RY. To show this, let
zo € RN, Q' = B(xo, 1), the unitary ball centered at zq, and f(t, z) = u(t+s, z).
Hence, @ is a positive supersolution of (1.1) in & and Proposition 2.2 implies
that u(l 4 s,20) > 1¥(1,0), where ¢ is the positive solution of (1.1) in B(0,1)
verifying 1(0) = 0. We let s — 0 to obtain Step 1.

b e
Step 2. We prove that (i) holds for ug = 0. In fact, since / (Zl—é < oo, there

exists a unique @(t), solution of ¢’ = g(p) with ¢(0) = 0, Soll(gl ihat e(t) >0
for t > 0. We will show that the only positive solution of (3.1) is ¢(t). Indeed,
suppose u is another positive solution and set @(¢,z) = u(t + s, ). Let @ and ¢
to be defined over [0,7"] and take T, = sup{7 € [0,7"],u(t) > (), for all ¢ €
[0,7]}. Tt follows from Step 1 that 7. > 0. We can argue as in the proof of
Proposition 2.4 to show that T, = T". Therefore, @(t) > ¢(t) in [0,7"]. Since

we can reverse the roles of u and ¢, this gives the uniqueness result.

Step 3. A remark. We observe that, since g satisfies (2.1), (2.3) and (2.6), the
following two facts hold. Given M > 0, there exists 0 < ¢ < a such that

g(u) —g(v) < g(u—v), (3.3)
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forall 0 <v<u< M with u —v <& and

g(w) — g(u) 4+ g(v) = g(w — u +v) (3.3)

forall0 < v <u<<MO0< w<uwthu—v < w < e Note that

v
(3.3) holds when g is concave. Hence (2.6) gives (3.3) for 0 < v < u < a,
0 <w < wuwith u—v < w. Ifa<u§1V[,M
v
g(w) —g(w —u+v)
uw—v

enough so that (3.3) holds. (3.2) follows from (3.3) by taking w = u — v.

is bounded above
" —

— 400 as w — 0. Therefore, we can choose ¢ small

while

Step 4. The uniqueness for (i) in the general case. Let u, v be two solutions
of (3.1) and set w = u—wv. Following Proposition 2.1, we can suppose that w > 0.
Set M = ||u||e and take ¢ as in Step 3. w verifies w, — Aw = g(u) — g(v),
with w(0) = 0. Taking 7" small enough, we can suppose that |[w(t)|]e < ¢ for
all t < T, so that (3.3) yields wy — Aw < g(w). Therefore, we can argue as in
Step 2 to get that w < ¢. Take now z = ¢ — w and use (3.3) to obtain that
z— Az = g(p) — g(u) + g(v) > g(2). Once again, the arguments of Step 2 give
that z = ¢ —w > ¢, and so w = 0 in [0, 7']. Since we can iterate the argument,

w=01in [0,7,].

Step 5. The uniqueness for (i) when ug = 0. Let u solve (3.1) with u(0) =0

and consider p the solution of ¢’ = g(p) with p(0) = § > 0. We proceed as in

Step 2, taking T = sup{7 € [0,T"],u(t) < (1), for all ¢ € [0, 7]} and showing
b e

that 7. = 71". But (—5) = oo implies that ¢ — 0 as § — 0. Thus v = 0.
o g(s

Step 6. The uniqueness for (ii) for any ug. Consider v < u two solutions of (3.1)
and set w = u—v. Since wy = 0 given ¢ as in Step 3, there exists 7' > 0 such that
[|w(t)]]eo < € for t < T. Therefore, (3.2) yields w;, — Aw = g(u) — g(v) < g(w).
The result follows from Step 5 for ¢ < T" and for all ¢ by iteration.

Steps 1 through 6 give the desired result.
1

Remark 3.2. It is easy to check from the proof of Theorem 3.1 that a corre-
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sponding version of Proposition 2.4 holds for = R™.
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