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INITIAL BOUNDARY VALUE PROBLEM FOR THE
KURAMOTO-SIVASHINSKY EQUATION

A. T. Cousin N. A. Larkin *®

Abstract

We consider the initial-boundary value problem for the one-dimen-
sional Kuramoto-Sivashinsky equation,

Ut + Uy + NMage + Blew + MUzeas = f,

where 7, 3,8 are positive constants, in the non-cylindrical domain @ =
{(z,t);00(t) <z < as(t),t € (0,T)}. We prove the existence and unique-
ness of global weak and strong solutions, and the exponential decay of
solutions as t — oo.

Resumo

Neste artigo abordamos o problema de valor inicial e de fronteira para
a equagao de Kuramoto-Sivashinsky unidimensional

Ut + Uy + Ngar + Plzz + lUzaze = f,

onde 7,5, sdo constantes positivas, no dominio nao cilindrico @ =
{(z,t);01(t) < & < aa(t),t € (0,T)}. Nés provamos a existéncia e uni-
cidade de solugoes globais fracas e fortes, e também o decaimento expo-
nencial das solugbes quando t — co.

1. Introduction

The Kuramoto-Sivashinsky (K-S) equation was derived independently by Siva-
shinsky [6] , who studied flame propagation processes in turbulent flow of a
gaseous combustible mixture, and by Kuramoto [5], who studied wave fronts in

reaction-diffusion systems.
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Untill recently, most publications were dedicated to physical aspects of K-S
equation.

A systematic study of mathematical problems was started in the paper of
H. Biagioni, J. Bona, R. Iorio and M. Scialom [2] where the Cauchy problem

for the generalized K-S equation,

was treated. They proved the existence of local and global in £ smooth solutions
exploiting the Fourier-transform in 2. Moreover, the asymptotic behavior of the
solutions was studied when n — 0 or 5 = § — 0. The Cauchy problem for the
multi-dimensional analogue of the K-S equation was studied by H. Biagioni and
T. Gramchev (1998) [3].

In the paper of E. Tadmor [7] the well-posedness of the Cauchy problem was
proved for the one-dimensional K-S equation. It was shown that the Cauchy
problem admits a unique smooth solution depending continuously on initial
data.

Here we study the K-S equation in domains with moving boundaries and
prove the existence and uniqueness of global weak and strong solutions, and the

stability of solutions as t — co.

2. Statement of the problem

Let
ai(t) <z < an(t), t€[0,T], v(t) = az(t) — as(t) > do > 0;

and

a1, 0 € CH0,00), with |of(2)] + |eh(t)] < M < oo.

We denote by Q:
Q={(z,t); au(t) <z <ax(t), t € (0,7)}.
In @@ we consider the generalized Kuramoto-Sivashinsky equation,
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where 7, 3,0 > 0, with the initial data,

u(z,0) = uo(x), a1(0) < z < az(0). (1.2)
The following conditions are given on moving boundaries:

w(an(t),t) = u(@a(t), t) = Upa(ay (t),t) = Uza(a(t),t) =0, t € [0,T]. (1.3)

Changing variables,

(z,t) < (y,1), u(z(y,1),t) = v(y,1),
where

x—a(t)

()
we transform @ into the rectangle Q = (0,1) x (0,T), and the problem (1.1) —

y:

(1.3) into the following problem;

Ly YO @ B
wowG T aw et
o g — Bl e
73@) Uyyy + (t)vz/yyy = f(y,1); (1.4)
0(0,) = v(1,1) = v, (0, £) = v, (1, ) =0, (1.5)
v(y,0) = vo(y) = uo(e(0) + y7(0)), (1.6)

where f(y,t) = f(z(y,1),1).

Because the transformation (z,t) <> (y,t) is a diffeomorphism, by solving
(1.4) — (1.6), we solve the problem (1.1) — (1.3).

To solve (1.4) — (1.6) we use the method of Faedo-Galerkin.

3. Strong solutions

Let y € (0,1), t € (0,7) and Q = (0,1) x (0,T). We define W;(0,1) as the
subspace of functions ¢ from H*(0, 1) such that

0%g . {k]
: =0,j=0,---|=| — 1.
oy% y=0,1 / 2
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Theorem 2.1. Let vy € W5(0, 1). Then there exists a function v(y, t),
v € L™(0,T; Wy(0,1)) N L*(0,T; W,(0,1)), v, € L*(D)
which is a unique strong solution to (1.4) — (1.6).

Proof: Let w;(y) be eigenfunctions of the following problem

{ Wiy, + Nw; = 0, in (0,1), (2.0)

Wjly=01 = 0.
It is known that w;(y) create a basis in W), which is orthonormal in L?(0, 1).

We seck approximate solutions to (1.4) — (1.6) in the form,
N
vy t) =3 g5 (Hw;(y),
=1

where gV (t) are solutions of the following Cauchy problem for the normal system
J

of N ordinary differential equations,

(Lo%,w3) (1) = (Fu) O, ()0 = [ w100, 0y, o

g]N(O) = (U07wj)7 j: 17 7N'

Obviously, solutions of (2.1) exist for some interval (0,7y). To prolong them
to any interval (0,7) and to pass to the limit as N — oo, we need a priori

estimates.
Estimates

From now on, C' represents any positive constant and C. is any positive
constant depending on € > 0.

Substituting in (2.1) v for w;, we obtain the inequality,

1d, N/
SV OF +

0 N (4\]2 %,UN oY
Sl < e @l ()

+%\vﬁ,(t)llv]v(t)\ + %Ivﬁ,(t)llvév(t)l +1F DI (). (2:2)
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Due to the Ehrling inequalities (see Adams [1]), for any £ > 0,
oy ()] < elvgy (B)] + Cp™ (D).
Then
o, O™ (O] < elog, (OF + Celo™ (1)
and
[y @lloy ()] < elvgy (1)1* + Cep™ ()]
Using the Young inequality, we rewrite (2.2) for any € > 0 as follows,

1d
2dt

O ()P

‘ ()|2+W vy

R OF + (C. + ) <>2]+f [l (0P + Gl ()]

445 e OF + C @] + 51FOF + 5™ O

Rearranging terms, we can write this inequality as

1d
2dt

N (¢ O | N2 M, B 1, N gy 2
1 ()‘ +"}/4(t) Uyy(t” < |:—0€ +—0€+—c:| |U (t)‘

[(C + 1)+ SO+ 530 4 } [N (8))2 4+ | F ()] (2.3)

52
Choosing € > 0 such that

s
S| e

we obtain from (2.3),

51N OF + sl OF < O™ OF +1F0F)

where C is a constant independent of N, v™ and t.

Integrating (2.3) over [0,¢], t < T, we have by the Gronwall lemma,

NP+ [ (P < Cllool + 1 flRg), Ve OT).  (24)
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This estimate allows us to extend the local solution to the whole interval [0, 77].
On the other hand, by Rolle’s theorem,

Y
o ,t) = [ oll(s. s

for some & € (0,1). Then

[ (@) < [l ()], (2.5)
This and (2.4) imply
[ W < Ol + 11712 g)- (2.6)

Estimate 2:

Multiplying Lv™ by A2gY(t) and summing over j = 1,--- N, we obtain the
inequality:

1d 2 o N s o 2M NN N

s U@ + v Uy (DI < =510y ) Ollog, ()] + 5 |( Uy » Vyyyy) (B)]

B
53() U (O [V D] + 52 20 Uy (Ol O]+ 1F O Jugyy, ), (27)

By the Ehrling inequalities,

vy ()] < elv |+ Cp™ (®)],

yyyy( )

N
| yyy( )| < €|Uyyyy( )| +CE|U (t)|7 € > 0

Using these and the Gagliardo-Nirenberg inequalities, we estimate the terms of
(2.7) as follows,

S0, )OI < Ol Ol Oy (0ol 6)
< G0 (OF + 10y OF) + elufly, (P + ey, O (28)

ﬂlv () |Uggyy (B)] < €lvgyyy (O + Celvy ()% (2:9)

30 Uy (DU O] < Celrgy (D + elvyg,, (1)]

S C{5|’U ( )|2 + 2€|Uyyyy( )|27 (210)
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(pﬁ( )I (Vg (O] < Celgy ()12 + elvygy, (0 (2.11)
|F )y (O] < Cel FO) + elvgy, (O, Ve > 0. (2.12)

Taking into account (2.4) and choosing e sufficiently small, we obtain the in-
equality,
2/ OF + [, O < CUF@)F + lvgy (0))- (2.13)
By the Gronwall lemma,
T "

O OP + [ 1o (7)Pr < € (1o + 171aq)) - (2.14)
From estimates (2.4) and (2.14), we conclude that

v™ is bounded in L™ (0, T; W5(0,1) N L2(0, T; W4(0,1). (2.15)

On the other hand, from (2.1), we obtain

/w |dT</

+5ﬂ8|vzﬂf/y(7)llv (Ml + 54\Uywy( DY O+ 1F@lY (7| dr. (2.16)
We estimate the first term in the right-hand side of (2.16) as follows,
Pl NN N LN N
1@ o) <0 [ R @R O @l (217)

Taking into account (2.15), and (2.17) we get from (2.16),

—\ v (T )H%\vév(f)llvf( )H—\( Uy U7 (7))

/|U |dr<5/ [ (7)2dT + C., € > 0.
Then for € > o sufficiently small
vY is bounded in L*(0,T; L*(0,1)). (2.18)

Estimates (2.15) and (2.18) allow us to pass to the limit in (2.1) as N — oo,
and therefore to prove the existence result of Theorem 2.1
O

Uniqueness of strong solutions follows from uniqueness of weak solutions

proved in Theorem 4.1.
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4. Weak solutions

In this section we prove that if vy € L%(0, 1), that is uy € L*(a;(0), a2(0)), then

(1.4) — (1.6) has a unique weak solution.

Theorem 4.1. Let vy € L*(0,1) and f € L*(0,T; H2(0,1). Then there eists

a unique weak solution v(y,t) for the problem ,
Lv=f, in L*(0,T; H *0,1),
v(0,t) = v(1,t) = v,,(0,t) = v,,(1,t) =0, ¢t (0,T),

U(y>0) = UO(y)a Yy e (0/ 1)

such that
¢ 8 BP0 T 20, 1)) &P (0, T BP0, 1))

v, € L*(0,T; H2(0,1)).

Proof: Taking into account density theorems, we can find sequences {v§} in
Wy = H(0,1) N H%(0,1), f* € L*Q) which converge to vo in L?(0,1) and to
fin L*(0,T; H~2(0,1)) respectively.

By Theorem 3.1, for each v we have a solution v* to the problem,

Lv” = f¥ in Q, (3.1)
0.8 = (L) = v, (0 =t (L) =0, t€[0,T),  (32)
vy(yvo) = ’U(l)l(y)v AS (07 1)' (33)

Multiplying equation (3.1) by v”(¢), and proceeding as in section 2, we obtain

the estimate,
2 o 2 2 2
@R + [l (AT < C (1052 + 1 agg)) (3.4)
Therefore,

v” is bounded in L*(0,T; L*(0,1)) N L*(0, T; W5) (3.5)



KURAMOTO-SIVASHINSKY EQUATION 105

uniformly in v. Now we can estimate v directly from (3.1) and obtain that
v¢ is bounded in L*(0,T, H~%(0,1)). (3.6)

Taking into account compactness arguments and embedding theorems, we can
see that v” converges strongly in L?(Q). Therefore, there exists a subsequence
of {v”} which converges a.e. in Q. Then v"v” converges to vv, in the sense of

distributions in Q. From (3.5) and (3.6), we conclude that

I RN (il ORI TON s,
ST M T R A O R
n 4 T2 . =2
73(15) Uyyy + T a7 Vyyyy = f, in L*(0,T; H™*(0,1)) (3.7)
v(y,0) =w(y), vy e (0,1). (3.8)

Proof of uniqueness. Let vy, vy be two solutions of (3.7) —(3.8) corresponding
to the same initial data vg, and 2z = v; — vs.

Obviously,
z € L>(0,T; L*(0,1)) N L*(0,T; H*(0,1)),

z € L*(0,T; H™2(0,1))

and
/ 2z, w)(7)dr + / ([v1vy — vavgy), w) (T)dr

_ /: <[(3/7 (2(:)041 (T)zy _ VQfT) zyy],w> (T)dr — /Ot %T)(zyy,wy)(T)dT

)
+ ) iy v () =0,

where w is an arbitrary function from L2(0,T; W5(0, 1)). Replacing w by z, we
obtain the equality,

2 b AT 2 tiz A
08 + [ (b = il 2)r)ar + [T Par =2 [ Sl

t

7 t S _
=2 J, 757y (e A)()dr +2 A iy ()P =0, (3.9)
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Because
([v} —v3ly, 2) ()] = (o] — v3], 2) ()] = I(2[vr +val, 2,) (B)]
< max |u(f) + v (D212 ()] < Clory ()] + o2y @) D]2(@)124 ()],

using the inequalities of Young and Ehrling, we obtain from (3.9),

|2+2/ |zyy |d7'<5/|zyy V2dr

+Ce/0 (\vly(T)\2 + gy (T) [ + 1) |2(7) P,

where ¢ is an arbitrary positive number. Choosing ¢ sufficiently small, we obtain

the inequality,

t
2 < C [+ oy (1) + ey (7)) () P
By Gronwall’s lemma, |z(¢)| = 0. This proves the uniqueness result of Theorem
4.1

5. Stability

It is well-known that solutions of a parabolic equation
v +Av =0

are stable as t — oo, provided A is a positive operator. In our case, A is
nonlinear and depends on the parameters n,v(t), 8, d. But it is possible to find

sufficient conditions which guarantee the asymptotic decay of v(y, t).

Theorem 5.1. Let v(y,t) be a strong solution to problem (1.4) — (1.6) and
assume that for large t the following conditions hold

5.1) sup,er+(Y(t) < v < o0,
52) 6 —7*t)B—vt)n=0>o,

5.3) 2Mo+3 ()Y (¢) > v >0,

54) [ TIfnPar < e, 6 e o, )
o — i 7’.}/3 -
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where Ay is the first eigenvalue of the Dirichlet problem (2.0). Then there exist
constants K, \ > 0 such that

lv(t)]? < Ke™™, Vt>0.

Proof: Multiplying equation (1.4) by v, we obtain the equality,

4P+ L A0 - 2o
Pkl +(7, )(t) 7;,(t)( yys Uy) (£)
20 2 28 3 _o(F 4
+’y4(t) |Uyy‘ 2 (t) |Uy(t)| 2(f,v)(t). (5.1)

Using (2.5), we
get from (5.1),

d 2, Y () 2 2 2 2 f
GPOP+ TP + g5 (9= 708 = 7(0m) o < 2FOllo?)
which can be rewritten as follows,
d 2, YV(®) 2 20 2 7
FOP+ TP + s OF < 2Af@le@l 62)

If \; is the first eingenvalue of (2.0), then
oy (O = Mafv(e)[*.

From (5.2), we obtain

% v(t)]? + <i;‘33 + M) lv()|* < elv(t)]* + C.|f(®)%, Ve >o.

(t)
Putting € = o7 and taking into account the condition 5.3 of Theorem 5.1, we
0
obtain the inequality,
d =
/O + 0@ < CO)IFOP,

where 6§ = 4. Solving this inequality, we obtain
2'y0

P < C ([ IFmPdr + 1ol ) e
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By the condition 5.4 of Theorem 5.1, there exist K, A > 0 such that

lv()|? < Ke ™.

We proved our results on existence, uniqueness and stability for the trans-

formed problem (1.4) — (1.6). Because the transformation (z,t) < (y,t) is dif-

feomorphism, the same results are valid for the original problem (1.1) — (1.3).

The authors are grateful to the reviewer for the contructive remarks.
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