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UNIQUENESS OF THE CAUCHY PROBLEM FOR
SYSTEMS OF PARTIAL DIFFERENTIAL
EQUATIONS

Licia Valéria Cossi José Ruidival dos Santos Filho *®

Abstract

We consider the uniqueness of the Cauchy problem for semilinear 2 x 2
systems of partial differential equations. The results are similar to the
ones obtained for a single equation.

Resumo

No6s consideramos a unicidade do problema de Cauchy para sistemas
2 x 2 semilineares de equacoes diferenciais parciais. Os resultados sdo
similares aqueles obtidos para uma equagio escalar.

1. Introduction

There are two basic theorems for the initial value problem, that is, the Cauchy
problem for linear partial differential operators with analytic coefficients in
IR™. The first one is the Cauchy-Kovalevsky theorem which says that the non-
characteristic Cauchy problem has one, and just one, solution when the data
are analytic. The second one, known as Holmgren’s theorem, guarantees that
the solution of the Cauchy problem is unique even if it is assumed to be only
in C™, where m is the order of the operator; in fact, it is known that this
theorem holds even if the solution is a hyperfunction. For scalar operators,
non-uniqueness results for non-characteristic Cauchy problems have been ex-

tensively studied in the late 70’s and early 80’s. The spirit of the uniqueness
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theorems is that the result should not depend on the lower order terms; see [1]

and [3] and the references therein for more details.

The present paper was motivated by the work of G. Métivier [2] who discussed
counterexamples to the validity of Holmgren’s theorem for systems of partial
differential equations. Métivier starts from non-uniqueness results of the non-
characteristic Cauchy problem for a class of smooth linear partial differential
operators of the second order. He adds an additional variable and then, by
writing the operator in system form, he obtains examples for non-uniqueness of
the Cauchy problem for analytic systems. In this way, he arrives at some very
simple first order semilinear systems of operators with constant coefficients for
which the conclusion of Hélmgren’s theorem does not hold. In principle, his
construction can be carried out when the principal symbol of the operator, for
which we have non-uniqueness for the Cauchy problem, is independent of the

non-characteristic direction.

Basically, we start from the known results for a single partial differential equa-
tion for which the uniqueness property holds independently of lower order co-
efficients; see [1] and [4]. Then we extend these results to semilinear systems.
The main step, similar to the scalar case, is to prove a Carleman estimate for
systems.

Before stating the basic definitions and results we mention that, in the context
of linear systems, there is a very general uniqueness result due to A. Caldéron,

who dealt with hyperbolic and with some cases of elliptic systems, see [3].

The general setting for extensions of the Holmgren’s theorem can be written as

18U + Ty Ai(2, ) Dol + f(z,,U) =0, (1.1)

where U is a vector valued C'! function defined in a neighbourhood of (z¢,0) €
IR" x IR with values on IR¥, and I is the identity matrix on IR¥. The A;’s
are k x k analytic matrices and f is a vector valued analytic mapping of its

arguments with values in R* and Slu=0 = 0.
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Assume that
U(z,t)=0 V t<0. (1.2)

The general question is: for which n, k and A;’s, the solution ¢ = 0 is the only
one such that (1.1) and (1.2) hold near t = 07

In this paper we narrowed the gap between Métivier’s counterexamples and the
uniqueness results. For the sake of completeness we recall the construction of a
basic counterexample for uniqueness of solutions found in [2]:

Let P =07 — C?gl + C?gz; then there exist a neighbourhood , V', of the origin and
functions a, ¢ € C*(V) such that:

(P —al0s,)(¥) =0, ¥,alico=0 on V and 0 € supp(a) N supp()).

See [1](or [3]).

Let x € C*®(IR) be a real valued function such that 0 € supp(x) = [0, 00).
We take uy(z1,x2, 23,1) = X(23)0p, (21, 22,1), us(w1, 20, 23,1) = x(23)(0; +
Oy )¥(21, w2, 1) and us(w1, 22, v3,1) = a1, v2,1 —x3); then (1.1) and (1.2) hold

for
1 0 0 0 -1 0 00 O
A= 0 -1 0|, A,=|1 0 0 , A3=10 0 0
0 0 0 0 0 0 00 —1

0
f(U) = ( UiUs ) s
0

This example of Métivier has motivated us to ask the following question: If n=1

and k=2, is there a unique U satisfying (1.1) and (1.2)?

and

To answer this question, we point out that in the plane there are linear partial
differential equations of first order of the form Pyyp = 00 + ad,tp = 0, where
a and v have the same properties as above. Taking real and complex parts of
this equation we have that the solution is not always unique for systems with
C® coeflicients. See [1](or [4]).

Also, we observe that even for simple hyperbolic systems sometimes we cannot

uncouple. For example, consider
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and

o= (G )

where f;(u1,uz) is a polynomial of degree five on u;, for each i.

This last observation explains why uniqueness for systems is not a direct conse-
quence of the results for the scalar case. To deal with this problem we consider
an extension of a technique used for the scalar case, namely Carleman’s esti-
mates.

Let M3(IR) be the space of real 2 x 2 matrices, M} = C'(IR?, M3(IR)) and

F= ( " ) .
Definition 1. If A € M3, we say that:
i) A is symmelrizable if there is an invertible matriv B € M, such that BAB™!
15 symmelric.
ii) A is elliptic if the imaginary part of the eigenvalues of A never vanishes.
iti) A satisfies condition P if there is an invertible matriv B € My such that
BAB™' = al +bJ, where a and b are real valued C? functions and b(z,.) does
not change sign.
w) A is of finite order if there is an invertible matriv B € My such that
BAB™! = al + bJ, where a and b are smooth and b(z,.) has only zeroes of

finite order.

Using the above notation, we will prove the

Theorem. Let U € CY(IR?, IR*). Assume that one of the following conditions
holds:
1) A is a symmetrizable C' matriz valued.

2) A is an elliptic C* matriz valued.
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3) A satisfies P condition.
4) A is of finite order.

Then U = 0 is the only solution of (1.1) and (1.2), near ¢ = 0.

It is easy to see that the proofs given below allow us to consider f as a continuous
mapping which is C! with respect to . The corresponding for the linear case
were proved by Caldéron [3] (under assumptions 1) or 2)) and by Strauss and
Treves [4] (under assumptions 3) and 4)). Here we extend these theorems to
the semilinear case. The proof is organized as follows. In section 2, we prove
that the theorem is true if A satisfies condition (i). In sections 3, 4 and 5, we

prove the same for conditions (ii), (iii) and (iv), respectively.

2. The Symmetric Case

This is a well known result. The technique is called Energy Method. We include

it here for our very simple situation for the sake of completeness.

Step 1

We start by considering a special case with two restrictions, namely: (a) the
matrix A; is symmetric, and (b) supp U is contained in @ = (—r,r) x (=T,T)U
[—r,r] x {T}.

We may write

t=—( gl o).

where a,b,c € C' are real valued functions.

Multiplying equation (1.1) on the left by 2 U* we obtain:
2UNT0 + A10)U = =2 U f(z,t,U),
that is,

0i(u? 4+ ud) — abpu? — cOuZ — 260, (uruz) = —2ur fi — 2us fo.
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Integration with respect to z yields

O /(u% + ul)dz = — /(axuf + cpul + 2buyug)dz — 2/(u1f1 + uy fo)dz,

hence

ol (., DI < MU DI

Here, [JU(.,1)|]* = [(u}+u3)dz and M depends only on ||az||0o, |[bs|eos ||¢x|loos

(1) lloos 11(f2)ulloos 1(f1)uzlloo and [[(f2)uzlloo- Integrating this inequality
with respect to ¢, and using U(z,0) = 0, we obtain

t
(DI < M [, s)]Pds.
With the notation ¢(t) = [y |[U(.,s)||*ds, this can be recast into the form
(1) < Mg(t).

Now, because of the assumption that ¢ € C*' N L*, there is h > 0 such that
B(h) > &(t), Vt € [0,h]. So ¢(h) < Mhe(h), therefore ¢(h) =0, if 0 < h < 37.

Step 2

Now we consider the general case, where A is symmetrizable and there is no
restriction on supp U. By the usual parabolic change of variables, (see [4]),
this reduces to the case that supp U(.,t) is a compact subset of (—r,r) for each
t € (=T,T). Also, by hypothesis there is an invertible B € M, such that
A; = B7'AB is a symmetric matrix. Thus, there exists a vector valued C!
function V such U = BY. Therefore,

(10y + A0 U = (10, + ADy)BY = (B0O; + ABO,)V + (B: + AB,)V =
B(0y+ A10,)V + (B + AB,)V.

Substituting this result in (1.1) and multiplying it by B~! we obtain

[10; + A0, + (B™'B; + B AB,)|V + B~ f(z,t, BY) = 0.

Then, the conclusion of the proof follows from the special case considered in

Step 1.
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3. The Elliptic Case

Step 1

We start by considering the special case with three restrictions. These are:
(a) A=al+p3J,

where a,3 € C' are real valued functions and (3 never vanishes, (b) U has
compact support and is of class C'(Q), where Q is a rectangle of the form
(—=r,r) x (=T,T),and (c) f(z,l,us,uz) = 0. Without loss of generality we may
assume that (z9,0) = (0,0).

Let ¢ € C*(IR) be a real valued function and consider

k¢
2

V(z,t) = e2U(x,1).

Then, (1.1) reduces to:

ke,

(10, + @l + pI0: = ="

nv=o,
where k > 0 is a large parameter to be chosen later.

Setting

¢t

M=10;+ald, and N=——1+(3J0,,

we can thus write
s T
/ MY + NV|[2dt = / (IMV|2+ |INVI[E+2 < MV,NV >) di.  (3.1)
0 0
First we study the last integral:

i T
/ < MV,NV > dt = —gf Gidh(vied) dxdt——/ / ey (v2+vl)dedt
0 0

T pr —_—
_/ / B@wﬁwﬂxdt%—/ 80,01 0yvadadl

0o Jor L

k T o

Z/o /_ (Bee + (@e)o) (v + v3)dadl

T pr
‘|'/0 g (—B04v10,v2 + B0yv10pv7)dxdL. (3.2)
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Call I the last term on the right hand side of (3.2). We have

2I' = 2f0T J7 (= B0 0509 + BOsv10v9)ddl = foT [, Be(v10509 — 020,01 )dadl
+ foT JL (= Brv10pv2 + Brv2divr )dzdt = foT f:r(%vl,@aﬂa — %vzﬁaxvl)d:vdt
+J3 7 (—01B:00v2 + vaBehvr)dadt = — [ < &IV, NV > di

—J < LIV BTV > dt — [ < MV, BV > dt+ [ < ald,V, 3.V > di.
By substituting I' in (3.2), we get

fo <MV,NV >dt =% [T [" [dut(ag).](vi+v3)dedti—3 [ < %1V, NV > dt
— <LV By > dt— [T < MV, B JV > dt+ L[] < aZ IV, NV > di
30 <oV, Ry > di.

Taking absolute value in the last identity we have, for each € > 0,

2| fy < MV, NV > dt| < EMazq{|ut(ad)ol} i [[VIPdt+EMazo{|51} o |[VI|dt
+ely INVIPdi+EMazo{| G} fo [[VIPdtte fo (IMV|Pdi+tMazo{|:} fy [[V]]*dt
+iMazo{la |} i VIR + ¢ Jy |INVIPdt + EMazq{la e} fy |[V][dL.
Therefore,

T T T
2|/ <MV,NV>dt|§OE/ ||V||2dt+2c/ (IMV|[2 + [INV|[?)dt
0 0 0

Here C. = £Cy + 10y with Oy = Maz{|¢u + (ade)s|} + 2Ma$Q{|%¢t|} +
]WaxQﬂa Ly} and Cy = Ma.rQ{|oz |}—|—MaxQ{| L1+ Mazg{|B:]}. Observe
that C; and C; are independent of ¢ and k.

We obtain,

T L T
[ MR+ NI+ 2 [ v <
0 0
A T T
< / || CU||2dt + 26/ (IMV|[2 + INV][P)dt + 05/ V||t
0 0 0
Where £ = 10, + Ad,. Taking ¢ < % we can therefore conclude that
k
5 / U2 dedt < / | cuUPdedl + C. / M\ 2. (3.3)
Q Q Q

Step 2
Let us now consider the more general case where we pose no restrictions on A

and on the support of U, but retain the restriction that f(z,tus,us) = 0.
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Then, again by the usual parabolic change of variables, we can assume that
supp U(.,t) is compact in (—r,r) for each t € (=T, T).
From linear algebra we know that there is an invertible B € M (IR) such that

AB = B(al + BJ)

where o, 3 € C! and 3 never vanishes. As in step 2 of section 2, there exists a
vector valued C'! function V such that & = BY. Therefore

(10, + Ad,)U = (10, + AD,)BY = (B0, + ABJ,)V + (B + AB,)V =
B0y + (ol + 8J)0:)V + (B + AB,)V.

Multiplying by B~ we obtain:

[10; + (ol + B3J)8; + (B™'B; + BT'AB,)]V = 0.

By repeating the procedure of Step 1 we conclude that inequality (3.3) also
holds in this situation.

Step 3

We now consider the general case, i.e., we also drop the condition on f. We
expand a nonlinear f into a first order Taylor expansion at (z,¢,0,0). In this
way, we write f as a linear operator F'(z,t) obtaining that f is written as a
linear operator F(x,t) in (u1,uz) with C' entries. Now adding this term to £

we have a new N in the above discussion, namely

N = —%Jr,@JaﬁF.

By inspection of the arguments used in Step 1, we see that the presence of this
modified N will only imply different constants in equation (3.3).

Step 4

Now we use the inequality (3.3) to prove the uniqueness of the solution of (1.1)-
(1.2). For that purpose, we take ¢(1) = i#ﬁ, €= %, T > 0 small such that
Ci <1, and ko > ISTC&. The proof of the following proposition follows directly
from (3.3).

Proposition 3.1. There is a constant C' > 0 such that Yk > ko, we have

k k(t—T)2 k(t—T)2
5/ T |Z/{|2dmdt§0/ T | CU Pdwdt.
Q Q
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for alld € CY(Q) of compact support.

We now multiply ¢ by a cut off function 6§ € C*°(IR) satisfying () = 0 for
t>T,0(t) =1for t <Ti <T. Then, from Proposition 3.1, it follows that

/##Hom dwdt < _/ 5 | L(0U) P dadt.
Q

Let My denote the operator describing multiplication by §. We then express
the right hand side of the above inequality in terms of the commutator of £

with My to obtain
T G T C' T t—1)2
[ e < [ S e, Mojupa,
0 T1

for sufficiently large k and 0 < T3 < T}, where C’ is a new constant. From the

fact that e*(t=T)°/4 is a decreasing function in [0,T], we have
C k T To-T)? &
[ wapar < MO [, Mo Pt
0 T

Finally, letting k& — oo, we obtain (0,0) ¢ supp U, from which the uniqueness

follows.

4. The Condition P Case

Step 1
We start by considering a special case with two restrictions, namely that the

matrix A; can be expressed as

Ay = b(z,t)J]

and that

U3

fx,,U) = ( “1 )

where b, ¢ € C*(IR?) are real valued functions and b > 0.

As before, we work in a neighbourhood of the origin with (z¢,0) = (0,0). Then

L=10,+bJ0,+cl. (4.1)
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Let U be of class C'(Q), where @ is a rectangle of the form (—r,r) x (=T, T),
such that supp U(.,t) is compact in (—r,r) for each t € (=T, T).

The content of the following proposition is a Carleman’s estimate for this case.

Proposition 4.1. Suppose that there are fo, fi,0 € C*(IR) real valued functions
defined in a neighbourhood Q) of the origin such that

Oufi + 0a(bD,f) > 0, (4.2)

where f(x,t) = fo(x) + f;(x) b(z,s)f1(s)ds.

Then there are C, kg > 0 such that

k/@ 2 U Pdedt < c];? () < LU, JOU > |+ k| < LU, JU > |}dedt (4.3)

Vk > ]C().

Proof: With ¢(z,1) = [ c(z,s)ds and d = —c, we have 'LV = [[9, +
bJ (0, + d)J4 where V = e~ U.

So we write
e*er LV = [M + bIN]W,
where W = ¥ U, M = 10, — bk f,J + bdJ and N = 19, + kf;J. Observe that
M*=—-M, N*= —N and [M, N] = k{0, fi + 0,(00,.f)}J — (bd),J.
From 2 < MW + JONW,—JNW >=2 < MW,—JNW > —be|NW|2d:vdt

and

2< MW, —JNW >=< W, J[M,NIW >

we get
2 < MW + JBNW, —JNW >= — < W, (k{d.f1 + 0:(b0,f)} — (bd),)IW >
~2 [, )| NW|?dzdt.

Therefore, from (4.2) we conclude that, for large £,

2 < MW + JbNW, JNW >> k:C/ IW|2dedt,
Q
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which implies (4.3). This concludes the proof of Proposition 4.1.

Using the above proposition, we can prove uniqueness for the special case con-
sidered. As in [4], we argue by contradiction. Let J be a interval of IR and
0 < T such that U(z,t) # 0, V(z,t) € J x (0,T). Then we choose 8 € C*(T),
with

i) Graph(@)Nsupp U # 0.

i) t > 0(x) for every (z,t) € supp U.

Take (z9,0(z0)) € Graph(8)Nsupp(U). We can assume that b(zg,8(z¢)) = 0,
because otherwise the problem reduces to the elliptic case discused in the pre-
vious section.

Now consider
fo(z) = —c(z — 20)* and  fi(t) = —e7,

where ¢ > 0. For these choice of 0, fo and fi, define f as in Proposition 4.1.
As in the elliptic case, we multiply ¢ by a cut off function and then use the
Carleman estimate.

In this case, we have to localize the support of the obtained function near the
segment [y joining (zo, 0(x0)) to (zo, {(x0)), where t(xo) =sup{t > 0(z0); b(xo, s) =
0, O(zo) < s <t}. (From the equation we have that #(z¢) < T'). Let U; be an
open neighbourhood of [y such that (4.2) is valid in U for ¢ small. Take U, be
an open neighbourhood of [y such that its clousure is contained in U;. Consider
§ > 0 small and define U = {(z,t) € Uy; f(x,1) > —5}.

Let g € C*(U;) be compactly supported such that g(z) = 1 for z € Uy. Clearly,
there is a dp > 0 so that supp grad(g)N supp U C (U{S‘J)C. Let 0 < &; < dg such
that — f(2,t) < d1; then there is a neighbourhood Us of Iy with Us C U nU,.
As in the elliptic case, applying Proposition 4.1 to V = glf, we have

/ U2 dzdt < CeHCo=8),
Us

where C' is a constant depending only on ¢ and its derivatives on U;. As before
this estimative implies the uniqueness result.

Step 2
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The general case will be a consequence of the following procedure :

i) Using the first degree Taylor’s expansion the nonlinear term is transformed
into a linear one in Y.

ii) By the usual convex change of variables we can assume the retriction on the
support of U.

iii) Now, integrating along the characteristic of 0; + a0, we reduce the general
case to A; = bJ. Observe that the reductions made above remain unchanged.
iv) For the zero order term CW, analogous to cIW, we determine a similar ¢;
by solving the following system of ordinary differential equations: 0;C:(z,1) =
Ci(z,1)C(2,t) with C(2,0) = I. And then a direct inspection of the above
proof shows that the final estimate holds.

5. The Finite Order Case.

As in the previous cases we consider a simple situation. Let

L=10;+ b(x,1)J 0 + c(z,t)],

where b, ¢ € C*°, and suppose that ¢ — b(0,1) has a zero of finite order at ¢t = 0.
As in [4], the proof of the uniqueness result will follow from the steps given
below.
Step 1

We can reduce the study to a operator of the form:
L=10;+ (al + /BJ)tlax +91,

where 3(0,0) # 0 and [ € IN.

Step 2

Assume that £ has a more general form than in Step 1, namely:

L =10;+ (ol + BI)D, + %1,



90 L. COSSI J. SANTOS FILHO

where o, 3 € C', v € C° and $(0,0) # 0. We perform the change of variables
X=zand T = 5; where § > 0 is small. We may assume that £ is, up to

—x2

multiplication by an invertible matrix,
L =10, + (&l + BJ)(6 — z2)+1 19, + %

where & and 3 are C! functions defined in a neighbourhood of the origin such
that ,@(O, 0) # 0, and ¥ is a continuous function. Here to simplify the notation

we kept the same coordinates (z,1) to represent the new variables (X, T).

Step 3

Consider £ as in Step 2. Then for some positive constants C, Ao, Ty and r if
A > X, V€ C®and supp V C {(z,1);0 <t < Ty, |z] < r} we have the
following estimate

X[V £ Q| 2Py 2.

As before, the uniqueness result is a consequence of this estimate.

Now we prove the statements contained in the above steps.

Proof of Step 1
By the Malgrange-Weierstrass Theorem, there are r > 0 and 7" > 0 such that
iflg]<rand0<t<T:

b(x,t) = a(:z;,t)(t’lC + al(x)tk_l + ...+ ag(2)),

where a,a; € C*, a(0,0) # 0 and a;(0) =0 for 1 < j < k. Taking f = b/a we

have the following lemma, the proof of which can be found in [4].

Lemma 5.1.
(a) There are k open sets On, ..., Oy contained on |x| < r such that the closure

of Uk, O0; = {a;|z| < r} and for any x € O;, 1 < j <k, the function
t— f(x,t) has exactly j distinct roots.

(b) In each Oj, the distinct roots of f can be represented by j functions p{ e C>,
1<i<y.
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(¢) If pi(x) is real at xo, then it is real at the connected component of xq in O;.

To reduce to the canonical form take I/ € C'!, as in the Theorem. Assume that
F=supp U # §; then there exist j and a non-empty connected component (7)]- of
O; such that FN(O; x(0,T) # 0. In fact FN(UE_ (0;%(0,T)) # 0 because U is
continuous and U%_, O; is dense, so there exists j such that FN(O; x(0,T)) # 0
which implies the existence of such a component @j.

Now, let pl < ... < p{, [ < j, the real roots of f on (’jj and take [ = 0 if there is
no real root. Define gj(x) = 0, pl(x) =sup{0, inf{pl(x), T}} for 1 <i <[ and
/3{+1(I) =T,

For 0 < i < [, define A; = {(z,1) € O; x (0,T);pi(x) < t < piya(2)} and
io =inf{i; F N A; # 0}. If 1 = 0, then Ay = O; x (0,T) and 7o = 0.

Suppose that there is (zo,t0) € F N A;, with ¢y = p{o(xo). We perform the
change of variables 2/ = # — zg and ¢/ = — pfo(:c) In these coordinates, near

(20,10), the operator L is transformed into a multiple of the operator
L =10;+ (al + B8, + 41,

where we keep the same notation (z,¢). This is done as follows:

1)By using this change of variable we get
LU = (I = (pl)ob T ) + bT Oy + U
ii) Since the matrix (1 — b(pf»‘D )zJ) is invertible with inverse given by

(I = (§)arbd ) = —————(I + (4}, )b ),

1+ ((pl)arb)

we have

(T+(p],)arbd Yo Bprmt s (14, )arb T ) A

LU = (I—(p}, )b [0+ AN

1
1+((pig)arb)?
On the other hand, b(z',t') = a(a’, ')t , where a(zj,ly) # 0. Therefore

(I + (pL)wrbJ)bJ = ol + BJ1,
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where 3(z}, 1) # 0, proving the canonical form of Step 1, for this case.

Now, suppose that F'N A;, N{t = pi,(z)} = 0; taking zo to be the middle point
of (’5_7- we consider the same change of variables as before. Under this change
of variables the set {(z,1) € @j x (0,T); t = pi(2)} is mapped onto the set
{(@,t");1" =0, |2'| < r'}, for some ' > 0.

Let ¢ =Min{e > 0;(graph of ¢’ — e = —e(a’/r")?) N A;;Nsupp U’ # O}; by
hypothesis ¢g > 0. Taking (), 1) € A;,N supp U’ such that t) = —eo(z)/r')?+eo
we have (z(,1)) € A;y. Then near this point the operator is elliptic therefore

the uniqueness follows.

Proof of Step 2
Consider the change of variables given by X = z and T = ¢/(§ — x?), with § > 0

small. Then £ becomes
- 1 - & . v
L = s ([ +2XT(al + BN0r + (al + BI)(8 - X)) T'0x + %1},

where @ and 3 are, respectively, the transformed functions of o and 3 under
the change of variables.
Multiplying £ by § — X? and then by the inverse of I + 2XT(al + 3.J), the

resulting operator is

P =18, + (&I + BJ)(S — z2)*'t'9, +

|2

Here (3(0,0) # 0 and we have returned to the notation (z,t) instead of (X, T).

Proof of Step 3
With V € C' we have supp V C {(z,1); ¢t > 0, (§ — 2?) > 0}. Consider
VY = t*W. Let Py be the principal part of the operator P. It follows that

2PV = XW+ YW,

where X = I0; + a(§ — 221410, and Y = M~ + B(6 — 2?)*141J 8.

Then we have

[PV = [[XWIE + VWP +2 < XW, YW > .
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But

2<XW. YW >=2< IOW, "V IW > 42 < &(§—2) T To,W, M\~ TW >
+2 < &(d—z?)H1! IBIW,[?((S—:EZ)H'UI JoW > +2 < ]&W,[?((S—:L’Q)H'l'll JoW >
=(I)+(II)+ (III)4 (IV), respectively.

Now, we analyze each of the terms above:
(I) = QA/{:?(Htwlt_lwl + Dt ~Vwy)dedt = A||t= W) |2
We also have
(11)] = |/\/&(6 — )L, Wz dt] < AC|[E T WP,

where C' is a constant depending on I, ||&||eo, ||02@|]|c0s T and 4.

From the fact that < 0Z,J2Z >= 0 it follows that
(II1)=0.
Finally, we consider (/V). Note that
< TOW, B(6 — 2 )T HTW >= — < IW, 3,(6 — )T, W >

— < IW,B(5 — )T TW > + < TOW, B(6 — ) TaW >
+ < IW,53,(8 — ) TIW > =2 < IW, B+ 1)(§ — )zt JOW > .

But
< IOW, B(6 — ) TOIW >= — < TOW, B(6 — ) TW > .
Therefore
(IV) = — < IW, B(6 — )T HTOW > — < IW, B(8 — )P 11 To,W >

+ < IW,3:(8 — ) TOW > =2 < IW, B(1+ 1)(§ — &) at' JOW >=

=V)e+IV)y+ (IV). + (IV)y, respectively.
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Now we study each of the terms above. We have
(IV)y = — < IW, Bi(8 — 2)FHTOW >= — < IW, 3,57 (Y — M)W >

= — < BBTIIW, YW > +X < B W, T IW >,
hence

[(IV)al < OXIETEWIE + el YW + C WP,

where (', C, are positive constants depending on [|3,37" ||, with C, depending
also on e.

For (1V), we observe that
(IV)y = =L <tTHUW, (Y = X' D)W >= NtV — L < tT'W, YW >,

thus
[(IV)s — XTI < e [YW 2 + C [ WP,

where ¢ > 0 and C. is a positive constant depending of e.

Now
(IV)e =< IW, Bo(6 — 2 )T TOW >=< 3.(86 — )T IW, JOW > .
With f = (8 — 22)!+14!3,, we can write
(IV). =< fIW, JOW >=< fIW,[X — &6 — 22 )T T,]JW >

=< fIW,XJW > — < B7LafIW, B(6 — )" T, W >
=< fIW,XJW > — < B7LafIW, (Y — X DHW > .

From this we have
[(IV)el < elIXWIP+IYWII?) + CAWIP + CXlJE2 W12,

And

(IV)g = — < IW, 2(l+1)2B(5—a) ' TOW >= — < IW,2(I+1)2B(5—2) ' TXW >

+ < IW,2(1 4+ D)z Ba(s — 22 M2 Jo,W >;
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writing the last term of the above equality in terms of Y we get

|(IV)a] < (IXWIP + [IYWI) + CIWIP + CM 02w 2,

with €' and C, chosen as before.

Then

IXWIP YW+ DA < X4 YW () (A W
(TV)s) + (IV ).

Introducing |[t=*P,V||* on the right hand side and considering the inequalities
proved before for (I) through (IV'), we have, for all Ty with 0 < Ty < 1,

IXWIP YW+ DM W < [PV +e CUXWIP + Y W)+

FOTWIP + Ol AW P,

with possible different ¢, C' and C.. Take ¢ > 0 small such that ¢C' < 1/2,
Ao and Ty sufficiently large such that CA[[t™Y2W|2 < CToA||t™*W||* and
(I+1) > C./ Ao+ CTy, for A > Ao and T' < Ty. Then using W = 1=V we obtain

A==V < Ol PoVI P,

for some positive constant C'.
Since P = Po+7/t and 4 € L* the result holds. Following the same arguments
given in the condition P case, we reduce the general case to the special one

treated above.
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