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A BI-HAMILTONIAN APPROACH TO HIDDEN KP
EQUATIONS*

P. Casati® B. Konopelchenko® M. Pedroni®

Abstract

Starting from a geometric approach to soliton equations, we intro-
duce a family of dynamical systems whose reductions lead to the hid-
den Kadomtsev—Petviashvili (KP) equations. The example of the hidden
Korteweg—de Vries (KdV) equations, obtained by means of a further re-
duction, is also discussed.

1. Introduction

In the theory of PDEs an important role is played by the evolutionary equations
that can be solved by the inverse scattering method [11]. This class of equations
is often referred to as the class of soliton equations, because they are likely to
admit solutions in the shape of a solitary wave (see, e.g., [7,12]). Some examples

of soliton equations are given by:

us — %U”T s %uur =0 (Korteweg—deVries)
o — %uzz‘z 4 %uz'uz =0 (modified KdV)
g + Uy + 2|ul?u =0 (nonlinear Schrédinger)

(e — iurw + %uuT)T +u, =0 (KP)
These equations have an infinite sequence of 1-parameter groups of symme-
tries, so that they belong to a hierarchy of evolutionary equations, and can be

considered as examples of infinite-dimensional integrable systems.
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At the beginning of the eighties it was realized by the Kyoto school [20,6]
that the KP hierarchy can be written as a family of equations for a pseudodiffer-
ential operator, and can be seen as a set of linear flows on an infinite-dimensional
Grassmann manifold (the so-called Sato Grassmannian). More recently, Adler
and van Moerbeke [1] showed that the geometry of the Sato Grassmannian,
namely, the subsets of finite codimension called the Birkhoff strata, can be used
to study the singularities of the solutions of the KP hierarchy.

Then, in [13,14] integrable systems have been constructed on the Birkhoff
strata, by means of a restriction of the usual KP hierarchy, given by constrain-
ing the independent variables (times). This has been done via the d-dressing
method, and the resulting hierarchies of integrable systems have been called
hidden KP hierarchies. In this setting, the hidden KdV hierarchies [18,2] have
been recovered as stationary reductions.

This paper is devoted to the study of the hidden KP hierarchies and of
their reductions from the point of view described in [4,8], where a family of
dynamical systems (the Central System (CS)) has been introduced, starting
from the bi-Hamiltonian approach to soliton equations [16,5]. The CS admits
a lot of interesting reductions, leading to many soliton equations. In this paper
we consider some variants of the CS, whose reductions are given by the hidden
hierarchies mentioned above.

In Section 2 we explain the standpoint of the bi-Hamiltonian theory, in
order to motivate the study of the CS. Section 3 deals with its reductions, and
contains the examples of the KdV and the KP hierarchy. A “modified” version
of the CS is recalled in Section 4, with the aim to present a first variant of
this system. In Section 5 the simplest hidden CS is studied, with some of its
reductions. A general description of the hidden CS is sketched in Section 6,
whereas the last section is devoted to some final remarks.

We would like to thank G. Falqui, F. Magri, and L. Martinez Alonso for use-
ful discussions and suggestions. M.P. is grateful to the organizers of WEDP99
for the opportunity to present these results there and for the nice atmosphere

at the workshop. Finally, we thank the anonymous referee for suggesting an
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improvement.

2. Soliton equations and bi-Hamiltonian systems

This section aims at giving some motivations for the introduction of the Central
System(s) studied in this paper. We refer to [4,8] for details, further motiva-
tions, and proofs.
Let us consider the KdV equation
1 3

Uy = Zua:xa: - §uua‘ ) (1)

and let us suppose that the function w is periodic in «. Then (1) defines a vector
field on the infinite-dimensional manifold M = C*°(S*,R) of the real-valued
map from the unit circle, namely X (u) = iuTTT — %uur The integral curves
of X are the solutions of the KdV equation. This vector field has remarkable

factorization properties. It can be written as
1 ;
X(u) = =20 (5(—tes +30%)) = Py (dH(w) | 2)

where Py = —20,, H(u) = %fsl (1um2 + u3) dz, and the differential dH;(u) is

2

defined, as usual, by
[, it (wyode = %w:()m(u +tv) forallve C(SLR).  (3)
The operator Py defines a composition law on functionals on M,
{F.GYo= [, dP(u)Po(dG(w)) do , (4)

which is R-bilinear and skewsymmetric, and satisfies the Jacobi identity and
the Leibniz rule. For this reason, {-,-}¢ is said to be a Poisson bracket on M,
and X can be thought of as an infinite-dimensional Hamiltonian system (see
[10,22]).

It was also observed [15] that X admits another “Poisson factorization”,
that is,

) = (f%a + 20, + u) (f%u) — P, (dHy(u)) (5)
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where P, = —%E)TTT + 2u0, + u, and Ho(u) = —i_sl u?dx. The operator P
defines a Poisson bracket too, say {-,-}1. This is compatible with {-,-}o, in the
sense that the Poisson pencil {-,-}5 := {-,-}1 — M-, -}o is still a Poisson bracket.
Hence M may be called a bi-Hamiltonian manifold and X a bi-Hamiltonian
vector field.

The KdV equation is well known [19] to have an infinite sequence of integrals
of motion. From the bi-Hamiltonian point of view, they can be found as the

coefficients of a Casimir function of the Poisson pencil, i.e., a function H(X)

such that
Py(dH(M)(u)) =0 . (6)

It can be shown (see, e.g., [8]) that such a function is given by H(X) =
2z [o1 h(z, 2)dx, where A = z? and h(z,z) is the unique solution of the Ric-

cati equation
hy +h? =u+ 2* (7)

of the form h = 24354 hiz~". Inserting this expansion in the Riccati equation,

one iteratively finds that

1 1 1 .
h1:§u, h2:*ZUI7 h3:§(um7u2) - (8)

Therefore H(X) = 2)\—|—ZZ-2_1 H; Nt where Hy and H; are the functions already
encountered. The coefficients H; are easily shown to be in involution with re-
spect to the Poisson brackets {-,-}o and {-,-};. The corresponding Hamiltonian
vector fields,

du

o = Xitw),  Xj =P (dH;(u) , (9)

j
are thus symmetries of the KdV equation. They form the so-called KdV hier-
archy.
The map u — h(u) defined by (8) may be considered a moment map, since

it gives us the conserved densities. Then, a natural question is: How does h(u)
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evolve when u evolves according to the flows of the KdV hierarchy? Since h is
a conserved density, we must have
g—fj = 8,HY) (10)
for suitable currents H). The important point is that the H\) can be con-
structed directly from a generic Laurent series of the form h(z,z) = z +
Y1 hi(x)z"%, even if it does not solve the Riccati equation (7). For exam-
ple, we have that
H® = h, + h? — 20y
H® = hgp + 3hhg + h% — 3hih — 3(hz + hag)
This means that equation (10) defines a system of PDEs for the coeflicients h;.
The resulting hierarchy is (equivalent to) the celebrated KP hierarchy [20,6].
Now there is a second very natural question: How do the currents HY) evolve
when h evolves according to the KP hierarchy? The answer is easy, provided
that one observes that the HU) have the form
HY =2 + Y Hiz™! (11)
I>1

and considers the space H of linear combinations (with coefficients independent

of 2) of HO := 1, HO H® _ . Indeed, the evolution of the currents is
equivalent to the invariance condition
9 Lo H, C H, . (12)
at;
This implies that, for all &,
9 H (k) .
g +HOH® e g, | (13)
ot;
that is, taking into account the asymptotic expansion of the currents,
og®) ) , L J )
5 HOgE — gUu+k) 4 N H HED L 3 HEHUD, (14)
tj =1 I=1

Again, these equations make sense for general Laurent series of the form (11)

and define, for each 7 > 1, a system of ordinary differential equations for the
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{Hlj}jygzl. Hence, we derived from the KdV equation a remarkable hierarchy of
dynamical systems. It can be shown to be strictly related to the linear flows on
the Sato Grassmannian [20,21], and can be used to linearize the KdV flows,

according to the Sato’s point of view (see [8]).

3. The CS and its reductions

In this section we recall some of the results of [4], concerning the reductions of
the Central System (14). As examples, we show how this reduction process can
give us back the KdV and the KP hierarchy. The same process will be applied
to more complicated cases in the next sections.

It is evident from (14) that the exactness property

OHU)  gHW®)
oy Ot

is fulfilled along the CS flows. Moreover, one can show:
Proposition 1. The flows of the Central System commute.

Proof: Let us compute the action of the commutator [X;, Xj] of two vector
fields of the CS on a generic current:
d OHWY 9 gH®

X GlHWy = e
[ 42 A]( ) 8tj Oty s 8t]-

(16)
Thanks to the specific form of the Laurent series H("), this quantity belongs to
H_ :=(z7',27% ...). Then we observe that, using the exactness property (15),
this commutator can be also written in the form

d 7]

[X;, Xl (HY) = | =—+ HY), —
Oty

H® | g
ot + ’

so that the invariance property (12) entails that [X;, X3](H®) belongs to the
subspace Hy. But Hy N H_ = {0}, and therefore [X;, X;3](H ) vanishes.
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When a family {X;} of commuting vector fields is given on a manifold, and
one of its members, say X,, is fixed, two reduction processes for the whole

family are naturally defined:

1. The restriction to the set of zeroes of X,,;

2. The projection along the integral curves of X,.

Of course, we can also combine these processes in order to obtain other reduc-
tions. Let us apply this simple idea to the Central System, in order to derive

the KdV hierarchy (see also [4] for the case of the so-called fractional KdV

hierarchies).

First step: from CS to KP.

We project the CS vector fields along the ¢,—flow,

ai(k) + HO k) — pr+1) 4 zk: HIIH(k—Z) + BE. (17)
1 =1

This amounts to the following “spatialization” procedure. Let us put z := ¢,
and use (17) to express H®) for k > 2, in terms of h := H®") and its 2—
derivatives. It is not difficult to see that this way we find the same expressions
of the previous section. Hence, the CS, which is a system of ODEs for the
{H;‘C}j,kzlv reduces to the KP hierarchy, a system of PDEs for the coefficients
of h.

Second step: from KP to KdV.

It is well-known from the early works on soliton equations that the KdV hierar-
chy can be obtained from the KP hierarchy by means of a stationary reduction.
The zeroes of the second KP flow are given by d, H® = 0. It is clear from (15)
that the smaller set where H®) = 2? is also invariant with respect to the KP

hierarchy. This invariant set is explicitly given by the constraint
he +h* —2hy = 2%,

allowing one to write all the coefficients h;, for ¢ > 2, in terms of hy:

1 1 1,
h2 = _§h1$ 9 h3 = Zhlz.z‘ - §h1 ’
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Therefore, we have obtained a hierarchy for hy, which is the KdV hierarchy.
One can check that

ohy 1
_:_hrrz‘_hhra 1
s 4 e (28]

which is the KdV equation (1) after putting u = 2h;.

Remark 2. The second step is the restriction to the Laurent series h such
that H® = 22, This is clearly equivalent to say that z*(H,) C Hy. But this
condition always leads to a restriction of the CS, because
(i N H(j)) (2H®) = 22 (i . H(n) (HW) € 1
ot ot ¥
at the points where z%(H;) C Hy. In the following sections we will often use
this kind of restriction, and we will denote by S, the subset of the currents

satifying this constraint.

4. The modified CS and its reductions

It turns out that all the important properties of the CS follow from the invari-
ance relation (12), and do not depend on the specific form of the currents H ).
Hence, we can change the definition of these currents and, via the condition
(12), we can define new dynamical systems with the same properties of the
CS. In this section we consider the modified CS introduced in [17], and we will
present its simplest reductions, namely, the modified KP and the modified KdV
hierarchy.
We consider currents of the form
H® =k 43" gk, fork>1, (19)
1>0
and we suppose Hy to be the span of (H("), H® ...). Then the invariance
condition (12) still defines a system of ODEs for the coefficients {H}}x >0,
explicitly given by
oH®)
ot;

k-1 j-1
+ HO gk — gtk o Z HIJ'H(k—I) + Z HFHG-Y (20)
=0

=0
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We call this hierarchy the modified Central System (mCS). Since in the proof
of Proposition 1 we used only the invariance condition (12), we can assert that
the mCS flows commute. Hence, the same reduction processes can be applied

to these equations. Let us see some examples.

First step: from mCS to mKP.
We project the mCS vector fields along the t;—flow,

GH®) k=1
= HOF® = gt 4 S~ gt g-h 4 geEg® (21)
if

=0

This reduction can be described by putting « := ¢; and by using (21) to express
H®) for k> 2, in terms of h := H") and its z—derivatives. For example,

H® = hy + h? — 2hoh

H®) = hyy + 3hhy + B3 — 3ho(hs + h*) — 3(how — b + hi)h .
Thus, the mCS reduces to the modified KP (mKP) hierarchy, a system of PDEs

for the coefficients hg, hy,... of h. This system still has the conservation laws
form )
oh  OHV :
L, - (‘)TH(J) .
ot ot v
In particular,
oh ,
a_tz = 0y (hy + h? — 2hoh)
oh ‘ 3 2y _ 2
ar. = Or (oo + 3hhs + b = 3ho(hs + h*) = 3(hos — ho® + hi)h) .
3

Second step: from mKP to mKdV.
This is another standard stationary reduction. The zeroes of the second mKP
flow are given by 8,H?) = 0, and the subset where H(®) = 22 is also invariant

with respect to the mKP hierarchy. It is given by the constraint
h.r + h2 — Qh()h = 22 3

allowing one to write all the coefficients h;, for 7 > 1, in terms of hy:

1 ; 1 1
hl = —5(—]10@ + hoz) 3 h2 = Zh()xz - §h0h01‘ ’
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This way we obtain a hierarchy (called the mKdV hierarchy) for the single field

ho. The first nontrivial equation is

ah() 1

a_tg = 4(h().7:.17.7: - Gh’Uzhol‘%

which is the mKdV equation written in the introduction.

5. A hidden CS and its reductions

In this section we perform a more substantial change of the Central System

(14). The currents have the form

H® =2+ qH* 2+ > HF, k>2.

I>1
The equations of motion are always defined via the invariance condition

d . .
(a—t+H(])>H+CH+7 ]227

J

where Hy = (HO, H®  H® ) and H® = 1. They have the explicit form

aH(k) ) ) k=2 Jj=2 ) .
— + HO gk —gU+k) o 3 Hig®-h 4 3 HFHU-D L g gl+)
J =1 =1
+HE HO) 4 HE H HO) + HY Hi 4+ H HE + Hi + HY (22)

Once more, the flows commute, and we can reduce the hierarchy as we did in

the last two sections.

First step: spatialization with respect to = := 5.
For k > 2 we have
OH®
Ox

+HY H® 4 B H® H® 4 B* H?+ B3 H* + H + HY

k=2
+ HO k) — fp(k+3) 3 w4 Bhpvyge gkt

=1

Hence H, for i > 5, can be written in terms of H®, H®) H® and their

z-derivatives.
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Second step: restriction to S,.
We must impose that z?(H;) C Hy. This implies H® = 22, H® = 24 and

the following constraint on h := H®),
BTh -|— h2 = 26 + 2/7,_124 + (2h1 + hil)Zz + 2(h3 + h—lhl) s

It allows us to compute all the coefficients of & in terms of h_y, hy, and k. The

first nontrivial equations of the reduced hierarchy are

é?h_l
=i h i Qh_ h_ z

o 1 1th_q

dhy

—— = hgy—2b_15hy — h_thig

Dt ’ e

oh 1
0'—L53 - Zh‘l-rm — hihiy — 2h_1.hs — 2h_1hs,

It can be shown that this hierarchy coincides with the simplest hidden KdV
hierarchy of [18], whose associated linear problem is a Schrodinger equation

with energy-dependent potential.

6. General examples of hidden CS

The aim of this section is to give a general class of examples of hidden Central
Systems. Particular cases are given by the “standard” CS presented in Section
3, by the mCS of Section 4, and by the system (22) studied in the previous sec-
tion. We will also obtain, by means of a reduction, the hidden KdV hierarchies

introduced in [18].

Let us fix a strictly increasing sequence of nonnegative integers,

S = 4805 8i50:5 } 5

with the property that there exists ng € N such that s,+; = s, for n > ng. Let

us consider currents %) for s, € S, of the form

HO) = 5% 4 S g%
¢S
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Then we define the hidden Central System (hCS) associated with S to be the

family of equations defined by the invariance condition

(8?% + H(sk)> H, cH,, sg€ES, (23)
where H, is the span of {H(®}, cs. Tt can be easily checked that this gives,
for each s, a system of ODEs for the coefficients { H%%};, cs1¢s. The standard
CS corresponds to the choice S = {0,1,2,...}, after the restriction to H(®) =
1. The mCS is obtained for S = {1,2,3,...}, whereas the system (22) of
the previous section comes from the choice S = {0,2,3,...}, again after the
restriction to H(©® = 1.
It is not difficult to mimic the proofs of Section 3 in order to show that the
flows of the hCS commute, and that the exactness condition
oH)  gH )

— : S 24
O 0L, 0 0RE (24

holds. Thus we can perform also for this system the reduction processes dis-
cussed in the previous sections.
Before giving some examples of reductions, we observe that (24) implies the

existence of a function (¢, %, ,...) such that

logyp = H*)

at,,

The asymptotic expansion of the H(#) entails that

Y= (1 +wpz! +...)exp (Z (A Z bjzj)

SKES JES5,320
where b;(ts,,1s,,. .. ) satisfies
oL J—
o, U

These remarks could be used to make a comparison between the results pre-
sented here and those of [13,14]. In particular, one could show that ¢ is a
(desingularized) wave-function, and the b; give constraints on the times of the

KP hierarchy.
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Now we will explain how to recover the hKdV hierarchies in this formalism.
We must consider the hCS associated with S = {0,2,4,...,2n,2n 4+ 1,2n +
2,...}. Then the currents have the form

HW = 4% 4 ZHi'fziHZZi_l + Z HZ' sg €S,

i=1 <-1
and we can restrict to H(©) = 1.
As usual, the first step is a spatialization, in this case with respect to z :=

tons1. The projected hierarchy is a system of PDEs for the currents
H(2), H(4), . H(Zn)’ H(Zn-l—l)’ H(2n+2)’ H(2n+4)’ . H(4n) .

The second step is the restriction to the subset S, of the set of the stationary
points of the second flow. This subset is defined by the condition z*(Hy) C Hy,

which implies H(®**) = 2?* and the following constraint on A := H®"+1),

2" = hy + B = p(2?) (25)

where p(2?) = Y%, u;z* is a polynomial in 22 whose coefficients are polynomials
in the coefficients of h. In the case n = 1, already discussed in the previous

section, we have seen that p(z?) = ugz® 4 w122 + ug, with
Ug = 2h_1 ) Uy = 2h1 + hz_l N Uy = 2(h3 —|— h_lhl) . (26)

Equation (25) shows that the associated linear problem is a Schrodinger equa-
tion with energy-dependent potential. Indeed, in terms of the wave-function
it reads
Vow = (272 4 () ¥ .
It can be checked that the constraint (25) gives all the coefficients of h in terms
of
h_onitsP_ongsy -y ho1 by hay oo hopyy -

The resulting hierarchy can be shown to be a reformulation of the hidden KdV
hierarchy of [18]. In the case n = 1 the isomorphism is explicitly given by

equations (26).
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7. Final comments

1. In [9] the well-known stationary reductions of the KdV hierarchy are studied
as suitable reductions of the CS, and the separability of these finite-dimensional
integrable systems is recovered in the framework of bi-Hamiltonian manifolds.
It seems worthwhile to investigate the corresponding reductions of the hidden
CS, and their separability as well.

2. A first relation between the approach presented here and the d-method of
[13] to study the hidden KP hierarchies has been shown in the previous section.
It would be interesting to understand better this link, and to show the explicit
relation with the desingularization procedure of [1] and with the geometry of
the Sato Grassmannian.

3. In this paper we have given the simplest examples of reductions of hCS,
but it is clear from what we said in Section 3 that one can choose an arbitrary
time ¢, for the spatialization, and then another time t,, for the restriction
to z%(H;) C Hy. In [3] the hCS of Section 5 is reduced according to the
choice s; = 3 and s; = 4. The resulting hierarchy seems not to have been ever
considered in the literature.

4. As already mentioned at the end of Section 2, a linearization of the “stan-
dard” CS has been performed in [8]. It should be investigated whether this

procedure can be applied also to the hidden CS.
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