

©2000, Sociedade Brasileira de Matemática

GLOBAL ANALYTIC HYPOELLIPTICITY AND PSEUDOPERIODIC FUNCTIONS

Adalberto P. Bergamasco * D Wagner V. L. Nunes D Sérgio Luís Zani D

Abstract

We show that a class of overdetermined systems on the 3-torus associated to a closed 1-form c on the 2-torus $\mathbb{T}^2 \simeq \mathbb{R}^2/2\pi\mathbb{Z}^2$ is globally analytic hypoelliptic if and only if every $B: \mathbb{R}^2 \to \mathbb{R}$ such that $dB = \Im c$ is an open map at each point.

Resumo

Mostramos que uma classe de sistemas sobre-determinados no toro \mathbb{T}^3 que está associada a uma 1-forma fechada c no toro $\mathbb{T}^2 \simeq \mathbb{R}^2/2\pi\mathbb{Z}^2$ é globalmente analítica hipoelítica se, e somente se, toda $B: \mathbb{R}^2 \to \mathbb{R}$ tal que $dB = \Im c$ é uma aplicação aberta em cada ponto

1. Introduction

We consider a system $\mathbb{L} = (L_1, L_2)$ of complex vector fields on the torus $\mathbb{T}^3 \simeq \mathbb{R}^3/2\pi\mathbb{Z}^3$ of the form

$$L_{j} = \frac{\partial}{\partial t_{j}} + c_{j}(t)\frac{\partial}{\partial x}, j = 1, 2,$$
(1.1)

where each c_j is a complex-valued, real analytic function defined on the torus \mathbb{T}^2 .

Let $c = c_1 dt_1 + c_2 dt_2$ and write c = a + ib, $a = a_1 dt_1 + a_2 dt_2$, and $b = b_1 dt_1 + b_2 dt_2$, with each a_j, b_j real-valued.

AMS Subject Classification: Primary 35H05.

Key words and phrases: global analytic hypoellipticity, pseudoperiodic functions, overdetermined systems, stationary phase.

^{*}The first author was partially supported by CNPq.

Define $C: \mathbb{R}^2 \to \mathbb{C}$ by $C(t) = \int_0^t c$ and write C = A + iB, where $A(t) = \int_0^t a$ and $B(t) = \int_0^t b$.

Recall that a system \mathbb{L} as in (1.1) is formally integrable (see [T]) if $\frac{\partial c_1}{\partial t_2} = \frac{\partial c_2}{\partial t_1}$ or, equivalently, that the 1-form

$$c = c_1 dt_1 + c_2 dt_2$$

is closed. In this case, we set for $j=1,2,\ c_{j0}=(2\pi)^{-1}\int_0^{2\pi}c_j(t)\,dt_j,\ a_{j0}=(2\pi)^{-1}\int_0^{2\pi}a_j(t)\,dt_j,$ and $b_{j0}=(2\pi)^{-1}\int_0^{2\pi}b_j(t)\,dt_j.$

We need two more definitions that are taken, along with some important results, from Arnold's article [A].

Definition 1.1. We say that a function $H: \mathbb{R}^2 \to \mathbb{R}$ is a pseudoperiodic function if $H(t+\tau) = H(t) + \omega(\tau)$, for all $t \in \mathbb{R}^2$ and $\tau \in 2\pi\mathbb{Z}^2$, where $\omega: 2\pi\mathbb{Z}^2 \to \mathbb{R}$ is a monomorphism.

In the case where H=B as above, B is a pseudoperiodic function if, and only if, the periods b_{10}, b_{20} of the closed 1-form b are incommensurable, that is, linearly independent over \mathbb{Q} . In that case we may write $B(t) = P(t) + b_{10}t_1 + b_{20}t_2$ with P 2π -periodic in each variable.

Definition 1.2. We say that a smooth function $H: \mathbb{R}^2 \to \mathbb{R}$ is in general position if it has no degenerate critical point and has all critical values distinct.

Our main goal is to give a characterization of those systems \mathbb{L} which are globally analytic hypoelliptic; this means that the conditions $u \in \mathcal{D}'(\mathbb{T}^3)$, $f_1, f_2 \in C^{\omega}(\mathbb{T}^3)$ and

$$L_j u = f_j, \ j = 1, 2 \tag{1.2}$$

imply $u \in C^{\omega}(\mathbb{T}^3)$.

Recall the local version of this property: \mathbb{L} is analytic hypoelliptic if, for every open subset $U \subseteq \mathbb{T}^3$, the conditions $u \in \mathcal{D}'(U)$, L_1u , $L_2u \in C^{\omega}(U)$ imply $u \in C^{\omega}(U)$.

Our main result is as follows.

Theorem 1.3. Let \mathbb{L} be as in (1.1) a formally integrable system. We assume that $B = \int_0^t b$ is a pseudoperiodic function in general position. Then each of the following properties is equivalent to the other two:

- (i) L is globally analytic hypoelliptic;
- (ii) L is analytic hypoelliptic;
- (iii) B is an open map at each point.

In fact (ii) is equivalent to (iii) by [BT] and these are also equivalent to the hypocomplexity of \mathbb{L} (see [T]). Note that the implication $(ii) \Rightarrow (i)$ is trivial. Therefore all we have to do is to prove that $(i) \Rightarrow (iii)$.

In order to prove $(i) \Rightarrow (iii)$ we assume that (iii) does not hold and show that (1.2) has singular solutions, that is, there exist $u \in \mathcal{D}'(\mathbb{T}^3) \setminus C^{\omega}(\mathbb{T}^3)$ and $f_1, f_2 \in C^{\omega}(\mathbb{T}^3)$ such that $L_j u = f_j, j = 1, 2$.

In section 2 we show how to do this in a special case; we use the method of stationary phase. In section 3 we prove that the general case can be reduced to the special case of section 2, by means of diffeomorphisms of the torus; we use in a essential way results of [A], especially the existence of a transversal to the level sets of B.

2. A special case

Proposition 2.1. Let \mathbb{L} be as in (1.1) a formally integrable system. We assume that $B = \int_0^t b$ is a pseudoperiodic function in general position. In addition suppose that $b_{20} < b_{10} < 0$, b(0,0) = 0, C(0,0) = 0, and the maximum of B over $[0,2\pi]^2$ is not attained at the boundary. Then \mathbb{L} is not globally analytic hypoelliptic.

Proof: Let

$$M \doteq \max_{[0,2\pi]^2} B = B(t^*) > 0 \tag{2.1}$$

where $t^* = (t_1^*, t_2^*) \in (0, 2\pi)^2$.

Let $M' = \max_{t_1 \in [0, 2\pi]} B(t_1, 0)$ and $M'' = \max_{t_2 \in [0, 2\pi]} B(0, t_2)$. Then we have M' < M and M'' < M.

If $u \in \mathcal{D}'(\mathbb{T}^3)$ is a solution to (1.2) then the compatibility condition $L_1 f_2 = L_2 f_1$ must be satisfied; set

$$h \doteq L_1 f_2 = L_2 f_1. \tag{2.2}$$

Our plan is to choose $h \in C^{\omega}(\mathbb{T}^3)$ and obtain f_1, f_2 from (2.2) and then obtain u from (1.2). More precisely we will look for h, f_1, f_2 and u in the form of a partial Fourier series in the x-variable, as follows:

$$u(t,x) = \frac{1}{2\pi} \sum_{n=1}^{\infty} \hat{u}(t,n)e^{inx}$$

$$f_j(t,x) = \frac{1}{2\pi} \sum_{n=1}^{\infty} \hat{f}_j(t,n)e^{inx}, j = 1, 2$$

$$h(t,x) = \frac{1}{2\pi} \sum_{n=1}^{\infty} \hat{h}(t,n)e^{inx}.$$

If we set

$$L_{jn} = \frac{\partial}{\partial t_j} + inc_j(t), j = 1, 2$$

we are led to the equations

$$L_{1n}\hat{u}(t,n) = \hat{f}_1(t,n), n \ge 1, \tag{2.3}$$

$$L_{2n}\hat{u}(t,n) = \hat{f}_2(t,n), \ n \ge 1, \tag{2.4}$$

$$L_{1n}\hat{f}_2(t,n) = \hat{h}(t,n), n \ge 1, \text{ and}$$
 (2.5)

$$L_{2n}\hat{f}_1(t,n) = \hat{h}(t,n), \ n \ge 1.$$
 (2.6)

Since $b_{10} \neq 0$ and $b_{20} \neq 0$ we can conclude that for every $n \geq 1$, each of the equations (2.3)-(2.6) has a unique 2π -periodic solution for arbitrary 2π -periodic right-hand sides. Furthermore if the right-hand side is real analytic so is the solution. In fact we can write formulas for such solutions, namely

$$\hat{u}(t,n) \doteq d_{1n} \int_{0}^{2\pi} e^{-in\{C(t_{1},t_{2})-C(t_{1}-s_{1},t_{2})\}} \hat{f}_{1}(t_{1}-s_{1},t_{2},n) ds_{1}$$

$$\hat{u}(t,n) = d_{2n} \int_{0}^{2\pi} e^{-in\{C(t_{1},t_{2})-C(t_{1},t_{2}-s_{2})\}} \hat{f}_{2}(t_{1},t_{2}-s_{2},n) ds_{2}$$

$$\hat{f}_{1}(t,n) \doteq d_{2n} \int_{0}^{2\pi} e^{-in\{C(t_{1},t_{2})-C(t_{1},t_{2}-s_{2})\}} \hat{h}(t_{1},t_{2}-s_{2},n) ds_{2} \qquad (2.7)$$

$$\hat{f}_{2}(t,n) \doteq d_{1n} \int_{0}^{2\pi} e^{-in\{C(t_{1},t_{2})-C(t_{1}-s_{1},t_{2})\}} \hat{h}(t_{1}-s_{1},t_{2},n) ds_{1}, \qquad (2.8)$$

where $d_{jn} = (1 - e^{-2\pi i n c_{j0}})^{-1}$, j = 1, 2, for $n \ge 1$.

Note that there exists $\kappa > 1$ such that

$$\kappa^{-1} < |d_{in}| < \kappa, j = 1, 2, n \ge 1.$$
(2.9)

We can also write

$$\hat{u}(t,n) = d_{1n}d_{2n} \int_0^{2\pi} \int_0^{2\pi} e^{-in\{C(t) - C(t-s)\}} \hat{h}(t-s,n) \, ds_1 \, ds_2.$$
(2.10)

Set $\psi(t) \doteq \{M + K[2 - \cos t_1 - \cos t_2]\} + i\{a_1(0)\sin t_1 + a_2(0)\sin t_2 - A(t^*)\}$ where M is as in (2.1) and K > 0 will be chosen later on.

We choose $\hat{h}(t,n) = e^{-n\psi(t)}, n \ge 1$.

We have, for any K > 0, $|\hat{h}(t,n)| \le e^{-Mn}$, $n \ge 1$, $t \in [0, 2\pi]^2$, which implies, for some $0 < M_1 < M$ and some $\delta > 0$, $|\hat{h}(t+it',n)| \le e^{-M_1 n}$, $n \ge 1$, $t \in [0, 2\pi]^2$, and $|t'| < \delta$. Therefore $h \in C^{\omega}(\mathbb{T}^3)$.

Formulas (2.7), (2.8), (2.10) become

$$\hat{f}_1(t,n) = d_{2n} \int_0^{2\pi} e^{-n\{i[C(t_1,t_2) - C(t_1,t_2 - s_2)] + \psi(t_1,t_2 - s_2)\}} ds_2, \qquad (2.11)$$

$$\hat{f}_2(t,n) = d_{1n} \int_0^{2\pi} e^{-n\{i[C(t_1,t_2) - C(t_1 - s_1,t_2)] + \psi(t_1 - s_1,t_2)\}} ds_1, \qquad (2.12)$$

$$\hat{u}(t,n) = d_{1n}d_{2n} \int_0^{2\pi} \int_0^{2\pi} e^{-n\{i[C(t) - C(t-s)] + \psi(t-s)\}} ds_1 ds_2.$$
 (2.13)

Let $\phi(t,s) \doteq i[C(t) - C(t-s)] + \psi(t-s)$ be the factor appearing in the exponent in the integral, that is,

$$\phi(t,s) = i[C(t) - C(t-s)] + M + K[2 - \cos(t_1 - s_1) - \cos(t_2 - s_2)] + i[a_1(0)\sin(t_1 - s_1) + a_2(0)\sin(t_2 - s_2) - A(t^*)].$$

Let
$$\varphi(t,s) \doteq -\Re(\phi(t,s)) = B(t) - B(t-s) - M - K[2 - \cos(t_1 - s_1) - \cos(t_2 - s_2)].$$

We now make a detailed analysis of the values of $\varphi(t,s)$. We claim that $\varphi(t,s) \leq 0$, for $t, s \in [0,2\pi]^2$.

Provided K > 0 is large, the main contribution to the value of (2.13), as $n \to \infty$, comes from small neighborhoods of points where $2 - \cos(t_1 - s_1) - \cos(t_2 - s_2) = 0$; thus we proceed to look at such points.

We claim that there exists $\delta_1 > 0$ such that $\varphi(t,s) \leq 0$ for all $t,s \in [0,2\pi]^2$ with $|t-s| < \delta_1$.

First observe that, for $t \in [0, 2\pi]^2$, the function

$$\vartheta(u) \doteq \frac{B(t) - B(u) - M}{2 - \cos u_1 - \cos u_2}, \quad u = (u_1, u_2)$$

has an upper bound when u is near $0, u \neq 0$.

Indeed, since $\vartheta(u) \le -B(u)/(2 - \cos u_1 - \cos u_2)$, B(0) = 0, dB(0) = 0, and $(u_1^2 + u_2^2)/\pi \le 2 - \cos u_1 - \cos u_2 \le (u_1^2 + u_2^2)/2$, for $|u_1|$, $|u_2| \le \pi/2$, we see that $\vartheta(u) \le -\frac{u_1^2 \partial_{t_1^2}^2 B(0,0) + 2u_1 u_2 \partial_{t_1 t_2}^2 B(0,0) + u_2^2 \partial_{t_2^2}^2 B(0,0) + R_3(u)}{2 - \cos u_1 - \cos u_2}$

where $\lim_{u_1, u_2 \to 0} \frac{R_3(u_1, u_2)}{u_1^2 + u_2^2} = 0$. Thus

$$\lim_{u_1, u_2 \to 0} \frac{R_3(u_1, u_2)}{2 - \cos u_1 - \cos u_2} = \lim_{u_1, u_2 \to 0} \frac{R_3(u_1, u_2)}{u_1^2 + u_2^2} \frac{u_1^2 + u_2^2}{2 - \cos u_1 - \cos u_2} = 0$$

and

$$\frac{-u_1^2\partial_{t_1^2}^2B(0,0)-2u_1u_2\partial_{t_1t_2}^2B(0,0)-u_2^2\partial_{t_2^2}B(0,0)}{2-\cos u_1-\cos u_2}\leq C$$

where $C = 2\pi \max\{|\partial_{t_1^2}^2 B(0)|, |\partial_{t_1t_2}^2 B(0)|, |\partial_{t_2^2}^2 B(0)|\}.$

Therefore, there exists $\delta_1 > 0$ and $K_1 > 0$ such that $\varphi(t, s) \leq 0$ whenever $|t_1 - s_1|, |t_2 - s_2| < \delta_1$ and $K \geq K_1$.

Note that when $|t_1 - s_1| = 2\pi$ and $|t_2 - s_2| = 0$ then, obviously, $t_2 = s_2$, and $t_1 = 2\pi$ and $s_1 = 0$ or else $t_1 = 0$ and $s_1 = 2\pi$. We have, for $t_2 \in [0, 2\pi]$,

$$\varphi(2\pi, t_2, 0, t_2) = B(2\pi, t_2) - B(2\pi, 0) - M$$

$$= P(2\pi, t_2) + 2\pi b_{10} + b_{20}t_2 - P(2\pi, 0) - 2\pi b_{10} - M$$

$$= P(2\pi, t_2) + b_{20}t_2 - M = P(0, t_2) + b_{20}t_2 - M$$

$$= B(0, t_2) - M \le M'' - M < 0$$

and also

$$\varphi(0, t_2, 2\pi, t_2) = B(0, t_2) - B(-2\pi, 0) - M$$

$$= P(0, t_2) + b_{20}t_2 - P(-2\pi, 0) + 2\pi b_{10} - M$$

$$= P(0, t_2) + 2\pi b_{10} + b_{20}t_2 - M$$

$$\leq P(0, t_2) + b_{20}t_2 - M = B(0, t_2) - M \leq M'' - M < 0.$$

When $|t_1 - s_1| = 0$ and $|t_2 - s_2| = 2\pi$ we have $t_1 = s_1$, $t_2 = 2\pi$ and $s_2 = 0$ or else $t_2 = 0$ and $s_2 = 2\pi$, and for $t_1 \in [0, 2\pi]$ it follows

$$\varphi(t_1, 2\pi, t_1, 0) = B(t_1, 2\pi) - B(0, 2\pi) - M$$

$$= P(t_1, 2\pi) + b_{10}t_1 + b_{20}2\pi - 2\pi b_{20} - M$$

$$= P(t_1, 0) + b_{10}t_1 - M = B(t_1, 0) - M \le M' - M < 0,$$

$$\varphi(t_1, 0, t_1, 2\pi) = B(t_1, 0) - B(0, -2\pi) - M$$

$$= B(t_1, 0) + 2\pi b_{20} - M \le B(t_1, 0) - M \le M' - M < 0.$$

When $|t_2 - s_2| = |t_1 - s_1| = 2\pi$ we have

$$t_1 = 0, s_1 = 2\pi, t_2 = 0, s_2 = 2\pi$$

 $t_1 = 2\pi, s_1 = 0, t_2 = 0, s_2 = 2\pi$
 $t_1 = 0, s_1 = 2\pi, t_2 = 2\pi, s_2 = 0$
 $t_1 = 2\pi, s_1 = 0, t_2 = 2\pi, s_2 = 0$

hence

$$\begin{split} \varphi(0,2\pi,0,2\pi) &= B(0,2\pi) - B(0,0) - M \leq M'' - M < 0, \\ \varphi(2\pi,0,0,2\pi) &= B(2\pi,0) - B(2\pi,-2\pi) - M \\ &= 2\pi b_{10} - 2\pi b_{10} + 2\pi b_{20} - M \leq -M < 0, \\ \varphi(0,2\pi,2\pi,0) &= B(0,2\pi) - B(-2\pi,2\pi) - M \\ &= 2\pi b_{20} + 2\pi b_{10} - 2\pi b_{20} - M \leq -M < 0, \text{ and} \\ \varphi(2\pi,0,2\pi,0) &= B(2\pi,0) - B(0,0) - M \leq 2\pi b_{10} - M \leq -M < 0. \end{split}$$

Thus, there exists $\delta_2 > 0$ such that $\varphi(t,s) \leq 0$ whenever $|(t-s) - p_j| < \delta_2$ where $p_1 = (2\pi, 0), p_2 = (0, 2\pi), p_3 = (2\pi, 2\pi), p_4 = (-2\pi, 0), p_5 = (0, -2\pi), p_6 = (-2\pi, -2\pi), p_7 = (-2\pi, 2\pi)$ and $p_8 = (2\pi, -2\pi)$.

Finally, let

$$m \doteq \min\{2 - \cos u_1 - \cos u_2; |u| \ge \delta_1, |u - p_j| \ge \delta_2, j = 1, \dots, 8\} > 0$$

and choose $K > K_1$ large enough such that for $t, s \in [0, 2\pi]^2$ with $|t - s| \ge \delta_1$ and $|t - s - p_j| \ge \delta_2$, $j = 1, \dots, 8$ we have

$$\varphi(t,s) \leq \max_{t,s \in [0,2\pi]^2} \{B(t) - B(t-s) - M\} - Km \leq 0.$$

We have shown that $\varphi(t,s) \leq 0, \ t,s \in [0,2\pi]^2$ which implies, for some C>0,

$$|\hat{u}(t,n)| \le C, t,s \in [0,2\pi]^2, n \ge 1$$

hence $u \in \mathcal{D}'(\mathbb{T}^3)$.

In (2.11) the relevant function is

$$\varphi(t_1, t_2, 0, s_2) = B(t) - B(t_1, t_2 - s_2) - M - K[2 - \cos t_1 - \cos(t_2 - s_2)].$$

It is easy to see that $\varphi(t',s') \leq M'-M$ for each point (t',s') such that $2-\cos t'_1-\cos(t'_2-s'_2)=0$. Furthermore, an argument similar to the one used above implies, for large K>0, the existence of $\delta>0$ such that $\varphi(t,s)\leq M'-M$ for each point (t,s) such that $|(t-s)-(t'-s')|<\delta$. Finally, if $|(t-s)-(t'-s')|\geq\delta$ we get $2-\cos t_1-\cos(t_2-s_2)\geq 2-2\cos\delta>0$; if we take K>0 large we get $\varphi(t,s)\leq -K[1-\cos\delta]$ for these values of t and s.

We conclude that

$$\varphi(t,s) \leq M' - M$$
, for all $t,s \in [0,2\pi]^2$, with $s_1 = 0$

which implies

$$|\hat{f}_1(t,n)| \le e^{(M'-M)n}, t \in [0,2\pi]^2, n \ge 1$$

whence $f_1 \in C^{\omega}(\mathbb{T}^3)$.

Similarly, from (2.12), we get

$$|\hat{f}_2(t,n)| \le e^{(M''-M)n}, t \in [0,2\pi]^2, n \ge 1$$

which shows that $f_2 \in C^{\omega}(\mathbb{T}^3)$.

We now analyze the behavior of $\hat{u}(t^*, n)$, where $B(t^*) = M$ and so $\phi(t^*, t^*) = 0$. We are going to use the method of stationary phase (see [Sj]).

We have $\Re(\phi(t^*,s)) > 0$ if $s \neq t^*$ and $\Re(\phi(t^*,t^*)) = 0$. Let

$$\hat{u}(t^*, n) = d_{1n}d_{2n}(I_n + J_n) \tag{2.14}$$

where

$$I_n \doteq \int \int_{|\sigma| < \delta} e^{-n\beta(\sigma)} d\sigma_1 \, d\sigma_2, \quad J_n \doteq \int_{s \in [0,2\pi]^2, \, |s-t^*| \ge \delta} e^{-n\phi(t^*,s)} ds_1 \, ds_2,$$

$$\beta(\sigma) \doteq \phi(t^*, t^* - \sigma), \, \sigma = t^* - s, \, \text{and} \, d\sigma_1 \, d\sigma_2 = ds_1 \, ds_2$$
.

It is clear that $|J_n|$ is exponentially decaying for any choice of $\delta > 0$ provided $K \geq K_1$ as before.

We observe that

$$\beta(\sigma) = \phi(t^*, t^* - \sigma) = B(\sigma) + K[2 - \cos \sigma_1 - \cos \sigma_2]$$

$$+ i\{-A(\sigma) + a_1(0)\sin \sigma_1 + a_2(0)\sin \sigma_2\}$$

$$= -iC(\sigma) + K[2 - \cos \sigma_1 - \cos \sigma_2] + i\{a_1(0)\sin \sigma_1 + a_2(0)\sin \sigma_2\}.$$

Take $\delta>0$ small so that β has a holomorphic extension to a neighborhood of

$$\{z = (z_1, z_2) = (\sigma_1 + i\tau_1, \sigma_2 + i\tau_2); |\sigma_j| \le \delta, |\tau_j| \le \delta, j = 1, 2\}$$

given by

$$\tilde{\beta}(z) = \tilde{\beta}(\sigma + i\tau) = -iC(z) + K[2 - \cos z_1 - \cos z_2] + i\{a_1(0)\sin z_1 + a_2(0)\sin z_2\}.$$

We observe that $\beta(0) = 0$, $\nabla \beta(0) = 0$, and

$$\left(\begin{array}{c} \frac{\partial^2\beta}{\partial\sigma_j\partial\sigma_k}(0) \end{array}\right)_{1 < j,k < 2} = KI - i \left(\begin{array}{c} \frac{\partial c_j}{\partial\sigma_k}(0) \end{array}\right)_{1 < j,k < 2}.$$

For K > 0 sufficiently large and for $\delta > 0$ sufficiently small it is clear that the origin is the only critical point of β ; it is also clear that z = 0 is a nondegenerate critical point since

$$det \left(\begin{array}{c} \frac{\partial^2 \beta}{\partial \sigma_j \partial \sigma_k}(0) \end{array} \right)_{1 \leq j,k \leq 2} = (K - i \frac{\partial c_1}{\partial \sigma_1}(0))(K - i \frac{\partial c_2}{\partial \sigma_2}(0)) + (\frac{\partial c_1}{\partial \sigma_2}(0))^2$$
$$= K^2 \{1 + O(1/K)\}.$$

We also have $\Re \beta(\sigma) > 0$ if $|\sigma| = \delta$.

We conclude that

$$I_n = (2\pi)^{-1} [det(KI - i(\frac{\partial c_j}{\partial \sigma_k}(0)))]^{-1} n^{-1} (1 + O(n^{-1})), \text{ as } n \to \infty,$$

which, together with (2.9), and (2.14) shows that $\hat{u}(t^*, n)$ is not exponentially decaying as $n \to \infty$, hence t^* is indeed in the t-projection of $ss_a(u)$.

3. Reduction to the special case

In this section we show that by means of real analytic diffeomorphisms, B as in theorem () can be taken as in proposition ().

We note first that we may assume $b_{20} < b_{10} < 0$ by using simple diffeomorphism of the torus.

We now recall some terminology and quote results from [A].

Proposition 3.1. (Arnold) Suppose that H is a pseudoperiodic function in general position. Then we have:

- Any superlevel {t; H(t) > c} has exactly one unbounded component, denoted by N_c and this component contains a half-plane;
- Any connected component of a level set of H passing through a critical point is either bounded (a point or a lemniscate-like curve) or it has the shape of a folium of Descartes.

Note that in the unbounded case, a critical level set of H separates the plane into two unbounded components and a disk; the closure of the disk is called a trap. Thus, a trap is homeomorphic to a closed disk and has a critical point on the boundary, called the vertex of the trap.

Proposition 3.2. (Arnold) Suppose that H is a pseudoperiodic function in general position. Then traps with distinct vertices are disjoint.

A normal curve is a component of a nonsingular level set of H that does not intersect any trap.

Proposition 3.3. (Arnold) Suppose that H is a pseudoperiodic function in general position. Then any normal curve is unbounded. Therefore each critical point lies in one, and only one, trap.

Proposition 3.4. (Arnold) Suppose that H is a pseudoperiodic function in general position. Then there exists a closed, smooth, non-selfintersecting curve σ on \mathbb{T}^2 such that the lifting, $\tilde{\sigma}$, does not intersect any trap and $H \circ \tilde{\sigma}$ is strictly monotone. Furthermore, we may assume that $H \circ \tilde{\sigma}$ is decreasing and has no singular points and $\sigma \sim \sigma_2$.

By a theorem of Grauert and Remmert (theorem (5.1) of chapter 2 in [H]) we may replace σ , as in proposition (), by a real analytic loop while keeping transversality and $\sigma \sim \sigma_2$. By theorem (2.1) in [E], σ is isotopic to σ_2 and by theorem (1.3) of chapter 8 in [H], σ is diffeotopic to σ_2 , that is, exists a smooth diffeomorphism of the torus sending σ onto σ_2 . Applying Grauert-Remmert to this diffeomorphism we get a real analytic diffeomorphism which sends σ onto a real analytic loop σ' , so close to σ_2 , that it may be represented by the graph of a function of t_2 . A further C^{ω} diffeomorphism straightens out this graph, and we finally have obtained a real analytic diffeomorphism of the torus sending σ onto σ_2 ; in other words, in the new coordinates — still denoted (t_1, t_2) — $\{t_1 = 0\}$ is transversal.

There exists $\delta > 0$ such that each unbounded connected component of a level set hits each vertical line $\{t_1 = 2k\pi + \delta'\}, k \in \mathbb{Z}, |\delta'| < \delta$, exactly once, always from the same side, which we may assume to be the left side.

Suppose that $P=(t_1,t_2)$ is a point of local extremum of B. There exists a unique unbounded connected component of a level set of B, denoted by \mathcal{F}' , such that P belongs to the trap associated to \mathcal{F}' , having t_0 as its vertex. By replacing P by one of its translates, $P_{kj} \doteq P + (2\pi k, 2\pi j)$, we may assume that $0 < t_1 < 2\pi$ and that \mathcal{F}' crosses $t_1 = 0$ at a point $(0, \bar{t_2})$ with $0 \le \bar{t_2} < 2\pi$.

By means of the vertical translation $(t_1, t_2) \mapsto (t_1, t_2 - \bar{t_2})$ which sends $(0, \bar{t_2})$ to the origin and preserves the monotonicity of $s_2 \mapsto B(2\pi j, s_2)$, we may assume that $0 \in \mathcal{F}'$. We also assume that B(0) = 0 and, since B is in general

position, $B(P) \neq 0$. Replacing B by $\tilde{B}(t) = -B(-t)$, (i.e., $(x,t) \mapsto (-x,-t)$), if necessary, we may assume that $\tilde{M} \doteq B(P) > 0$. Observe that \tilde{B} enjoys all the relevant properties of B, namely, \tilde{B} is in general position, decreasing, and the averages b_{10} and b_{20} remain unchanged.

It is worth noting that by the monotonicity of $B_{|\{t_1=2\pi\}}$ there exists a unique t_2^* such that $B(2\pi, t_2^*) = 0$ which satisfies $-2\pi < t_2^* < 0$ in view of $B(2\pi, 0) = 2\pi b_{10} < 0 = B(2\pi, t_2^*) < 2\pi (b_{10} - b_{20}) = B(2\pi, -2\pi)$.

Let $\delta_0 > 0$ be such that $|B| < \tilde{M}/2$ over the square $(-\delta_0, \delta_0)^2$, $t_2 \mapsto B(\delta', t_2)$ and $t_2 \mapsto B(2\pi - \delta', t_2)$ are decreasing for each $|\delta'| \le \delta_0$. Since B is in general position, taking a smaller $\delta_0 > 0$, if necessary, we may assume that the disk $D(t_0, \delta_0)$ contains only one critical point (the vertex of the trap), $D(t_0, \delta_0) \setminus \mathcal{F}'$ consists of four sectors, and $|B| < \tilde{M}/2$ on $D(t_0, \delta_0)$. Note that at least one of the sectors of $D(t_0, \delta_0) \setminus \mathcal{F}'$ is contained in N_0 .

We now take a normal curve η lying in N_0 satisfying the following properties with $c \doteq B_{|\eta}$:

- (i) $N \doteq (N_0 \setminus N_c) \cap ([0, 2\pi] \times \mathbb{R})$ contains no traps (there is only a finite number of traps inside a bounded region);
- (ii) $B_{|\bar{N}} < \tilde{M}/2;$
- (iii) η crosses the set $\Delta_0 \doteq ((0, \delta_0) \times \{-\delta_0\}) \cup (\{\delta_0\} \times [-\delta_0, \delta_0]) \cup ((0, \delta_0) \times \{\delta_0\})$ exactly once (the origin is a regular point);
- (iv) η intersects one of the sectors of $D(t_0, \delta_0) \setminus \mathcal{F}'$ that lies in N_0 . Let us denote this sector by S_0 (any point of S_0 is regular);
- (v) $\eta(s) \in [0, 2\pi] \times \mathbb{R}, 0 \le s \le 1, \ \eta(0) = (0, y), \text{ where } -\delta_0 < y < 0, \text{ and } \eta(1) = (2\pi, y'), \text{ for some } y' \in (-2\pi, t_2^*).$

Let $s_1 \in [0,1]$ such that $(x_1, y_1) \doteq \eta(s_1) \in \Delta_0$, $s_2 = \sup\{s \in [0,1]; \eta(t) \notin S_0, \forall t \leq s\}$, $s_3 = \inf\{s \in [0,1]; \eta(t) \notin S_0, \forall t \geq s\}$, and $s_4 \in [0,1]$ such that $\eta(s_4) = (2\pi - \delta_0, y_2)$, for some y_2 .

We define a new curve γ_0 which agrees with η for $s \in [s_1, s_2] \cup [s_3, s_4]$. For $s \in [0, s_1]$, γ_0 is defined as the juxtaposition of the segments joining (0, 0) to $(x_1, 0)$ and $(x_1, 0)$ to $\eta(s_1)$. For $s \in [s_2, s_3]$, γ_0 is the juxtaposition of the segments joining $\eta(s_2)$ to t_0 and t_0 to $\eta(s_3)$. For $s \in [s_4, 1]$, γ_0 is the juxtaposition of the segments joining $\eta(s_4)$ to $(2\pi - \delta_0, 0)$ and $(2\pi - \delta_0, 0)$ to $(2\pi, 0)$. Finally, γ_0 is extended periodically and we may assume that it is smooth.

By means of a smooth diffeomorphism, say Ψ_0 , which equals the identity along the strips $(2\pi k - \delta, 2\pi k + \delta) \times \mathbb{R}$, we can send γ_0 to the loop $t_2 = 0$. The monotonicity of $B(0, \cdot)$ is preserved and we have $B(t_1, t_2) < \tilde{M}/2$, for $(t_1, t_2) \in [0, 2\pi] \times (-\delta_1, \delta_1)$, for some $\delta_1 > 0$.

Select an analytic curve close to γ_0 (in the C^1 sense), passing through t_0 , whose image under Ψ_0 lies on $\mathbb{R} \times (-\delta_1/2, \delta_1/2)$. Now, take a C^{ω} diffeomorphism close to the graph of an analytic function of t_2 and sending t_0 to a point of the form $t^* \doteq (\tau, 0), 0 \leq \tau < 2\pi$. This diffeomorphism can be taken so that $B(0, \cdot)$ is still decreasing.

A further C^{ω} diffeomorphism straightens out this graph, and, hence, we have obtained a real analytic diffeomorphism such that in the new variables B has the following properties: $B(0,\cdot)$ is decreasing, $|B(t_1,t_2)| < \tilde{M}/2$ on $[0,2\pi] \times (-\delta_2,\delta_2)$, for some $\delta_2 > 0$. Note that there exists $\delta_3 > 0$ such that $B(t_1,\cdot)$ is still decreasing for all $t_1 \in (-\delta_3,\delta_3)$.

Let $\Theta : \mathbb{R} \to \mathbb{R}$ be a real analytic, 2π -periodic function such that $\Theta(0) = \tau$, $\Theta(t_2) \in [0, \tau]$ for $t_2 \in [0, \delta_2] \cup [2\pi - \delta_2, 2\pi]$, and $\Theta(t_2) \in [-\delta_3, \delta_3]$ for $t_2 \in [\delta_2, 2\pi - \delta_2]$.

We claim that $B(t_1,0) < \tilde{M}/2$ for $\tau \le t_1 \le 2\pi + \tau$. Indeed, for $\pi \le t_1 \le 2\pi$ it is obvious and for $0 \le t_1 - 2\pi \le \tau$, we have

$$B(t_1,0) = P(t_1,0) + b_{10}t_1 = P(t_1 - 2\pi, 0) + b_{10}t_1$$

$$< P(t_1 - 2\pi, 0) + b_{10}(t_1 - 2\pi) = B(t_1 - 2\pi, 0) < \tilde{M}/2.$$

Note that $B(\Theta(t_2), t_2) < \tilde{M}/2$ when $t_2 \in [0, 2\pi]$. This follows immediately once one notes that:

- (i) the graph of $\Theta_{[0,2\pi]}$ lies on the union of $[0,2\pi] \times [0,\delta_2]$, $[-\delta_3,\delta_3] \times [0,2\pi]$, and $[0,2\pi] \times [2\pi \delta_2,2\pi]$,
- (ii) $B(t_1, \cdot)$ is decreasing for $t_1 \in [-\delta_3, \delta_3]$, and
- (iii) $b_{20} < 0$.

Finally, the map $\Phi(t_1, t_2) = (t_1 - \Theta(t_2), t_2)$ sends $(\tau, 0)$ to the origin and the graph of Θ to the new $t_1 = 0$, and reduces the problem to the special case.

References

- [A] Arnold, V. I., Topological and ergodic properties of closed 1-forms with incommensurable periods. (Russian) Funktsional. Anal. i Prilozhen., 25 (1991), no. 2, 1–12, 96; translation in Functional Anal. Appl. 25, (1991), no. 2, 81–90.
- [BT] Baouendi, M. S.; Trèves, F., A microlocal version of Bochner's tube theorem, Indiana Univ. Math. J., 31(6) (1982), 885–895.
- [B] Bergamasco, A. P., Remarks about global analytic hypoellipticity, Trans. Amer. Math. Soc., 351 (1999), 4113-4126.
- [BCM] Bergamasco, A. P.; Cordaro, P.; Malagutti, P., Globally hypoelliptic systems of vector fields, J. Funct. Anal., 114 (1993), 267-285.
- [E] Epstein, D. B. A., Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83-107.
- [H] Hirsch, M. W., Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York, 1976.
- [Sj] Sjöstrand, J., Singularités analytiques microlocales, Astérisque, 95, 1–166, Soc. Math. France, Paris, 1982.
- [T] Treves, F., Hypoanalytic Structures, Princeton University Press, Princeton, NJ, 1992.

Adalberto P. Bergamasco
Departamento de Matematica
Universidade Federal de São Carlos
Caixa Postal 676
13565-905, São Carlos, SP, Brasil
e-mail: apbergam@dm.ufscar.br

Wagner V. L. Nunes, Sergio Luis Zani Departamento de Matematica ICMC/USP Caixa Postal 668 13560-970, São Carlos, SP, Brasil e-mail: wvlnunes@icmc.sc.usp.br e-mail: szani@icmc.sc.usp.br