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Abstract

We show that a class of overdetermined systems on the 3-torus as-
sociated to a closed 1-form ¢ on the 2-torus T? ~ R?/27Z? is globally
analytic hypoelliptic if and only if every B : R? — R such that dB = e
is an open map at each point.

Resumo

Mostramos que uma classe de sistemas sobre-determinados no toro
T? que estd associada a uma 1-forma fechada ¢ no toro T? ~ R?/27Z? é
globalmente analitica hipoelitica se, e somente se, toda B : R? — R tal
que dB = S¢ é uma aplicagao aberta em cada ponto

1. Introduction

We consider a system L = (L, L) of complex vector fields on the torus T? o~

R3/27Z? of the form

P o .

where each ¢; is a complex-valued, real analytic function defined on the torus
T2

Let ¢ = ¢;dty + ¢y dty and write ¢ = a + ib, a = ay dt; + ay dty, and b =
by dty + by di,, with each aj, b; real-valued.

*The first author was partially supported by CNPq.
AMS Subject Classification: Primary 35H05.
Key words and phrases: global analytic hypoellipticity, pseudoperiodic functions, overdeter-
mined systems, stationary phase.


http://doi.org/10.21711/231766362000/rmc183
https://orcid.org/0000-0001-9214-2679
https://orcid.org/0000-0002-6675-9437
https://orcid.org/0000-0001-5062-731X

11 BERGAMASCO NUNES ZANI

Define C' : R? — C by C(t) = fi c and write C = A+ iB, where A(t) = [j a
and B(t) = [} b.
Recall that a system L as in (1.1) is formally integrable (see [T]) if 22 = 22

or, equivalently, that the 1-form

Cc = Cldtl —|— nglz

is closed. In this case, we set for j = 1,2, ¢jo = (2m)~" Ji7 ¢; (1) dl;, ajo =

(271’)_1 02‘rr (Lj(l) dl]', and b]'() = (271’)_1 02‘rr b]'(l) dt]'.
We need two more definitions that are taken, along with some important

results, from Arnold’s article [A].

Definition 1.1. We say that a function H : R? — R is a pseudoperiodic
Junction if H(t + 7) = H(t) + w(7), for all t € R?* and 7 € 27Z? where

w :2nZ* — R is a monomorphism.

In the case where H = B as above, B is a pseudoperiodic function if, and
only if, the periods by, by of the closed 1-form b are incommensurable, that is,
linearly independent over Q. In that case we may write B(t) = P(1)+byol1+baol2

with P 2m-periodic in each variable.

Definition 1.2. We say that a smooth function H : R? — R is in general

position if it has no degenerate critical point and has all critical values distinct.

Our main goal is to give a characterization of those systems L which are
globally analytic hypoelliptic; this means that the conditions u € D'(T?), fi, f2 €
C*(T?) and

Lju:fj,jzl,Z (12)

imply u € C¥(T?).

Recall the local version of this property: L is analytic hypoelliptic if, for
every open subset U C T? the conditions u € D'(U), Liu, Lyu € C¥(U) imply
u e CYU).

Our main result is as follows.
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Theorem 1.3. Let L be as in (1.1) a formally integrable system. We assume
that B = [} b is a pseudoperiodic function in general position. Then each of the
Jfollowing properties is equivalent to the other two:

(i) L is globally analytic hypoelliptic;

(ii) L is analytic hypoelliptic;

(iti) B is an open map at each point.

In fact (7¢) is equivalent to (¢7¢) by [BT] and these are also equivalent to the
hypocomplexity of L (see [T]). Note that the implication (1) = (i) is trivial.
Therefore all we have to do is to prove that (¢) = (7).

In order to prove (7) = (ii7) we assume that (i) does not hold and show
that (1.2) has singular solutions, that is, there exist v € D'(T?) \ C*(T?) and
f1, f2 € C¥(T?) such that Lju = f;, j =1,2.

In section 2 we show how to do this in a special case; we use the method of
stationary phase. In section 3 we prove that the general case can be reduced to
the special case of section 2, by means of diffeomorphisms of the torus; we use
in a essential way results of [A], especially the existence of a transversal to the

level sets of B.

2. A special case

Proposition 2.1. Let L be as in (1.1) a formally integrable system. We assume
that B = [{b is a pseudoperiodic function in general position. In addition
suppose that byy < bjg < 0, 6(0,0) = 0, C(0,0) = 0, and the mazimum of B
over [0,27]% is not attained al the boundary. Then L is not globally analytic
hypoelliptic.

Proof: Let

M = max B = B(l") > (2.1)

[0,27]2
where t* = (t3,3) € (0,2m)?.
Let M' = max B(tl, ) and M"” = max _B(0,(;). Then we have M’ < M

t1€[0,2 t2€[0,27]
and M" < M.
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If w € D'(T?) is a solution to (1.2) then the compatibility condition L, f; =

Ly fi must be satisfied; set
hiLlfQZ LZfl- (22)

Our plan is to choose h € C¥(T?) and obtain fi, f, from (2.2) and then
obtain u from (1.2). More precisely we will look for k, fi, f; and u in the form

of a partial Fourier series in the z-variable, as follows:

n=1
If we set
Lin = L) +inci(t), j=1,2
at;

we are led to the equations

Linii(t,n) = fi(t,n), n > 1, (2.3)

Loyu(t,n) = Ag(t,n), n>1, (2.4)

Linfa(t,n) = h(t,n), n > 1, and (2.5)

Lonfi(t,n) = h(t,n), n > 1 (2.6)

Since byg # 0 and byy # 0 we can conclude that for every n > 1, each of the
equations (2.3)-(2.6) has a unique 27-periodic solution for arbitrary 2m-periodic
right-hand sides. Furthermore if the right-hand side is real analytic so is the

solution. In fact we can write formulas for such solutions, namely
'&,(Z, »,7,) = dip /027T e—i{C(t1,t2)=Clt1 =51 ,tz)}fl(tl — 81,1, n) dsy
w(t,n) = dan /027r e_m{c(tl‘t‘z)“c(“’”_”)}fz(tl, ly — s2,m) dsy
fi(t,n) = dy, /ON ¢ Ott)=Cltnta=92) (4, 1) — 55, m) ds, (2.7)

" 2 5 a
fg(t, TL) = d]n / e—zn{C(il,ig)—C(tl—sl ’tz)}h(t] — S1, tQ, ’)’L) db’] 5 (28)
0
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where dj, = (1 — e72"n%0)=1 5 = 1,2, for n > 1.

Note that there exists k > 1 such that
K< djn| <k, 5 =1,2,n > 1. (2.9)
We can also write

W(t,n) = dinda, /Zﬂ /QW e~ i{C(1)=Clt=9)} iz(t —s,n)ds; dss.

o7 (2.10)
Set (1) = {M + K[2 — costly — cosla]} + i{a1(0)sinty 4 a(0)sinty — A(1*)}
where M is as in (2.1) and K > 0 will be chosen later on.

We choose h(t,n) =™ n>1.

We have, for any K > 0, |il(t,n)| <e™Mr o >1,t€[0,2n]? which implies,
for some 0 < M; < M and some § > 0, Iil,(lf +ithn)| < eMnp > 1t €
[0,27]%, and [¢/| < &. Therefore h € C¥(T?).

Formulas (2.7), (2.8), (2.10) become

fl(t7 n) _ d2n /27r e_n{z'[C‘(tx,tz)—C(t1,tz—sz)]+1/)(7‘,1,tz—sz)} ng, (211)
0
fz(l7 n) _ dln /ZW e_n{i[C(tl,tg)—O(tl—sl,tg)]+w(t1—sl,t2)} dSl, (2]2)
0
2T 2T 2
2, 1) = didlan /U /0 = CO=CU= (=90} g s, (2.13)

Let ¢(t,s) = i[C(t) — C(t — s)] + ¥(t — s) be the factor appearing in the

exponent in the integral, that is,

d(L,s) =i[C(t) — C(t —s)]+ M + K[2 — cos(l; — s1) — cos(ls — s2)] +
+ i[a1(0) sin(ty — s1) + a2(0) sin(ty — s2) — A(L7)].

Let p(l,s) = =R(P(t,5)) = B(t)—B(tl—s)— M — K[2—cos(l; —s1)—cos(la—s2)].
We now make a detailed analysis of the values of ¢(t,s). We claim that
w(t,s) <0, for ¢, s € [0,2n7]2
Provided K > 0 is large, the main contribution to the value of (2.13), as
n — oo, comes from small neighborhoods of points where 2 — cos(l; — s1) —

cos(ly — s3) = 0; thus we proceed to look at such points.
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We claim that there exists &; > 0 such that ¢(¢,s) <0 for all ¢,s € [0, 2n7]?
with [t — s| < 4;.
First observe that, for ¢ € [0,27]?, the function
B(u) = B(t) — B(u) - M

2 — cosu; — cos Uy’
has an upper bound when u is near 0, u # 0.
Indeed, since 9(u) < —B(u)/(2 — cosuy — cosuy), B(0) =0, dB(0) = 0, and
(u? +u2)/m < 2—cosuy —cosug < (u? +u2)/2, for |ui], |uz| < 7/2, we see that
'u,faffB(0,0) + 2uyu407,,B(0,0) + u%@éB(O, 0) + Rs(u)

u = (uy,uz)

Pu) < —
2 — COS Uy — COS Uy
R
where lim ?’Euil’uz) = 0. Thus
u,up—=0 i + u2
lim Rs(u1, u2) = lim Rs(u1, uz) uf + u% =0

uus—0 2 — cos Uy — COS Uy wi,uz=0 ul 4+ ud 2 — cosuy — cosuy

and

—ufaf%B(0,0) — 2uuy9;,,, B(0,0) — w302 B(0,0) o
2 — cos u; — COS Uy -

where C' = 27 max({| ;‘%B(O)|,|8}’lt2 (0)], |8%B( )N}
Therefore, there exists ¢; > 0 and K7 > 0 such that ¢(¢,s) < 0 whenever
|t1 == 51|7 |t2 == 32| < 51 and K 2 [(1-

Note that when |{; — s;| = 27 and |{3 — so| = 0 then, obviously, {, = s,, and
t; = 27 and s; = 0 or else {; = 0 and s; = 27. We have, for {5 € [0, 27],

@(2m, 15,0, 15) = B(2m,1,) — B(2m,0) — M

= P(2m,t3) + 2mwbio + baoty — P(2m,0) — 2mbyo — M
= P(2m,13) + baots — M = P(0,45) + baots — M
= B(

0,6)—M<M' —M<0

and also
©(0,t9,2m,t5) = B(0,1,) — B(—2m,0) — M
= P(0,12) + baoly — P(—2m,0) + 2mbjo — M
= P(0,1y) + 27y + baoly — M
< P(0,13) + baoly — M = B(0,1) — M < M" — M < 0.
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When [t — s1] = 0 and [ty — s2| = 27 we have {1 = s1, {3 = 27 and s, = 0 or

else 13 = 0 and sy = 27, and for ¢; € [0,27] it follows

p(t1,2m,t1,0) = B(ty,2m) — B(0,2m) — M

P(ty,2m) + bioty + bao2m — 2mbyg —
P(t1,0) 4 biots — M = B(t1,0) = M < M' — M <0,
(

(

([170 //17271') =B tl,O) (0 —27T) M
B t170)+2ﬂ'l)20—M<B([1, )—A/[S M,—M<O

When |ty — so| = |t1 — s1]| = 27 we have

t1=0,8 =2m,1,=0,s0 =27
ty=2m,81=0,1t,=0, so =27
t1=0,8 =2m,t, =2m,8,=0
ty=2m,81=0,t, =2m,8,=10

hence

©(0,2m,0,27) = B(0,27) — B(0,0) — M < M" — M <0,
©(2m,0,0,27) = B(27,0) — B(27,—27) — M

= 2mbyg — 2mwhyg + 2mbyo — M < —M <0,
©(0,2m,27,0) = B(0,27) — B(—2m,27) — M

= 27byg + 2mb1g — 2mbyo — M < —M < 0, and
©(2m,0,27,0) = B(27,0) — B(0,0) — M <27bjo— M < —M < 0.

Thus, there exists d; > 0 such that (4, s) < 0 whenever |(t — s) — p;| < &2
where p; = (2m,0), p, = (0,27), p3s = (27,2m), py = (—27,0), ps = (0, —27),
ps = (—2m,—2m), pr = (—2m,2m) and ps = (2w, —2m).

Finally, let

m = min{2 — cosu; — cosug; [u| >, lu—p;j| > j=1--,8t>0
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and choose K > K, large enough such that for ¢,s € [0,2n]* with |t —s| > &,
and |l — s — pj| > 2, = 1,--- ,8 we have

o(t,s) < max {B(l)—B(l—s)— M} —Km <0.

 t,5€[0,27]?

We have shown that ¢(¢,s) <0, ¢,s € [0,27]? which implies, for some C' > 0,
li(t,n)] < C, t,s €[0,27)*, n > 1

hence u € D'(T?).

In (2.11) the relevant function is
gO(ll, lo, O, 82) = B({) — B(tl, ty — 82) - M - [X’[Q —costy — COS(tz — 82)].

It is easy to see that ¢(t',s") < M’ — M for each point (1',s’) such that 2 —
cos 1} —cos(ly—sh) = 0. Furthermore, an argument similar to the one used above
implies, for large K > 0, the existence of § > 0 such that ¢(,s) < M’ — M for
each point (1, s) such that |(t—s)—(t'—s')| < d. Finally, if |(t—s)—(I'—5")| > 6
we get 2 — cosly — cos(ly — $2) > 2 —2cosd > 0; if we take K > 0 large we get
©(t,s) < =Kl — cos d] for these values of ¢ and s.

We conclude that

o(t,s) < M' — M, for all t,s € [0,27]%, with s; =0
which implies
|fi(t,n)| < eM =M ¢ c[0,27]%, n > 1

whence f; € C¥(T?).
Similarly, from (2.12), we get

|fa(t,m)] < MM 4 € [0,27)%, 0 > 1

which shows that f, € C¥(T?).
We now analyze the behavior of @(t*,n), where B(t*) = M and so ¢(1*,1*) =
0. We are going to use the method of stationary phase (see [Sj]).
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We have R(P(1*,s)) > 0 if s # 1* and R(o(t*,1*)) = 0.
Let

where

I, = // eV o, doy,  J, i/ e ) ds) ds,,
|o|<8 s€[0,27]2, [s—t*|>8

Blo) = ¢(t*,t* —a), 0 = 1" — s, and doy doy = dsy dsy .

It is clear that |J,| is exponentially decaying for any choice of § > 0 provided
K > K, as before.

We observe that

B(o) =d(t",t* — o) = B(o) + K[2 — cos o1 — cos 7]
+ i{—A(0) 4+ a1(0) sin oy + az(0) sin o2}
=—iC(c) + K[2 — cos oy — cos a3] + i{a1(0) sin oy + a2(0) sin o5 }.

Take § > 0 small so that # has a holomorphic extension to a neighborhood

of
{z = (21,22) = (01 + i1y, 00+ im); 0] <6, |735] < 6,5 =1,2}
given by
,f);(z) = B(U+ it) = —iC(z) 4+ K[2— cos z; — cos z] +i{a1(0) sin z; + a2(0) sin 2 }.
We observe that 5(0) = 0, V3(0) = 0, and

< fhi’z—ﬁﬁw(o) >1gj,kgz =KI- Z( 2;2(0) )1gj,kgz'

For K > 0 sufficiently large and for § > 0 sufficiently small it is clear that the

origin is the only critical point of 3; it is also clear that z = 0 is a nondegenerate
critical point since

52 dc dc Jdc
) 828 _ s il - 2 1 2
del ( 90,00} (O) >1$j,k$2 - ([‘ laa_l (0))(A LaUz (O)) + (80'2 (0))

= K*{1 + O(1/K)}.
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We also have R3(c) > 0 if |o| = 6.
We conclude that
I, = (2m) '[det(KT — i(gﬁ(O)))]_ln_l(l +0(n™")), as n — oo,
o)

which, together with (2.9), and (2.14) shows that @(t*,n) is not exponentially

decaying as n — oo, hence t* is indeed in the t-projection of ss,(u).

3. Reduction to the special case

In this section we show that by means of real analytic diffeomorphisms, B as
in theorem () can be taken as in proposition ().

We note first that we may assume by < byo < 0 by using simple diffeomor-
phism of the torus.

We now recall some terminology and quote results from [A].

Proposition 3.1. (Arnold) Suppose that H is a pseudoperiodic function in

general position. Then we have:

1. Any superlevel {t; H(t) > ¢} has ezactly one unbounded component, de-

noted by N. and this component contains a half-plane;

2. Any connected component of a level set of H passing through a critical
point is either bounded (a point or a lemniscate-like curve) or it has the

shape of a folium of Descartes.

Note that in the unbounded case, a critical level set of H separates the plane
into two unbounded components and a disk; the closure of the disk is called a
trap. Thus, a trap is homeomorphic to a closed disk and has a critical point on

the boundary, called the vertex of the trap.
Proposition 3.2. (Arnold) Suppose that H is a pseudoperiodic function in
general position. Then traps with distinet vertices are disjoint.

A normal curve is a component of a nonsingular level set of H that does not

intersect any trap.
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Proposition 3.3. (Arnold) Suppose that H is a pseudoperiodic function in
general position. Then any normal curve is unbounded. Therefore each critical

point lies in one, and only one, trap.

Proposition 3.4. (Arnold) Suppose that H is a pseudoperiodic function in
general position. Then there exists a closed, smooth, non-selfintersecting curve
o on T? such that the lifting, &, does not intersect any trap and H oG is strictly
monotone. Furthermore, we may assume that H o & is decreasing and has no

singular points and o ~ o,.

By a theorem of Grauert and Remmert (theorem (5.1) of chapter 2 in [H])
we may replace o, as in proposition (), by a real analytic loop while keeping
transversality and o ~ 3. By theorem (2.1) in [E], o is isotopic to oy and by
theorem (1.3) of chapter 8 in [H], o is diffeotopic to o9, that is, exists a smooth
diffeomorphism of the torus sending o onto o3. Applying Grauert-Remmert to
this diffeomorphism we get a real analytic diffeomorphism which sends o onto a
real analytic loop &', so close to o9, that it may be represented by the graph of a
function of t5. A further C* diffeomorphism straightens out this graph, and we
finally have obtained a real analytic diffeomorphism of the torus sending o onto
o9; in other words, in the new coordinates — still denoted (t1,15) — {1 = 0}
is transversal.

There exists § > 0 such that each unbounded connected component of a
level set hits each vertical line {t; = 2kw + &'}, k € Z, |§'| < §, exactly once,
always from the same side, which we may assume to be the left side.

Suppose that P = ({1,12) is a point of local extremum of B. There exists
a unique unbounded connected component of a level set of B, denoted by F’,
such that P belongs to the trap associated to F’, having ¢y as its vertex. By
replacing P by one of its translates, Py; = P + (27k, 27j), we may assume that
0 < ¢; < 27 and that F’ crosses ¢; = 0 at a point (0,{3) with 0 < iy < 2.

By means of the vertical translation (¢1,%5) — (¢1,t2 — f2) which sends
(0,13) to the origin and preserves the monotonicity of s, — B(277, s2), we may

assume that 0 € F'. We also assume that B(0) = 0 and, since B is in general
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position, B(P) # 0. Replacing B by B(l) = —B(—t), (i.e., (z,1) = (—z,—1)),
if necessary, we may assume that M = B(P) > 0. Observe that B enjoys all
the relevant properties of B, namely, B is in general position, decreasing, and
the averages byg and by remain unchanged.

It is worth noting that by the monotonicity of By, =2} there exists a unique
t5 such that B(2m,t5) = 0 which satisfies —27 < 5 < 0 in view of B(2m,0) =
2mbiy < 0 = B(2m,13) < 2m(bio — bao) = B(2m, —2m).

Let dg > 0 be such that |B| < M/Q over the square (—do, 8)%, t2 — B(&', 1)
and {, — B(2m — §',1,) are decreasing for each |0’] < §y. Since B is in general
position, taking a smaller §g > 0, if necessary, we may assume that the disk
D(to, o) contains only one critical point (the vertex of the trap), D(to,d0) \ F’
consists of four sectors, and |B| < M/Z on D(to,d0). Note that at least one of
the sectors of D(tg,d) \ F' is contained in Ny.

We now take a normal curve i lying in Ny satisfying the following properties
with ¢ = By,

(1) N = (No\ N.) N ([0, 27] x R) contains no traps (there is only a finite number
of traps inside a bounded region);

(i) By < M /2

(iii) n crosses the set Ag = ((0,do) X {—d0}) U ({0} % [—30,0]) U ((0,d0) X {do})
exactly once (the origin is a regular point);

(iv) n intersects one of the sectors of D(lg,d0) \ F' that lies in Np. Let us denote
this sector by So (any point of Sy is regular);

(v) n(s) € [0,27] x R, 0 < s < 1, n(0) = (0,y), where —dp < y < 0, and
n(1) = (2m,y'), for some y' € (—2m,13).

Let s1 € [0,1] such that (z1,y1) = n(s1) € Do, s2 = sup{s € [0,1];7n(t) &
So, Yt < s}, s3 = inf{s € [0,1];5(t) € So, VI > s}, and s4 € [0,1] such that
n(ss) = (27 — 8o, y2), for some y,.

We define a new curve 79 which agrees with n for s € [s1,82] U [s3,84].
For s € [0, s1], 7o is defined as the juxtaposition of the segments joining (0,0)
to (21,0) and (21,0) to n(s;). For s € [s3,s3], 70 is the juxtaposition of the

segments joining n(s;) to lo and ¢ to n(s3). For s € [s4, 1], 7o is the juxtaposition
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(&1
(<13

of the segments joining n(s4) to (2m — &g, 0) and (27 — &o, 0) to (2m,0). Finally,
vo is extended periodically and we may assume that it is smooth.

By means of a smooth diffeomorphism, say Wy, which equals the identity
along the strips (2nk — 6,27k + 6) x R, we can send vy to the loop t, = 0.
The monotonicity of B(0,-) is preserved and we have B(ty,ty) < M/2, for
(L1,12) € [0,27] x (=84, 41), for some &; > 0.

Select an analytic curve close to 4o (in the C! sense), passing through {,
whose image under Wy lies on R x (—d1/2, §;/2). Now, take a C* diffeomorphism
close to the graph of an analytic function of ¢, and sending ¢y to a point of the
form t* = (7,0), 0 < 7 < 27. This diffecomorphism can be taken so that B(0, )
is still decreasing.

A further €% diffeomorphism straightens out this graph, and, hence, we
have obtained a real analytic diffeomorphism such that in the new variables
B has the following properties: B(0,-) is decreasing, |B(l,1;)| < M/2 on
[0,27] X (—0d2,02), for some d; > 0. Note that there exists d5 > 0 such that
B(ly,-) is still decreasing for all ¢ € (—ds, d3).

Let © : R — R be a real analytic, 2r—periodic function such that ©(0) = 7,
O(ly) € [0,7] for Ly € [0,0] U [27 — &3,27], and O(ly) € [—d3,05] for L €
[0, 2T — &2].

We claim that B((1,0) < M/Z for 7 < t; <27 + 7. Indeed, for 7 < t; <27

it is obvious and for 0 < {¢; — 27 < 7, we have
B(tl,()) = P(lho) + blOZI = P(ll == 271'70) —I— blOtl
< P(t; — 2m,0) + byo(ty — 27) = B(t, — 2m,0) < M/2.

Note that B(O(t3),1s) < M/Z when {5 € [0, 27]. This follows immediately once

one notes that:

(i) the graph of ©jp 2. lies on the union of [0, 27] x [0, d,], [—d3, 5] x [0, 27],
and [0, 27] X [2m — 04, 27],

(i1) B(ty,-) is decreasing for 11 € [—d3, d5], and

(iii) by < 0.
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Finally, the map ®(t1,12) = ({1 — ©(l3), l2) sends (7,0) to the origin and the

graph of © to the new ¢; = 0, and reduces the problem to the special case.
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