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SEMIGLOBAL SOLVABILITY OF A CLASS OF
PLANAR VECTOR FIELDS OF INFINITE TYPE

Adalberto P. Bergamasco® Abdelhamid Meziani®

Abstract

We consider a class of planar vector fields having the unit circle as
characteristic set. We assume that each vector field L is of infinite type
on the unit circle. We study the C* and C'°*° solvability of the equation
Lu = f near the characteristic set.

Resumo

Consideramos uma classe de campos vetoriais no plano tendo a cir-
cunferéncia unitaria como conjunto caracteristico. Supomos que cada
campo vetorial L é de tipo infinito nos pontos do conjunto caracteristico.
Estudamos a resolubilidade C¥ and C*° da equacao Lu = f perto do
conjunto caracteristico.

1. Introduction
In this note we study the C* and C* solvability of the equation
T,\u = f (11)

near the characteristic circle ¥ = {0} x S' C R x S*, where

g .0
T)\ —)\@ —27’57

(1.2)
A=a+ib € R* +iR, and (r,0) are the coordinates of R x S'. Note that since
the change of variables ' = r, ' = —6 transforms T} into 7.y, then it suffices to
study (1.1) only for ReA > 0. The vector field T} is of infinite type along 3 and
it satisfies the Nirenberg-Treves condition (P). It follows from classical results
(see [NT], [T1] or [T2]) that for a given C* (resp. C*°) function f and for every

p € ¥, there exist an open set U 2 p, U C R x S' and a function u € C¥(U)
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(resp. uw € C*°(U) ) such that (1.1) holds in U. The problem is therefore
relevant when one seeks solutions in a full neighborhood of . Equation (1.1)
has in fact been studied ([BM2]) in the C° category. By using Fourier series, it
is easy to sce that the period of f on ¥ must be zero in order for a C° solution

to exist. Thus from now on, we will assume that f satisfies

/OZWf(O,H)dQ —0. (1.3)

Equation (1.1) has also been studied in [M3]. It is proved, in particular, that if
A ¢ Q, fis C™ and satisfies (1.3), then for every k € Z*, equation (1.1) has a
C* solution defined in a neighborhood of ¥.

In section 2, we study the problem of finding analytic solutions when f is
analytic. It turns out that analytic solutions exist for every analytic function f
satisfying (1.3) if and only if X is not well approximable by rational numbers (ex-
ponential Liouville number). In section 3, we prove that for every A, there exist
C* functions f satisfying (1.3) such that equation (1.1) has no C'* solutions.
The C* solvability in the region » > 0 is also addressed. The approach and
the motivation for this work are related to those contained in the papers [B1,2],
[BCH], [BCM], [BHS], [BM 1,2], [CH], [M1,2,3], [T1,2] and in many others.

This note grew out of discussions between the authors and by a question
of Paulo Cordaro during the VI Workshop on PDE at IMPA. The authors are
grateful for the support provided by the Brazilian agencies CNPq, FAPESP and
FINEP.

2. Analytic solvability and Liouville numbers

We seek analytic solvability of (1.1) when f is real analytic and satisfies (1.3).
The solvability will depend on whether the invariant A satisfies a diophantine
condition. It must be noted that, when A\ ¢ R, the analytic solvability is
contained in [BM2] and that, when A = a € QT there are analytic functions f
satisfying (1.3) for which (1.1) does not have analytic solutions (in fact not even

formal solutions). The only remaining case is therefore when A = a € RT\Q.
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It turns out that (1.1) is solvable in the analytic category if and only if A is not
too well approximable by rationals (see [G] and [B1], [B2]). We now describe a

diophantine condition for a € R"

(DC), 3C >0 |exp(iZL) —1| > ¢+ Vj € Z7.
(DC), 3C >0 |j+ak|>CI* VjeZVEkeLZ

Lemma 2.1. For a € RT\Q, the diophantine conditions (DC), and (DC), are

equivalent.
Proof: Suppose that (DC3) does not hold. Then,
VieZ', A€ Zt, kheZ : |ji+ ak| < 70D,

For each [ we have then
2 2 5
‘exp(iQ—’;ﬂ) — 1‘ = ‘exp(iiﬁ(ﬂ:“’”)) -1
=2 (1 — Cos —QW(j’:“k’))

= g2rlictel) gin g,

‘ 2

for some 6,. It follows immediately that (DC}) does not hold.
Conversely, suppose that (DC}) does not hold. Then

217, )
YIeZ", e Z" ; ‘exp(i%]l) = 1‘ < G,

For each [, let k; = [Z] be the integral part of £. It follows from the above

assumption that

exp(ii%r(‘yl B akl)) —1| < 7@+,

Since 0 < % — k; < 1, we have lim(j; — ak;) = 0. Consequently,

2w (i — aky)
a

- 12 s (1 B COS(QW(]’, — akl))> 5 (27r(jl - akl)>2’

exp(t
a a

for [ large, and thus (DCs5) does not hold.
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As in [B2], we make the following definition for an irrational number. An
irrational number « is said to be an exponential Liouville number if there exists

€ > 0 such that the inequality
p
== exp(—€q) (2.1)

has infinitely many rational solutions p/q, with p € Z and g € Z*. The following

lemmas are easy to prove.

Lemma 2.2. The number a € RT\Q is an exponential Liouville number if and

only if the diophantine condition (DC) does not hold.

Lemma 2.3. The number a € R™\Q satisfies (DC) if and only if 1 satisfies
(DC).

For a construction of exponential Liouville numbers by means of continued
fractions see [B2] and [GPY]. In [G] one finds an example of a Liouville number
which is not exponential Liouville; recall that an irrational number « is said to
be a Liouville number if for every positive integer NV there exists K > 0 such
that the inequality |a—p/q| < K¢~ has infinitely many rational solutions p/q,
withp€e€Z and g € Z*

We are now ready to state the main result of this section.

Theorem 2.1. Let A = a € R"\Q. Equation (1.1) has a real analytic solution
u defined near X for every real analytic function f satisfying (1.3) if and only

if the invariant a is not an exponential Liouville number.

Proof: Let f(r,0) be a real analytic function defined near ¥. We use the Taylor
expansion about r = 0 and write
ri
fr,0)=>_ 0, (2.2)
>0 J:
where each f; € C*(S"). If u(r, 6) is a real analytic solution of (1.1), then

u(r,0) = Zuj(e)%, (2.3)

Jj=0
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where each u; € C*(S') satisfies the ode

a—21 — iju; = fj. (24;)
Note that since f satisfies (1.3), i.e.,

fﬁ@%za (2.5)

each equation (2.4); can be solved with
1 0
w(®) == [ fols)ds + Ko, (2.60)

where K, € Cis arbitrary, and for j > 0, the solution u; is uniquely determined

by the formula

w®) =1 [ oo + Kepil), @)
where N , ‘
K; = {1 - exp(i%%])] 2/0 Wexp[i@]fj(s)ds. (2.7;)

Note that K is well defined since a ¢ Q.

For a real analytic function f(r,6) as in (2.3) and satisfying (2.5), the series
(2.3), where u, is given by (2.6,), defines a formal solution of (1.1). We will show
that when the invariant o satisfies (DC), the series (2.3) defines a real analytic
function near X. Before we proceed with the estimation of |u;(6)], recall that

since f is real analytic, then there exists C; > 0 such that
;0| < C{, Vjez, voe S (2.8)
In view of (DC);, we have

<Cc Ut vyjezt (2.9;)

.2mg }’1
1— )
H exp(i)
We also have

<Zer<oft, vier,

(2.10;)

L el P s)asespi)

a Jo a
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for some Cy > 0. Similarly, we can show that

1 r® j(0—s) - .
5/0 expli . 1fi(s)ds| < C§™, Vjezt, (2.11;)

for some C5 > 0. Hence, it follows at once from (2.6), (2.9), (2.10), and (2.11),
that
lus (0) < -0V CI o3t < ofF (2.12;)

for some Cy > 0. If welet § = 0 + 0 and 7 = r + ir’ with 6,7 € R,
|| < € |r'| < e then it follows, after complexifying f and the formal series
(2.3), that estimates (2.12;) remain valid for the complexified functions ()
(with possibly different constants and small €). It follows then that the series
Zuj(é)f’j /j! converges uniformly to a holomorphic function in the variables
(6,7). The restriction of this holomorphic function to # = ' = 0 defines a real
analytic function near X.

We prove the necessity of (DC) by contradiction. When (DC) fails, we
construct a real analytic function f satisfying (1.3) such that equation (1.1) has
no real analytic solution. Suppose then that (DC)s does not hold. We can find
a sequence

{Un k) hiezr C ZT x Z*

such that
i — aky| < 170D v e Z (2.13)

We have then lim(j;/k;) = a and this implies that we may take j; to be an in-
creasing sequence with lim j; = co. We can also assert the existence of constants

c1, ¢ > 0 such that

aji <k <coji, VIEZT. (2.14)
Now set
fr,0) =" e*eri, (2.15)
1>0

Condition (1.3) is trivially satisfied and f is continuous near ¥ since | exp(ik;6)| =

1 for each /. Condition (2.14) guarantees that f is also real analytic. To see
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why, we can complexify r and 6 into # = r+ir’, 6 = 0+ with || <€ 0] <e

and € > 0 small enough. The series

Z eiklé/[ﬁjl

>0

defines a continuous function near ¥ C C? and it is holomorphic with respect

to (7, é). The holomorphy of the series follows from the estimates

Z eikzész < Z e*t‘/”kl ‘f‘jl‘ < Z ekt |26‘jt

1>0 1>0 1>0
< Zef(’ct*a’lm ‘Qeea’le‘jz £ Z |2€ea’16|jt’
1>0 1>0

for some positive constant C' (since lim(ak; — j;) = 0).
We claim that for such a function f, equation (1.1) has no real analytic
solution. Indeed, if u(r,6) were such a C* solution, then a straightforward

computation would give

u(r,d) =K +1) - !

iki0 .51
e pit, 2.16
>0 = akl ( )

with K € C. But the above series has radius of convergence equal to 0 since it
follows from (2.13) that

1y ——— ekibpii| > Zl““h"\”. (2.17)

>0 Ju — aky >0

3. Nonexistence of C*° solutions

We prove here that in general equation (1.1) does not have C'*° solutions. More

precisely, we have the following theorem.

Theorem 3.1. Let A = a +ib € RT +iR. Then there exists C*™ functions
[ satisfying (1.3) so that equation (1.1) does not have C* solutions in any
neighborhood of X.
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Proof: For € > 0, let
Ac ={(r,0) eRx S*: |r| < e}
AF ={(n8)eA:: v =0H (3.1)
A7 ={(r,0)e A.: r <0}

The function z = r*e? is a first integral of Ty in A} and in AZ. Tt is continuous

on A, and maps Af and A_ onto the disc D(0, ¢*), sending ¥ into 0. Since
T,z = —2iaz, (3.2)
then the pushforward of the equations
Thu=f in A* (3.3)

give rise to the inhomogeneous CR equations
o=
—2ia7— = f* in D(0,e)\0, 34
iz = f£(z) in D(0,e)\ (34)
where fi and 4% are the pushforwards of f and u via the map z. Let
> a2 (3.5)
320
be a series in one variable, with coefficients in C, and with radius of convergence

equal to zero. Let g(z) be a C*° function in the disc D(0, e*) whose Taylor series

at 0 coincides with the series (3.5). The function a%_f ) is then a C* function in
D(0,¢*) and is flat at 0 (its partial derivatives of all orders vanish at 0). Define
a function f(r,0) in A, by

f(r,0) = —2iar*e~#24E) (r¢¥) forr >0 and

f(r,0) =0 forr<0. (3.6)

The function f is C* in A, and is flat along the circle . Condition (1.3) is
trivially satisfied for this function.

Now we claim that for such a function f, equation (1.1) does not have a C'*®
solution in any neighborhood of X. To see why, we transfer equations (3.3) via
the first integral z and get the CR equations

out  9g(z) ou~

TR o and 520 in D(0,¢€%). (3.7)
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It follows at once that
T (z)=g(z)+ht(z) and @ (2) =h (2),

where h* are holomorphic functions in the disc. Hence any solution of (1.1) in
A, has the form

u(r,0) = g(r*e?) + ht(r*e?)  forr >0

u(r,0) = h=(r*e) for r < 0

But such a function cannot be C'*° on ¥ since the Taylor series at 0 of g diverges

(3.8)

and thus cannot be equal to that of the holomorphic function (h~ — k™)
O

The above construction can be used to show the nonexistence of C*° solu-

tions in A when \ ¢ Z.

Theorem 3.2. If A\ = a+ib € R" + iR and X\ ¢ Z, then there exist C*
functions [ in A. satisfying (1.3) such that there is no C*° function u defined
in A. and satisfying
Thvu=f inAt. (3.9)
Proof: First note that if A ¢ Q, then
rMed? ¢ C°(A,) VjeZt, (3.10)
and if A = 5 € QT with p, ¢ relatively prime and ¢ > 1, then
™Vei? ¢ C*(A) Vje ZM\qZ*. (3.11)
Let f and g be as in the proof of Theorem 3.1. If u € C*(A,) satisfies (3.9),
then
u(r,8) = g(r*e”®) + ht(r*e?) in AF (3.12)
with A+ holomorphic.
Now suppose that A ¢ Q. We show that any function u defined by (3.12)
cannot be C* on X. For this, it suffices to notice that since the series (3.5) has
radius of convergence 0, then for every holomorphic function

hit(g) = 3 g (3.13)

Jj=0
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there exists n > 0 such that
an + cn # 0. (3.14)

Let N € Z* such that N > n. We have

u(r,0) = Z(aj +¢;)r¥e® 1 O(|r|N®). (3.15)

J

It follows at once from (3.14) and (3.10) that
u ¢ Gl (A1), (3.16)

where [z] denotes the integral part of the real number x. When A\ = p/q €
Q*\Z, the above argument works as well if one replaces the divergent series

> a;z7 by the series 3 ;291! for example.
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