n Matemdtica Contemporanea, Vol. 18, 16717/
" SBM http://doi.org/10.21711/231766362000/rmc1810

K1/
©2000, Sociedade Brasileira de Matemética

GLOBAL HYPOELLIPTICITY FOR
SUBLAPLACIANS

A. Alexandrou Himonas@® Gerson Petronilho *®

Abstract

We discuss the open problem of global hypoellipticity for sublapla-
cians, which may not satisfy the bracket condition, and we prove global
regularity for a new family of such operators.

Resumo

Neste trabalho tratamos o problema aberto da hipoeliticidade global
para sublaplacianos, os quais podem nao satisfazer a condi¢ao do colchete
e provamos a regularidade global para uma nova familia de tais opera-
dores.

1 Introduction and Main Result

Let M be a C* (C*) manifold of dimension n and let X = {X;,...,X,,}
be a collection of real C™ (C¥) vector fields with coefficients defined on M.
Their sum of squares operator or sublaplacian, Ax, is the following second order
operator

Ax = —(X24---+X2).

Necessary and sufficient conditions for the C'™® (C*) local or global hypoelliptic-
ity of Ax are open problems. We shall need the following definitions to be more

precise and to be able to state our result clearly. We recall that the operator
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Ax is sald to be hypoelliptic (analytic hypoelliptic) in M if for any open set
U C M the conditions v € D'(U) and Axu € C°(U) (Axu € C¥(U)) imply
that uw € C=(U) (u € C¥(U)). The operator Ax is said to be globally hypoel-
liptic in M (globally analytic hypoelliptic) if the conditions v € D'(M) and
Axu € C®(M) (Axu € C¥(M)) imply that u € C®(M) (v € C¥(M)). Ob-
serve that hypoellipticity (analytic hypoellipticity) implies global hypoellipticity
(global analytic hypoellipticity). Also, we recall that a point zo € M is said
to be of finite type if the Lie algebra generated by the vector fields X, ..., X,
span the tangent space of M at xo. Otherwise it is said to be of infinite type.
By the celebrated theorem of Hérmander [19] (see also Kohn [20], Oleinik and
Radkevic [22], and Rothschild and Stein [24]) the finite type condition is suffi-
cient for the hypoellipticity of Ayx. Therefore the finite type condition is also
sufficient for the global hypoellipticity of Ax. In the analytic category Derridj
[7] proved that the finite type condition is also necessary for hypoellipticity.
Baouendi and Goulaouic [2] proved that the finite type condition is not suffi-
cient for the analytic hypoellipticity of Ax. Many authors, including Helffer
[14], Pham The Lai and Robert [23], Metivier [21], Hanges and Himonas [12],
[13] and Christ [4], [5], found different classes of operators satisfying the finite
type condition and failing to be analytic hypoelliptic (see Treves [26] for a sur-
vey, and conjectures). While, Amano [1], Fujiwara and Omori [9], Gramchev,
Popivanov and Yoshino [10], Greenfield and Wallach [11], Bell and Mohammed
(3], Fedii [8], Himonas [15], Himonas and Petronilho [16], [17], [18], and many
other authors, found different classes of operators that are locally or globally
hypoelliptic but the finite type condition does not hold. A well studied model
in T3 is the operator P defined by

P =—0} — (0y + a(t)y,)*.

Cordaro and Himonas [6] proved that P is globally analytic hypoelliptic in T?
if the function a is in C*(T"'), real valued, and not constant on T' (see also
Tartakoff [25]). In [5] Christ proved that P is not analytic hypoelliptic near 0
for any analytic function @ with a(0) = @’(0) = 0. In [15] it has been shown that
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if @ € C°°(T") is real valued then P is globally hypoelliptic in T? if and only if
the range of the function a contains a non-Liouville number. Then in [18] the
analogue of this operator was studied in higher dimensions. More precisely, it

was shown that the operator

2
P= *At E= ( a](t)ﬁr]) 5
=1

J

where (t1,...,tm,21,...,2,) = (L,z) € T™™ and a;,7 = 1,...,n, are real-
valued functions in C*(T™), is globally hypoelliptic in T™*" if and only if a

Diophantine condition on the coefficients is satisfied.

In the rest of this article we study the global hypoellipticity of a class of oper-
ators with coefficients depending on more variables than those in the operator

P given above. For simplicity we shall consider the case of T? only.

Theorem. Let P be the operator
P=-0} =0} — (0, + a(t1,12)0:)%,

where (t1,t9,2) € T* and a € C*(T?) is real-valued. Then the operator P is
globally hypoelliptic in T if and only if the function a is not identically zero.

2 Proof of Theorem

Since it is easy to check the necessity, we shall only present the proof of the
sufficiency. If the function a(t;,%;) is a non-zero constant then the operator P
is elliptic and therefore it is locally and globally hypoelliptic in T?. Therefore,
we shall assume that a(¢,%2) is non-constant. Then, there exists a point t°,
which we may take to be {° = 0 = (0,0), such that either %(0) # 0 or

572(0) # 0. Thus there exists § > 0 such that either %(t) #0, t €[-6,0]* or

2(1) 40, t € [~8,8% Next, let u € D'(T?) be such that

Pu=f, feC>(T. (2.1)
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If in (2.1) we take partial Fourier transform with respect to x € T we obtain
[~02 — 02 — (8, + i€a(tr, 12))?] a(t, €) = f(2,€), for all £ € Z.
(2.2)

For any £ € Z fixed a(t,£) is in C°°(T?) since (2.2) is elliptic in ¢. Therefore,
if we multiply (2.2) with @ and integrate by parts with respect to ¢ € T? then

we obtain

IYaa (-, )72 (re) + 1Yl E)|Fo(rey + |IY5a(-, )%”(TZ)
/ fe,out,ed,  (2.3)

where Yy = 0y,, Y3 = 0;, and Y3 = 0y, + t€a(l1,12). Also, note that

D/h )/3] ga_tl and D/Qv Yé] §at3 .

Let x be a function such that x € C*(T?), x > 0,x = 1 on [—%,%]2 and

(2.4)

supp x C [—4,8]% We will prove our result considering only the case gja(t) #0
n [—d,6]* (the other case being similar). For £ € Z — 0 and ¢ € C*°(T?) we

write

Joggp P = [%y<@lmwam)Wﬂmt (25
f[_%% x(?) (5 1( )[Yl,Ya]) |6(1) [ dt
Lmﬂm(ﬁémraayanw
:,L(KQE%@)MJwMMW

1 2
Aiﬂﬂ;@@)MJwMMﬁ

& 8))1

_ %Kb(t)[l/l%]@ba‘f’)' < |(6(t)[Y1, Ya]o, )],

where
b(t) = x(t) 5 € C(T?).

e
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Since for any b € C°°(T?) there exists C' > 0 such that

(GO Yl @) < € (IVill* + Il + IslIvagll + Iollivael)
it follows from this and (2.5) that

g g VOO < O (V31 + Va1 + NoIYil + olIYao) -

Since
6l < € ([, o 160+ 160+ 6l

the last inequality applied with ¢ = (¢, £) gives

(Ol < Co (IVadll* + |[Yaill” + lalll[Yadll + lall] sl
+ O (llin I? + llie 1)
= Gy (Inall® + [1Ysall* + lalllval + el Ysa])
+ O (Idl)? + | Yai?)
< (Il + vl + Sl + siviale)
+ O (‘;—2 i 2+$y|m 2 |IVad)® + || Yzt 2).

Choosing € such that C1e? < 1 the last inequality gives

Co (Yt )32 rs) + V2t ) 1oy + V38 (5 Ol Fa(rs))
G [, F(t.9)a(t8).

(e, O)lIZ2(r2)

IN

IN

Thus we have

(-, €)llzz(r2y < Call F(, €)llz2(ra)-
Finally, using a standard microlocalization argument (see [15]) we obtain that
u € C°°(T?). This shows that P is globally hypoelliptic in T? which completes

the proof of Theorem.

Acknowledgments: Part of this work was done when the first author was a
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