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1 Introduction

Let M be an oriented hypersurface of S™! with second fundamental form h. The
eigenvalues, ki, ..., k, of h are the principal curvatures of M. The hypersurface M
is said to be Dupin if each of its principal curvature has constant multiplicity and
is constant along the leaves of its principal foliation. In [T], Thorbergsson proved
that if a compact Dupin hypersurface M has p distinct principal curvatures
then p € {1,2,3,4,6}. This is the same restriction found by Miinzner for the
isoparametric hypersurfaces having p distinct principal curvatures. Grove and
Halperin [GH] also found topological relations between the isoparametric and
Dupin hypersurfaces.

Associated to the second fundamental form there are n functions Hy, ..., Hy

given by
B= ¥, &b

$1<...<iyp
Note that H = H; is the mean curvature and H, is, up to a constant, the scalar

curvature of M. In this work we are interested in the following:

Question 1. Let F,, be the family of closed oriented Dupin hypersurfaces
M C S™*! having dH, = dH, = 0. Determine F,, for all v # s.

*Supported by CNPq and Universidade Federal do Ceara
tSupported by FAPESP and Universidade Federal do Ceard


http://doi.org/10.21711/231766361999/rmc172

30 S. C. DE ALMEIDA A. C. BRASIL JR.

The above question seems to be extremely difficult. For this reason we re-
strict ourselves to the family F of closed Dupin hypersurfaces M C S™*! having
constant mean curvature H and constant scalar curvature Rys. Especifically we

are interested in the following:

Question 2. Let R : F — R be given by R(M) = Ry. Then R(F) is a discrete

set.

We will refer to question 2 as Chern-Do Carmo-Kobayashi conjecture for

Dupin hypersurfaces. In this direction we obtain the following results.

Theorem 1.1 Let M C S™, n < 4 be a closed Dupin hypersurface with
constant mean curvalure and constant scalar curvature R > 0. Then M is

isoparamelric.
In particular we have the following theorem:

Theorem 1.2 Let M C S® be a closed Dupin hypersurface with constant mean

curvature and constant scalar curvature R > 0. Then M is isoparametric.

The case n = 3, holds even without the assumption that M is a Dupin

hypersurface [?].

Theorem 1.3 ([?]) Let M C S* be a closed hypersurface with constant mean

curvature and constant scalar curvature R > 0. Then M is isoparamelric.

By using results of T. Otsuki ([?]), S. S. Chang ([?]) proved the following

result:

Theorem 1.4 Let M C S™ be a closed hypersurface with constanl mean
curvature and constant scalar curvature. Suppose in addition that M has three

distinet principal curvatures. Then M is isoparamelric.

This is one more evidence that Chern-Do Carmo-Kobayashi conjecture may
be true.
We would like to thank Professor Fabiano G. B. Brito and the referee for

helpful comments.
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2 Preliminaries

In this section we give definitions and the basic results that we will be used

through out the paper.

2.1 The structure equations of hypersurfaces of S"*!

Let M be a hypersurface of the unit (n+1)-dimensional sphere S™*!'. We choose
a local orthonormal frame ey, ..., €,41 in S™1 such that when restricted to M,
€1, ..., €, are tangent to M. We will denote by wy,...,w,41 the dual coframe.

The structural equations of S™*! are given by

dwy Y.pwaB A wa, (2.1)
dwsp = Ycwac ANwep + Qas, -

where wyp + wp4 = 0 and

1 :
Qup = —gzlﬁABGDWC A wp. (22)
c¢D

In (??) Kapep + Kappe = 0. The Ricci tensor and the scalar curvature are

given respectively by

Kup = Kpa = Z(; Kacse (2.3)
K = %: Kaa = gc: Kacac- (2.4)
In ™+,
Kapop = d4c0Bp — 04ndBC (2.5)
Kaip = ndan (2.6)

K =n(n+1). (2.7)
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If we restrict those formulas to M,

n
0 = dUJn_H = ZWW‘HJ A Wi,

i=1

and from Cartan’s lemma we have

n
Wit = D _ Moty
=

where h;; = hj;. From now on we assume that 1 <7 < n and write

dwi = szj A Wi, Wiy = —Wji,
J

1
dwij =) wik A wrj — 3 > Rijlwi A wy
; K

In (77),

Rijri = Kijri + hirhji — hahjg.

The tensor h defined by

h:Zh“— w; ® w;
i

and the function

HZZh“

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

are called the second fundamental form and the mean curvature of M, respec-

tively. The covariant derivative Vh of h, with components h;jx, is given by

Vh=>" hijr w; ® w; @ wg,

1,5,k

where

> hijgwr = dhij + D him@mi + Y hnjwmi.
k m m

(2.14)
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By exterior differentiating (??), we get from one side

dwn_'_l,i = Z dh“ ANw; + Z h,’mu}m]‘ A wj
J Jm

and from the other side,

m

1
dwng1i =Y Wnptm A Wini — 3 > Rint)imiwm A wi.
ml

We also have from (??) and (??)

dwn+u- = — Z hm]‘wmi A Wi

jm

Therefore,

Z dhi; Awj = — Z P jwmi A wj — Z himWmg A Wj.

im

From this last identity and from (??) we get

Z hijkwk A Wi = 0

kj
and therefore, h;ji; is symmetric in all indices.

Exterior differentiating the equation (??) and defining A1 by

> hijwr = dhijk + Y BonjkWmi + 3 Rimkwimj + Y RijmWmnk
! m m m

we obtain

1 1
> (hiju — 3 > Rim Rt — 3 > B Bmikt)wr A wy = 0
kl m m

Rijit — hisik = D Bim Bongit + Y henj Rt

(2.15)

(2.16)

(2.17)

(2.18)

We denote by S the square of the norm of the second fundamental form.

Therefore
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S:thj. (2.19)
]

It is easy to see the for a hypersurface in S™*+,

S=nn—1)+H*-R (2.20)

where R is the scalar curvature and H is the mean curvature of M.

We now compute the laplacian (Ah) of h. By definition

(Ah)ij = Dhij =Y hije- (2.21)
2
From (??) and (??) we obtain
D hier = Y hrije.-
P P

Therefore,

Pfigr= 3 B
P
Using (??) we obtain

DNhi; = g brirg + Xk(X o homi Bokie + Y Pk Bomiji)

= (n — S)hu —I— HZm hmihm]‘ — H(s” (222)
From (?7), we see that
%AS = S hy Dby + SR = (n— §)S + Hf — B+ Y h2,
where f = trace (h?). Note that when S is constant,
Y ohlx=(S—n)S+H* - Hf. (2.23)

ijk

When M is minimal,

|Vh|* = (S —n)S. (2.24)
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Note that when S = n, h is covariantly constant over M™. In this direction

we should mention a result of H. B. Lawson Jr.([?])

Proposition 2.1 ([?]) Let M be a minimal hypersurface of the unit sphere
S™*L. Suppose in addition that h is covariantly constant over M™. Then M is

an open submanifold of one of the minimal products of spheres

sk< 5)xs"-k( "_k); k;:O,...,[E].
n n 2

2.2 Dupin Hypersurfaces of S"t!

Let x : M — S™*! be a compact Dupin hypersurface in §**! with global field of
unit normals e,41. Suppose h is the second fundamental form of the immersion
z. Associated to h there are n functions Hy,..., H,, defined by

H= >, yh-

i1 <y
Here ky, ..., k, are the principal curvatures of M. They are the eigenvalues of
the second fundamental form k. We note that H, is, up to a constant, the scalar
curvature of M. In general H, is the so called r-mean curvature function of the
immersion x.
To fix notation from now on we will assume that M has p distinct principal

curvatures k k;, of constant multiplicities my, ..., m, respectively. With this

2-17"'7

notation we have the following result.

Theorem 2.2 ([?]) The number p of distinct principal curvatures of a compact
Dupin hypersurface M is 1,2,3,4 or 6.

Remark 2.1 The restriction given by the above result is the same found by

Miinzner for the isoparametric hypersurfaces.

The isoparametric hypersurfaces are interesting examples of Dupin hypersur-
faces. Its principal curvatures ky, ..., k, are constant everywhere on M. As usual

we will write k; = cot a;, where 0 < a < ay... < o, < w. For a parameter ¢ to
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be specified later, we let z; : M — S™! be given by z:(z) = cost x+sint e,41.

The following result is well known

Theorem 2.3 Let x : M — S™ be an isoparametric hypersurface and I =
[0,7]. For each t € I — {ay,...,an}, x4 is an immersion. The principal curva-

tures of x; are also constant and given by k; = cot(a; — 1)

Remark 2.2 The family x; is said to be an isoparametric family of hypersur-

Jaces.

Since H'(t) = 3(1 4 k7) > 0 and limy_, 4., H(t) = Foo we have the following

result.

Theorem 2.4 There exists t* € [ — {ay,...,an} such that xp : M — 5™+ is a

minimal immersion.

Definition 2.5 A hypersurface of S™ is called isoparametric of type p if it

has p distinct constant principal curvatures.

Back in the thirties Cartan obtained very interesting results about isopara-
metric hypersurfaces. Cartan was able to show, that for p < 3 all hypersurfaces
are homogeneous. Around the same time Cartan constructed a whole family
of isoparametric hypersurfaces having three distinct principal curvatures. This
family was obtained as level hypersurfaces of a harmonic homogeneous poly-
nomial F : S"' — R. Such hypersurfaces exists only in 5%, S7, S'% and
5?5, Those hypersurfaces are unique in each such dimensions and are called
Cartan’s hypersurfaces. The classification of homogeneous hypersurfaces in the
spheres given by Hsiang and Lawson ([?]) solved the classification of homoge-
neous isoparametric hypersurfaces. Later in the seventies, H. F. Miinzner, in
his paper Isoparametrische Hyperflache in Sphéren ([?]) proved the following

result:

Theorem 2.6 Let M C S™*! be a lype p isoparamelric hypersurface and My, ..., A,

distinct principal curvatures with multiplicities myq, ..., m, respectively. Then
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(¢) p€{1,2,3,4,6}
(b) If p=3, then m; = my = mg3
(¢) If p=4 or6, then my = ms = ms and my = my = mg

In Cartan’s theory, the isoparametic hypersurfaces are closely related to
families of level hypersurfaces of a certain class of functions. Cartan observed

that if a given function F' defined on an open set of S™*! satisfies:
a) || v F))? is a function of F
b) AF is a function of F.

Then if under those conditions
M7 ={z € S : F(z) = ¢, AF(z) # 0}

is a nonempty set the level hypersurface defined in this way is a hypersurface

with constant principal curvatures.

Example 1 On S™' C R™? wilh rectangular coordinates (zg,T1, ..., Tny1), lel
F be the restriction of xg to S™. Then |7 F||? = 1—F? and AF = —(n+1)F.
The level hypersurfaces

Msz{xESnH :F(x):s}, -l1<s<1,
are spheres in S™+1,

Example 2 On S™, we let F(z) = 22 + 2 + ... + 2}, € S", where
k is a fized integer, 1 < k < n — 1. Note that || 7 F||* = 4F(1 — F) and
AF =2(k+1) —2(n+ 2)F. For each s, 0 < s < 1, the hypersurfaces My are
the well known product of spheres S*(/s) x S"7*(\/1 — s) embedded in S™+'.

Cartan showed that if M™ has p distinct principal curvatures with the same
multiplicity, m; = ... = mp, = m , (n = p.m ), then M is given as a level

hypersurface
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M = {z € S™' : F(z) = cos pt}, (2.25)

where F' is a degree p homogeneous harmonic polynomial over R"*2 restricted
to S™*L. In the case p = 3, m; = my = my. Therefore, there exists a homoge-
neous harmonic polynomial I : R"*? — R, such that M? is a level hypersurface

of F.In ([?]) Cartan explicitly exibited this polynomial. It is given by

F o= u—3uw’+3u(XX+YY - 2Z

— - s 2.26

+38y (XX - YY) + 22 (XYZ + 2V X), (2.26)

where v = 49, v = 2,41 and X, Y and Z are real, complex quarternions
or octonions of Graves-Cayley depending if n = 3,6,12 or 24 respectively.

For the case n = 24, we adopt the convention that XYZ = (XVY)Z and
ZY X = Z(Y X), because of the nonassociativity of the Cayley numbers. Those
hypersurfaces are tubes of constant radius over the embedded Veronese F'P2,
F=R,C,Q,0in §% 57, S1% and S%, respectively. Here Q, O are the quater-
nions and the Cayley numbers. Those hypersurfaces are known as Cartan’s
isoparametric hypersurfaces. The three principal curvatures of Cartan’s hyper-

surfaces are:

cott+\/§ Cott—\/i)T
V3cott—1" —/3cott —1’

We will give explicit equations of Cartan minimal isoparametric hypersurface

M C 5% Tt is given by M = P~'(0) N S*, where P : R® — R is the polynomial

— cot t.

P(u,v,z,y,2)=| 2 v Z

2.3 The Differential Form ¥

Let  : M — S™*! be an orientable hypersurface in S™*! and h its second funda-
mental form. We suppose in addition that M has distinct principal curvatures

A < Ag < ... < Ay We say that (U,w) is admissible if:

i) U is an open subset of M
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i) w = (w1, ...,wy) is a smooth orthonormal coframe field on U
ili) wy A ... Aw, is the volume form on M
iV) h= Zie[ )\Zw,— ® w;.

As in [ABy] there is one and only one n-form ¥ on M such that if (U,w) is
admissible then
U = Zwij A *(wi A u)j)
i<

A standard computation gives

hiz’khjjk -
G IEDMIEPUHED DY O =)0 =) (2.27)

i<i k=1 k#i<jzk
3 Proof of Theorem 77

First of all we will prove the following:

Theorem 3.1 Let M C S™! be a closed Dupin hypersurface with constant
mean curvature H and constant scalar curvature R. Suppose in addition that

M has p < 4 distinct principal curvatures. Then M is isoparametric .

Proof: Let Ay < ... < A, be the principal curvatures of M. The case p = 1
is simply the case of umbilic hypersurfaces, i.e. hyperspheres of S™*1(1). When

p=2,

miA; + mode = H

where m; = k and mqy = n — k are the multiplicities of A\; and A, respectively.
Using those equations we see that M is an isoparametric hypersurface obtained
from a compact minimal isoparametric hypersurface My C S™1. The principal

curvatures gy and py of My are given by ps = —1/pu1 = /k/(n — k). They also
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have multiplicities k& and n — k respectively. It follows from equation (??) and

MOS’“< ]‘“) xS”_k< H)
n n

As a consequence M is a product of spheres.

Proposition ?? that

We will assume now that M has p = 3 distinct principal curvatures Ay <
A2 < Az with multiplicities given by mq, mq, ms. We will choose a local frame
field ey, ..., e, with dual coframe wy, ...w, such that the second fundamental form

h = Y;; hijw; ® w; is given by

Mln, 0 0
h =i 0 /\2 [m2 O 5
0 0 Aslm,

where I, denotes the s x s identity matrix. Note that

myAr + mody + mads = H

where S is the square of the norm of the second fundamental form of M. Since

M™ is a Dupin hypersurface, dA;(ex) = 0 for 1 <k < m;. Therefore

madXa(ex) + madAs(er) = 0
madadAs(er) + maadrs(er) = 0.
Since Ay — Az # 0 it follows that
Biifler) = Dlewli= Dislleg] <.
In an analogous way we can prove that
dXi(e) = dhy(er) = drs(ex) = 0,

for & > my. It follows that M is isoparametric. This concludes the proof of
Theorem 77
We will now consider the the case p = 4. In this direction we have the

following result:
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Theorem 3.2 Let M C S® be a closed Dupin hypersurface with constant mean

curvature and constant scalar curvature R > 0. Then M is isoparamelric.

Proof: We need only consider the case p = 4. Let A\; < Ay < Az < A4 be the
principal curvatures of M. For each i,j € I = {1,2,3,4}, we set ¢;; = \; — \;.
It follows from equation (??) that

4
2xdV =—-R+2> I,
k=1

where R > 0 is the scalar curvature of M and for a fixed k € T

hiihjix

kti<izk CikCik

Iy = (3.1)

Since H and S are constant functions and M is a Dupin hypersurface we have

Z hrrk =0= Z /\rhrrka

r#k r#£k
which gives
Cishiix + cjshjjr = 0, (3.2)
for distinct ¢, 7, k,s € I. Note that

I — h114h224 h114h334 h224h334
4 — .

C14C24 €14C34 €24C34

On the other hand, from equation (??) we have

C21 C21
h334 = _h114 = —_h224’
32 C31
which gives
—c —c ciaC
2 13 12 12€13
]4 = h11 + +

€23C14C24 C32C14C34 €32€23C24C34

Since ¢j; > 0 for 7 > 1 we obtain

2 2
C41C42€43€32[4 = - [621(641631 - C42032) + C31‘3324343] h114 <0.
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To evaluate I; we note that

h221h331 h221h441 h331h441

[1 =
€21C31 C21C11 C31C41
Since
C32
hagy = —hm = ——haay,
3 42
we have
—Ca2 C32 C32Cq2
[1 = hQ
€C43C21C31 C43C21Ca1 €43C34C41C31
and then
2 _ 2
021031041043]1 = = [043(041042 = 032031) + 021632042] hggl <0.

In the same way we prove that [, <0, for &£ = 2,3. We also note that I, = 0
if and only if Ay, = 0 for all « € I. Finally, using Stokes’s theorem we obtain

0= [ —2av - /( —221k>dM

where dM is the volume form of M. Since R > 0 it follows that I, = 0 for all
k € I. Therefore hi1r = hoor = hasr = haqr = 0, for k = 1,2,3,4. It follows
that all principal curvatures of M are constant and M* is isoparametric. This

completes the proof.

Remark 3.1 Theorem ?? of section 1 is an immediate consequence of Theorem

?? and Theorem 77

4 Final Comments

Let M be a minimal, compact, Dupin hypersurface immersed in the unit (n+1)-
dimensional sphere S™*! with 6 distinct principal curvatures. In [MO], T. Ozawa
and R. Miyaoka have shown that is possible to construct examples of Dupin hy-
persurfaces that are not equivalent (by a Lie transformation) to an isoparametric
hypersurface. Their examples are immersed in S7. The natural question now is
if there exists a minimal, Dupin hypersurfaces of constant scalar curvature and

6 distinct principal curvatures that is not isoparametric.
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