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SOME REMARKS ON CYLINDRICALLY BOUNDED
H-SURFACES WITH COMPACT BOUNDARY

Harold Rosenberg Beate Semmler

The motivation for this paper was the following question: does a properly
embedded H-surface M, with M compact, have finite topology if it is cylin-
drically bounded? We do not know the answer to this question. The results we
obtain here add some understanding to the problem. In some sense (theorems
1.1, 1.2) if such an M has infinite topology then a stack of spheres forms as a
limit and one is led to the problem of studying handles that are converging to
the point of contact of two tangent spheres. If M has bounded curvature these
handles do not exist so M has finite topology (theorem 2.1). We thank Antonio
Ros for interesting conversations.

When M is an immersed small compact H-surface whose boundary projects
onto a convex planar curve I', then we prove a Rado-type theorem: M is an
embedded disk; a graph over the planar domain with boundary T

Most of our results extend to surfaces in H®, when H > 1. We indicate
the modifications in the Euclidean proofs that work in hyperbolic space. We

assume H > 0 throughout this paper.

1. Cylindrically Bounded Surfaces in R® and H?

Let R} = {z3 > 0} and P = {x3 = 0}; we note o = (0,0,0) and v denotes the
vertical line through o. Let D(r) = {2 + 23 < r?, 23 = 0}.

Theorem 1.1. Let M, C R3 be noncompact complete properly embedded H-
surfaces, and OM,, C D(r,) with r, a sequence converging to zero. If the M, are

contained in a vertical cylinder of RS, outside of some compact set, then there
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is a subsequence of M, that converges to the stack of spheres of mean curvature

H, tangent to P at o; the convergence is uniform on compact subsets of Ri\*y.

Proof: Let Z be a solid vertical cylinder in R with axis 7. One can choose 7
large enough such that it contains the M,,. We will construct compact domains
Q.. C Z such that the complement of [j Q. in Z is v and such that Q,, C Q.41 .
The idea is then to show that for eacnﬁ m and n sufficiently large, the part of
M, in @, is a graph (we make this precise below). So one has uniform area and
curvature estimates for this part of M,, . Then standard compactness techniques

yield a subsequence of M, that converges on compact sets of RY\~.

Let ¢ and r be positive reals and let C(e,r) be the part in R3 of the solid
vertical cone with vertex on o x (—o0,0] such that C(e,r) N P = D(r) and
the outer angle between dC(e,r) and P along 0D(r) is T —e. The intersection
of Z and the complement of C'(¢,r) in RY is a bounded domain since C(e,r)
and Z have the same axis v. Then we deﬁorole Q,, to be the closure of the set
{Ri\C(& =L r= %)} N Z. Notice that | JQm = Z\7.

Now for m fixed and n large dM, C l;n(r) Let 8(¢), 0 < ¢ < oo, be a
geodesic in P starting at o, parametrized by arc length. Let Q(¢) be a family of
vertical planes such that Q(¢) intersects 8 orthogonally at (t). Let T'(t) be a
plane that makes an angle ¢ with Q(¢) at 3(t) and T(t)N P = Q(t) N P. We tilt
Q(t) to T(t) so that T'(t) N RY N~ is empty (there are two ways to tilt Q(t)).
Clearly for t large, T'(t) is disjoint from M,, . Apply the Alexandrov reflection
process to M,, and the planes T'(t) (cf. [RR]). One can translate T'(¢) until 0D(r)
and the part of M, swept out by T'(r) is a graph over T'(r). So one has uniform
area and curvature estimates (cf. [RR]) for this part of M, (the area of T'(r)NQ,,
is bounded by the geometry of Q,,). Now standard compactness techniques yield
a subsequence (which we also call) M, that converges on compact subsets of
Q,, . We can do this for each m and by a diagonalisation process we then find
a subsequence M, that converges on compact subsets of R3\vy. The limit is

either empty or a surface M of mean curvature H.

Now we will prove that the limit is not empty. Suppose, on the contrary,
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that the limit is empty, then for n large M,, would be uniformly close to ¥ on
compact sets. Therefore M, stays inside of the vertical cylinder of radius #
with axis ~.

The idea is to deform a compact annulus A of vertical length % of this
cylinder in the set of Delaunay surfaces of mean curvature H. The vertical
translation periods of the Delaunay surfaces start at 7 (for the cylinder) and
decrease to % (for the stack of spheres).

On each Delaunay surface, choose continuously a compact annulus A(t), with
boundary two horizontal circles of vertical distance the period of the Delaunay
surface. Also choose A(t) so that the JA(t) are circles where the Delaunay
surface has maximum width. So A(0) = A and A(t) converges to the part B of
a stack of spheres bounded by two successive horizontal circles of radius % .

Since JA(t) is always outside C for ¢ > 0, and A(t) pinches in to a point on
the vertical axis v as A(t) converges to B, there will be a first point of contact
of some A(t) with M, . Then the maximum principle implies that both surfaces
coincide, which is impossible.

Therefore we can assume the M,, converge to M. For each ¢ > 0, the planes
T(t) can be moved up to dD(e) and the symmetries of M by these planes do
not touch M (since this holds for M, , n large). So this works up till e = 0 by
continuity and M is a rotational surface about v; a connected Delaunay surface.
M is not compact, thus M is not a sphere. The point o is on M so M is a stack

1

of spheres of radius  passing through o.

Remark 1: This theorem still holds if one assumes dM, C B(r,), B(r,)
Euclidean 3-balls centered at o, with r, — 0. Also one must assume M,, C ]Ri’_.
The proof is the same.

Observe that we can interpret this theorem as follows. Let M, C R be a
sequence of H,-surfaces with H,, — 0. Assume each M, is vertically cylindri-
cally bounded (not necessarily the same cylinder for each M,) and assume that

there is some compact B with dM,, C B for each n. Then fix ¢ € B and do a
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homothety of M, at o to obtain //VZL of ﬁn =1. Then ]Wn converge to the stack

of spheres.

Theorem 1.2: Let €y = {2? + 22 = 1,23 = 0}, and Cy = C; +(0,0,2). Let
M, be a sequence of embedded compact H = 1 surfaces, M,, C {0 < z, < 2},
oM, = TP UTY, with TT converging uniformally to Cy in {x3 = 0}, and '
converging uniformally to Cy in {x3 = 2}. Then M, converges to the union of
the two hemispheres of radius one, with boundary Cy U Cy and passing through

the (singular) point (0,0,1).

Proof: We will apply the Alexandrov reflection technique to M,, with vertical
planes.
Let ¢ > 0 and let P(¢) be the vertical plane {z; = ¢}. Since I'? is uniformally
close to (7, the tangent vector along I'f N{z1 > £} is uniformally bounded away
from @ = (1,0,0) for n large. So, by reflection of I'f N {z; > e} with respect to
P(e), the tangent vector of the image will be bounded away from —#. For the
same ¢ and n large enough, the above is also true for I'y N {z; > }.

Now consider Alexandrov reflection with vertical planes P(t) = {1 = ¢} for
t > e. For ¢ large, P(t) is disjoint from M, .

As the planes P(t) approach P(e), consider the first possible point of contact
of M, with its symmetry through P(¢). Since M, is in the slab {0 < z3 < 2},
the first contact can not arise from the symmetry of an interior point of M,
touching a point of dM,, . So the first possible contact would be the symmetry
of an interior point touching an interior point. This would give a vertical plane
of symmetry P(t) for ¢ > ¢, which is impossible since M,, is never orthogonal
to P(t) for t > e.
Another possibility is that the image of a boundary point touches the boundary.
However, for n large, I'? is uniformally close to the circle C; and so the symmetry
through P(t) of the short arc I'"N{x; > t} cannot meet I'"N{x; < ¢}. Therefore,
there is no point of contact until ¢t = ¢ and the part of M,, swept out by the
planes P(t), t > e, is a graph over P(¢).

This is true for all € > 0 and n large enough. Thus one has uniform curvature
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and area estimates for this part of M, .

We can repeat this reasoning for each direction (cos o)z + (sino)a,, 0 <o <
2w, hence by standard compactness techniques we obtain a subsequence of M,
converging on all compact sets of R*\(x3 — axis). The limit is either empty or
a compact surface M of mean curvature 1. To see that the limit is not empty,
we use the same argument as in the proof of theorem 1.1. (Now we work with
a family of Delaunay surfaces of mean curvature 2, so the height of one period
is between 1 and 7 < 2). So the limit exists.

As we have shown before, for each ¢ > 0 and for each family of vertical planes,
the symmetries of M,, with respect to P(e), n large enough, do not touch M, .
So this holds for M.

By continuity, this works up till ¢ = 0 and so M is a rotational surface (hence
part of a Delaunay surface) about the z3-axis which can have self-intersections
at most on the zz-axis. M is compact, of height 2, and the boundary of M are

the two circles Cy U Cy. This completes the proof.

O
1.2. The Hyperbolic Case
Let o be a point in the hyperbolic plane P and let v(t), —oo < ¢ < oo, be
the geodesic orthogonal to P at . Parametrize v such that v(0) = o and

y(t) C H = a half-space determined by P, for ¢ > 0. t will be positive. Note
by Z a solid Killing cylinder in ® with axis v, i.e. the integral curves of the
Killing vector field associated with the hyperbolic translation along the geodesic

~ at a constant distance from ~.

Remark 2: The hypothesis that M is not compact and contained in a solid
half-cylinder Z, implies that M has mean curvature bigger than 1 [S].

Theorem 1.3: Let M, C HS. be noncompact complete properly embedded H-
surfaces, and OM, C D(r,) C P where D(r,) are disks of hyperbolic radius r,

centered at o with r, a sequence converging to zero. If the M, are contained in
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Z N

1, outside of some compact set, then there is a subsequence of M, that

converges to the stack of spheres of mean curvature H, tangent to P at o; the

convergence is smooth on compact subsets of HY \7v.

Remark 3: The proof of Theorem 1.3 is similar to the corresponding proof of
Theorem 1.1 in Euclidean space apart from the fact that it works without using
tilted planes. The only arguments not obvious, are the choices of the domains

2, and the planes P(t).

Proof: One chooses Z large enough such that it containiothe M, . We construct
compact domains ©,, C Z such that the complement of U Q,, in Z is v and such
that Q,, C Q41 . The idea is then to show that for ea@h m and n sufficiently
large, the part of M, in Q,, is a geodesic graph. Then one has uniform area and
curvature estimates for this part of M, . Now standard compactness techniques
yield a subsequence of M, that converges on compact sets of HE \y.

Let r be a positive real and let C'(r) be the part in HY. of the solid geodesic

cylinder over the disk in P of radius r centered at o; this means

C(r)= U p N ]I-]Ii
pED(r)

where 7, is the unique geodesic through p orthogonal to P. The intersection
of Z and the complement of C(r) in HY is a bounded domain since the point
at infinity of Z is contained in the set of points at infinity of C(r). Thus we

define ,, to be the closure of the set

{H}\C(r = arcoth m)} N Z.

Notice that as m goes to oo, [jﬂm =Z\y.

Now for m fixed and n largemaﬂfn C D(r). Let B(t), 0 <t < oo, be a
geodesic in P starting at o. Let Q(¢) be a family of planes such that Q(t)
intersects 3 orthogonally at 3(¢). Clearly for ¢ large, Q(t) is disjoint from M, .
Apply the Alexandrov reflection process to M, and the planes Q(¢) (cf. [NS]).
One can translate Q(¢) along 3 until dD(r) and the part of M, swept out



SOME REMARKS ON CYLINDRICALLY BOUNDED 287

by Q(r) is a geodesic graph over (r). So one has uniform area and curvature
estimates (cf. [NS]) for this part of M,, (the area of Q(r)NQ,, is bounded by the
geometry of ). Now standard compactness techniques yield a subsequence
(which we also call) M, that converges on compact subsets of &,,. We can do
this for each m and by a diagonalisation process we find a subsequence M,, that
converges on compact subsets of HZ \y. The limit is either empty or a surface
M of mean curvature H.

Now we will prove that the limit is not empty. Suppose, on the contrary,

that the limit is empty, then for n large M, would be uniformly close to ~

L

on compact sets. Therefore M, stays inside of the Killing cylinder of radius

arcoth H with axis 7.

As in the proof of theorem 1.1 deform a compact annulus, say R, of height
2arcoth H, of this cylinder along the one-parameter family of Delaunay surfaces
of constant mean curvature H. The family converges to one period of a chain
of spheres, so there must be a Delaunay surface in the family that first makes
one-sided tangential contact at an interior point of M, . Then the maximum
principle implies that both surfaces coincide, which is a contradiction.

Therefore we can assume the M,, converge to M. For each r > 0, the planes
Q(t) can be moved up to dD(r) and symmetries of M by these planes do not
touch M (since this holds for M, , n large). So this works up till » = 0 by
continuity and M is a rotational surface about 4. M is not compact, thus M
is not a sphere. 9M is a single point so M is the limit of the Delaunay surfaces;
this means M is a stack of spheres of radius arcoth H passing through o.

[}

Theorem 1.3 remains true, if one assumes that the dM, are contained in
a horosphere. More precisely, let L be a horosphere in H® and let £ be the
noncompact component of H® bounded by L such that the mean curvature
vector of L points towards £. Let o be a point in L and let 4 be the geodesic
orthogonal to L at ¢. Denote by 7 a solid Killing cylinder in H® with axis 7.

Theorem 1.4. Let M, C £ be noncompact complete properly embedded H -
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surfaces, and OM, C D(r,) C L where 0D(r,,) are hyperbolic circles of radius
r, centered on v with r, a sequence converging to zero. If the M,, are conlained
in Z N L, outside of some compact set, then there is a subsequence of M, that
converges to the stack of spheres of mean curvature H, tangent to L al o; the

convergence is uniform on compact subsets of £\7.

The proof of this is the same as before and we only sketch how to construct
the domain Q,, . For r > 0, the domain D(r) in L determines a plane, noted
P, , such that LN P, = 0D(r). Notice that if r goes to zero, P, converges to the
plane of H?\ £ tangent to L at 0. Let C'(r) be the geodesic solid cylinder over
the disk in P, bounded by dD(r) and orthogonal to P.. Then we define Q,,
by Q,, = {£\€(¢)} N 3 where r = arcoth(m). For each m, the family of planes
Q(t) (cf. proof of Theorem 1.3) is now defined with respect to Pr—arcothm-

2. Cylindrically Bounded with Bounded Curvature

Theorem 2.1. Let M be a properly embedded H-surface with compact bound-
ary. If M is cylindrically bounded and M has bounded curvature then M has
finite topology.

Proof. Let Z be a vertical cylinder which contains M. Suppose on the contrary
that the topology of M is not finite. Then there is a sequence of points p, € M
such that the height function 23 has a critical point at each p,, of negative index.
M is properly embedded so we can assume z3(p,) — +oc.

Now do a vertical translation of M to the surface M, placing p, at ¢, on
the plane x3 = 0. The family M, has uniform local area bounds since any H-
surface in a cylinder has linear area growth ([KKS]). We are assuming bounded
curvature, so a subsequence of M, converges to a (non empty) H-surface M, .
Notice that My has no boundary so it is a Delaunay surface ([KKS]).

Let g be a limit point of ¢,. FEach M, has a horizontal tangent plane at
Gn » 50 M, also is horizontal at g, . Thus M, is a stack of spheres and ¢, is a

singular point.
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Now each M,, has strictly negative curvature in a neighborhood of ¢, and
M,, converges uniformally on compact sets to M, , away from the singularities

so this is impossible.

Remark 4: This last theorem is valid in H?; the proof is the same.

3. A Rado Type Theorem

We shall consider immersed compact H-surfaces M in R® with M =T a
Jordan curve lying on a vertical cylinder Z of R® Assume I' has a one-to-one
projection onto a planar convex curve 'y in a horizontal plane. We say that
M is a small H-surface if M is contained in some B(p,r) (the closed Euclidean
ball in R? centered at p of radius r) for some p € R* and r < % .

Little is known about the geometry and the topology of such M in terms
of that of I'. In 1932, Rado treated the case of immersed compact minimal
surfaces with boundary a curve I' as above. He proved that such a surface is a
vertical graph and therefore an embedded disk. In the same spirit we will show
that, for H sufficiently small, a small H-surface M is a graph over the planar
domain 2 bounded by T .

Theorem 3.1. Let T' be as defined above. There exists an h(I') > 0, depending
only on T, such that whenever M C R3 is a small H-surface bounded by T, with
0 < H < h(T), then M is a graph; in particular, M is an embedded disk.

Proof. It follows from the maximum principle that, for small H-surfaces M,

one has M C mBa, where B, denotes the family of balls B(q,p), ¢ € R?,

p < 4 and OM aC B(q,p) (cf. [RR]). Let po(q) be the smallest radius such that
B(q, po(q)) contains T' and take the minimum po over all ¢ € R3.

Let k& be the smallest value of the curvature of I'y. Now we consider the
solid vertical cylinder C' of radius R, where }% = min (k, p%)’ in a position such
that B(po) C C. If H is smaller than = the mean curvature of C'is bigger than

that of M.
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Now, by moving dC towards M, we will prove that M lies in Z. By the
maximum principle, as dC approaches Z by horizontal translations, the first
contact with M cannot be at an interior point of M. Therefore no accident will
occur before reaching I'. Notice that by our choice of R we are able to touch
any point of I'. Therefore M is included in Z.

In addition, the variational techniques (chapter 15 in [GT]) applied to the
constant mean curvature equation yield the existence of H-graphs G over 2,
unique with respect to the upper mean curvature vector, with boundary IT' for
H smaller than a number 2y (T") > 0.

Let h be the minimum of 35 and hy(T). So, for H smaller than h, we use
and GG~ the H-graph solution with respect to the lower mean curvature vector,
where G NG~ =T by the maximum principle, to conclude that M must lie in
the domain in Z bounded by G U G~.

Furthermore, a uniqueness result proved in ([BS]), using a flux argument,

implies that M must coincide with G or G~

Remark 5: An interesting question is to study the same problem for big H-

immersions.
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