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GENERALIZED HELICES, TWISTINGS AND
FLATTENINGS OF CURVES IN n-SPACE

M.C. Romero-Fuster ® E. Sanabria-Codesal *®

Abstract

We define the concept of twisting of a n-space curve as flattening point
of its tangent indicatrix and show that this is equivalent to having higher
order of contact with some generalized helix. We prove that generic
closed curves in R? have at least two twistings, or at least four under
some appropiate geometric conditions. We also provide lower bounds for
the number of twistings on some classes of closed curves embedded in
odd dimensional spaces.

1. Introduction

By a flattening of a n-space curve is meant a point at which the osculating
hyperplane has contact of order at least n + 1 with the given curve. In the
case of 3-space, these are the well known torsion-zero points. We can say that
at these points the curve is closer to be a plane curve. The minimum number
of such points on a closed space curve has been a classical object of study.
Several examples of curves with nowhere vanishing torsion may be found among
the (g, p) curves on the standard torus whose equations in polar coordinates
are r = a + cos(nb), z = sin(nf), where n = p/q and « is the proportion
between the radii of the torus. Such a curve winds q times in the horizontal
and p times in the vertical sense around the torus. It was shown in [3] that
the (q,p) curve has nonvanishing torsion if and only if we have n? > 1 and
(2n? 4+1)/(n* —1) < a < n* + 1. Moreover, curves with never vanishing torsion

and curvature must enter twice inside its convex envelope, as proven in [4].
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On the other hand, curves with never vanishing curvature lying on the
boundary of their convex envelopes always have at least four torsion zero points
(see [11] for a proof in the generic case, or [13] in the general case). Analo-
gous results for closed curves in higher dimensional spaces under some convex-
ity conditions (which appear to be more restrictive than the above one in the

three-dimensional case) are due to M. Barner [2] and V. I. Arnol’d [1].

We introduce in this paper the concept of twisting of a n-space curve as
flattenings of its tangent indicatrix. We show that this points correspond to
points where the curve has higher contact with some (generalized) helix, so the
curve appears to “twist in a somehow regular manner” at them. We get the

following results for n = 3 :

1) Any closed curve in R? has at least two twisting points.

2) Any closed curve in R? with nonvanishing curvature and no parallel tan-

gents with the same orientation has at least four twistings.

3) Any closed curve in R® with nonvanishing torsion and no parallel osculat-

ing planes with the same orientation has al least four lwistings.

In the attempt to extend these results to curves in higher dimensional spaces
we give a definition generalizing the concept of helix in 3-space (section 1). We
then see that at each point of a given curve in R™ there are some generalized
helices having contact of order at least n with the curve and that the point is a
twisting when this contact can be taken to be of order n 4 1.

We conjecture that:

Generic closed curves in odd dimensional spaces must have at least two twist-
ngs.

Finally, we discuss the possibility of applying the existing results on flatten-

ings of curves in higher dimensional spaces to obtain higher lower bounds for

the number of twistings of closed curves in n-space.
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2. Generalized helices in R"

We define a generalized helix as a curve o : R — R” such that its tangent

vector forms a constant angle with a given direction v at R™.

It is not difficult to see that this is equivalent to asking that the tangent
indicatrix of a, ar : R — S§"~' < R™ is contained in a (n — 2)-sphere in
S7=1. In particular, we have that this (n — 2)-sphere is of maximum radius (or
an “equator”) if and only if a is a (n — 1)-flat curve, in the sense that it lies in
a hyperplane of R” (orthogonal to the direction v). So (n — 1)-flat curves can

be regarded as a particular case of generalized helix in R™.

Proposition. A curve a : R — R” is a generalized heliz if and only if the
function det(a”(t),a”(t),...,a"™ (1)) is identically zero, where o{) represents

the ith derivative of o with respect to its arc-length.

Proof: It follows from the above definition that « is a generalized helix if and
only if a7 is a (n — 1)-flat curve. Consider the Frenet frame of ar as a curve
in R™ and the corresponding curvature functions kf (¢),...,kI_, () (see [5]). We
have that

ar is (n — 1)-flat & kZ_l(t) =0 Vt.

And now an easy exercise in vector calculus shows that
kT i(t) = 0 & det(ar'(t), ar”(t),...,art™(t)) = 0.

The result then follows from observing that az'(t) = o(1).

Remark: In the particular case of n = 3, we have that the above conditions
are equivalent to the familiar definition of helix : a curve for which the rational
Junction T is constant, where k and 7 denote respectively the curvature and
torsion of the considered curve (see [15]).

For instance, curves with constant curvature and torsion form a particular

class of helices. It is a straightforward (but tedious!) exercise to see that
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for n odd the curves having all their curvature functions constant satisfy our
definition. It can also be seen that this is not the case for even dimensional

spaces.

3. Special contacts of a curve: flattenings and twistings

Suppose that X; and X, are submanifolds with a common point P in R™. It
is classically known that X, has a contact of order k with X; at P if given
some point @) in X; we have that

lim

QB [ 0ifr=1,2,..k
Q=P PQ"

finite and # 0 for r =k + 1.
where Q) B represents the distance of @ to the manifold X, and PQ the distance
between the points P and Q) in X;.

Given two pairs of submanifolds (X7, X3) and (X7, X)) in R” the contact
of X; with X, at a common point P is said to be the same than the
contact of X| with X} at P’ if and only if there exist a diffeomorphism
H :R" — R” taking X, X3 and P respectively to X7, X}, and P’. Clearly this

is an equivalence relation between pairs of submanifolds of R”.

For a pair of submanifolds X; and X, with a common point P, it is always
possible to find local coordinates for R” in a neighbourhood of P such that X;
is locally given as the image of some embedding ¢ : (R™,0) — (R™, P) and
X, = f71(0), for some submersion f : (R", P) — (R?,0). The composite map
fog:(R™0) — (RP0) is known as the contact map for X; and X, at P.

J. Montaldi [9] proved that the singularity type ( K-class) of the map fog at
0 completely characterizes the contact of X; and X, at P and that this actually
independs of the choice of the maps g and f.

If the first submanifold is a curve, given by a : R — R™, and X is cut out
by f: (R™, P) — (RP,0) at P (i. e., X = f7(0) in a neighbourhood of P)
then it is not difficult to show that both of them have contact of order k at P
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if and only if
dh(0) = ... = d*1(0) = 0 and d**'h(0) # 0,

where h = foa: (R,0) — (R?,0) is the contact map for @ and X at P.

From the classification of singularities of maps from to R to R? it follows
that whenever X; and X, have contact of order k at P it is possible to find
coordinates for R and R? such that the corresponding contact map is written as
h(t) = (t*+1,0,...,0), see [10] for instance. In particular, if X; is a hypersurface
we shall have that the contact map & : (R,0) — (R, 0) can be put as h(t) = ¢tF+!
by means of such changes of variables.

Suppose now that o : R — R” is a curve and H a hyperplane defined
by the equation < v,z > +p = 0, with v = (vq,...,v,) € S™! as orthogonal
direction and p a positive real number, i.e., the distance of H to the origin. So

H is cut out by the function
f(@1, e n) = vit1 + oo+ vz + p.

If H is tangent to « at a point ¢, we have that the vector v must be normal
to the curve a at to and that p = a(to).v. Moreover, it is straightforward to
verify that H is the osculating hyperplane of « at o if and only if @ has contact

of order at least n — 1 with H at a(to).

We shall say that ¢ is a flattening of « if the contact of a with the oscu-
lating hyperplane at g is of order at least n.

Lemma. A point ty is a flattening of « if and only if

det(c! (t), @"(to), ..., ™(tp)) = 0,
where ol represents the ith derivative of o with respect to its arc-length.
Proof: Write f(t) = a(t).b, where b is the binormal vector of « at ¢y (that is,

b= N,_1(to) in the standard notation of the Frenet frame [5] of ).

We have that ¢y is a flattening of « if and only if

F'to) = f"(to) = ... = (o) = 0.
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That is, o/(t).b = ... = a{™(t,).b = 0, which is equivalent to asking that
all the vectors o/(ly), ..., (™ (1y) belong to the osculating hyperplane, and hence

det (e (to), ..., ™ (ty)) = 0.

Remark: As in the case of curves in 3-space, it can be seen that if « is a curve
for which the first n —2 derivatives are linearly independent at each point, ¢y is a
flattening of « if and only if k,_1(to) = 0, where k,,_; is the (n — 1)th curvature

function of a.

All the curves that we consider in what follows will have this property. It
is possible to show that all these curves form an open and dense subset of the
set of embeddings of R in R” with the Whitney C'*°-topology. In this sense, we

say that they are generic.

A hypersphere of R™ whose contact with « at ¢y is of order at least n is

called osculating hypersphere of « at .

A conformal flattening or vertex of « is a point at which a has contact

of order at least n 4+ 1 with its osculating hypersphere.

Let {T'(t), N1(t), ..., Ny—1(t)} be the Frenet frame of the curve a. The (i+1)-
subspace generated by {T'(t), N1(t),..., Ni(t)} shall be called osculating (i +
1)-subspace of o at ¢ and its intersection with the osculating hypersphere,
osculating :-sphere of « at ¢. It is not difficult to see that the osculating

(i + 1)-subspace of a at ¢ is also generated by the vectors {o/(t), ..., ali+1D(¢)}.

It can also be shown that the curve a has contact of orden at least k& with

its osculating (k — 1)-spheres at each point.

In the particular case that X; and X, are a couple of curves, having contact
of orden k at the point ¢y, the definition of contact is equivalent ( see [8]) to

the existence of parametrizations o : I — R” and 8 : J — R” such that
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a(ty) = B(to) = P, for some 1o € I N J, and

a(”(to) = ﬁ(l)(to), Z = 17 ey k’
o (k) #£  BE().

It is easy to deduce that if a and 8 have contact of order k at to then
their osculating i-spaces at ¢y coincide for ¢ = 1,...,k, as well as the value of
their curvature functions k;, ¢ = 1,....,k — 1 at the point ¢y. The reciprocal is
not necessarily true as we can guess from a quick glance to the expression of
the derivatives o) and 3@ in terms of the Frenet frames and the curvature

functions and their derivatives.

It follows from the definition of order of contact that given a curve a and
a submanifold X in R™, if there exists some curve 3 in X whose contact with
a is of order k at P, then the contact of a with X at P is of order at least k.

Moreover, we have the following:

Lemma. If a has contact of order k with some m-dimensional submanifold X
at P then exists some curve 3 passing through P in X such that o and 3 have

contact of orden k.

Proof: If a has contact of order & with X at P, we can locally write the contact
map as h = foa: (R,0) — (R"™,0) for some [ : (R", P) — (R"™™,0).
Then as we have previously said, convenient changes of variables allow us to
put h(t) = (¥¥1,0,...,0) in a neighbourhood of 0. But then it us possible to
restrict ourselves to some curve § lying on X (determined up to (k + 1)-jet) in

such a way that the new contact function (of @ with 3) is given by

h: (R,00 — (R*1,0)
t — (tk+1,0,...,0)

and hence a and 8 must have contact of order k.

We define a twisting of o : R — R” as a flattenings of its tangent indi-

catrix ar : R — §7~L Tt follows that if o is parametrized by its arc-length ¢,
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then t, is a twisting of « if and only if det(a”(ty), ..., a"D(ty)) = 0.
We shall see now that the twistings of « can also be characterized as points

at which it has higher order of contact with some generalized helix.

Proposition. Given a curve a(t) parametrized by arc-length in R™, there exists
Jor each point a(ty) = P of this curve some generalized heliz v,(t) whose contact
with o at P is of order at least n. Moreover, if o is a flatlening point of ar

then we have that vp has order of contact at least n + 1 with o at P.

Proof: Given a : R — R” parametrized by arc-length, let ar(t) = o/(t)
denote its tangent indicatrix.

Consider now, the osculating hyperplane H of ar at 5. The intersection
of H with the unit sphere S™~! determines a (n — 2)-sphere S which is the
osculating (n — 2)-sphere of ar at to.

Since ar has contact of order at least n — 1 with S at P, the above lemma
tells us that there must be some curve 3 contained in S whose contact with
ar is of order at least n — 1. Then 3 is the tangent indicatrix of some helix
vp : R — R”™, and clearly & and vp have contact of order at least n at ¢o. If ¢
is a flattening of a, then this curve has contact of order at least n with S (see

[16]) and therefore a has contact at least n + 1 with yp at to.

Remark: The above construction tells us that the helix yp is not unique. In
fact, the curve 3 itself is only determined up to its (n — 1)-th order derivatives,
moreover given 3 there is a whole family of curves in R™ having 3 as its tangent
indicatrix.

We also observe that the existence of some helix v with order of contact at
least n + 1 with « at ¢y implies that ar and 47 have contact of order at least
n. But since 47 lies in some (n — 2)-sphere S this means that this must be the
osculating (n — 2)-sphere of ar. Consequently az has contact of order at least

n with its osculating hyperplane and the point is a flattening of ar. Therefore,
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we can assert

Corollary. A point ty is a twisting of a curve a if and only if there exists some

generalized heliz whose order of contact with o at ty is at least n + 1.

4. Global results for closed curves in R?

We observe first that torsion-zero points of both the tangent indicatrix and the

binormal indicatrix of a 3-space curve « are characterized by the property
7'(to)k(to) — 7(to)H'(to) =0,

where k and 7 respectively denote the curvature and torsion function of « (see
(15, pgs. 71-72]). Therefore, we can say: Given a : R — R? any critical point
T

of the function T is a twisting of a.

From this we get immediately

Theorem. Any closed curve with non vanishing curvature in R> has at least

two twisting.

Since non vanishing of the curvature is a generic condition in the sense that
it is satisfied by an open and dense set of curves in the Whitney C*°-topology,

we get that any generic closed curve has at least two twisting.

Consider now the tangent indicatrix ar of a. This is a regularly embedded
curve in S? provided that the curvature of a does not vanish and that o does
not have pairs of parallel tangents with the same orientation. If we observe now
that stereographic projection from 5% — {p} — R? sends torsion-zero points
of spherical curves into vertices of its plane images, we shall obtain as, an
immediate consequence of the 4-vertex theorem for plane curves, the following

result

Theorem. Any closed curve with non vanishing curvature and no pair of par-

allel tangents with the same orientation in R® has at least four twisting.
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Remark: With the above assumptions B. Segre proved [14] that the curve
must also have at least four flattenings. We observe that for a generic curve the
sets of flattenings and twistings must be disjoint. For otherwise, it would have
points satisfying 7(¢) = 7/(¢) = 0 which is non generic, in the sense that this is

non stable under small perturbations of the curve in the Whitney C*-topology.

By applying now similar arguments to the binormal indicatrix of a closed

curve, we obtain

Theorem. Any closed curve with non vanishing torsion and no pair of oscu-

lating planes with the same orientation in R® has at least four twisting.

A particularly interesting class of closed space curves with never vanishing
torsion is given by the elasticae [6]. These are defined as critical points of the
energy functional F(y) = [ k*(t)dt among all the curves of the same length

and first order boundary data.

A necessary condition, arising from the Fuler equation, for a curve to be an

elastica is that its curvature k and torsion 7 satisfy k*7 = constant (see [7]).

Therefore 2kk'r 4+ k*7' = 0 and thus we get the following

Corollary. In an elastic curve with never vanishing curvature in R3, the twist-
ings are also critical points of the torsion. Moreover, if such curve has no
parallel binormals with the same orientation them it has at least four of these

points.

Remark: We observe that although generically twistings and singular points of
the torsion do not coincide, this situation is “stable” in the set of elastic curves
in the sense that it will not be destroyed by a perturbation of the curve inside

this subset.
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5. Global viewpoint for closed curves in higher dimen-
sional spaces

First of all, we observe that given any curve v in R”~! the inverse of the stereo-
graphic projection ¢ : R"™1 — §7~1 transforms the vertices of v into the flat-
tenings of its spherical image o = £ 0y considered as a curve in n-dimensional

space [12].

Now if we start with a closed curve a in R™ and consider its tangent indicatrix
ar C S™ 1, the number of twisting of a will be equal to that of vertices of
~ = £ o a. Consequently, we have that any lower bound for the number of
vertices of any class of regular closed embedded curves in R™! will be a lower
bound for the number of twistings in the corresponding class of closed curves

with non vanishing first curvature and no pairs of parallel tangents in R™

An interesting question now consist in investigating whether the fact that
closed curves in R® have at least two twistings generalizes to R”™.
The answer is that this is not the case for even dimensional spaces, as the

following counterexample, passed to us by R. Uribe, shows:

The closed spherical curve 4 : [0, 27] — R*, given by

(cost, —sint, cos2t, sin2t)

7(t) = NG

has as tangent indicatrix the spherical curve

/ 1 . . ’
¥(t) = ﬁ(—smt, cost, —2sin2t, 2cos2t).
An easy verification tells us that the curve 4’ has no flattenings in R* and thus

~ has no twistings. In fact, R. Uribe proves [17] that it is always possible to

find closed curve with no twistings in even dimensional spaces.

Now, based in the case of R?® and in the fact that the parity of n is funda-
mental for the questions of existence and no existence of flattening and vertices,

we formulate here the following conjecture:
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Conjecture: Generic closed curves in odd dimensional spaces have at least two

lwistings.

Finally, we see that appropriate convexity conditions can rise the lower

bound of the twistings of closed curves in odd-dimensional spaces.

A closed curve o in R™ is said to be convex if any hyperplane of R” meets

a in at most n points with the multiplicities counted.

Theorem (V. I. Arnol’d [1]). A curve in R***! whose image through some

projection R*+t1 — R? is convex has at least 2k + 2 flattening points.

Based on Arnol’d’s result R. Uribe has proven the following

Theorem. ([16]) Any closed convex curve in R* has at least 2k + 2 vertices.

And then, from the above arguments we deduce

Theorem. Any closed curve in R**t1 with non vanishing first curvature and
no pairs of parallel tangents, whose tangent indicatriz does not meet any hyper-
circle of S* in more than 2k points (counting their mulliplicities) has at least

2k + 2 twisting.

We end up by remarking that it would be interesting to determine sufficient

conditions on a implying convexity of its tangent indicatrix in the above sense.

Acknowledgements: We thank R. Uribe for helpful conversations and useful

remarks.
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