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CONFORMAL METRICS AND RICCI TENSORS IN
THE HYPERBOLIC SPACE

Romildo Pina®

Abstract

We consider the hyperbolic space H"(—1) = (R, g), T a symmetric

tensor given by 7' = Ric g + Z %dwi ® dx; with ¢;; € R and we study
’i, i n

the problem of finding metrics] g conformal to the hyperbolic metric g
such that Ricg = T'. We show that such tensors are null or diagonal and
we obtain explicitly such metrics g. As a consequence of these results we
show that for certain unbounded functions K defined on R’} there exist
metrics conformal to the hyperbolic metric, with scalar curvature K.

Resumo

Consideramos o espago hiperbdlico H"(—1) = (R, g), T um tensor

simétrico dado por 7' = Ric g+ Z %dxi ®dx; com ¢;; € R e estudamos
ij om

o problema de encontrar métricas g, conformes a métrica hiperbdlica g,

tal que Ricg = T. Mostramos que tais tensores sdo nulos ou diagonais

e obtemos explicitamente tais métricas g. Como conseqiiéncia destes

resultados, mostramos que, para certas fungdes ilimitadas K, definidas

em R" , existem métricas, conformes a métrica hiperbdlica, com curvatura

escalar K.

1. Introduction

Over the last few years several authors have considered the following problem :
Given a symmetric tensor of order two T defined on a manifold M™, is there a

Riemannian metric g such that Ricg = 77 (P)

Finding solutions to this problem is equivalent to solving a nonlinear system
of second-order partial differential equations. Deturck showed in [D1], that if

n > 3, problem (P) has a local solution, when the given tensor 7" is nonsingular.
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Results on the existence and uniqueness of solutions for the problem (P), when
M™ is a bi-dimensional manifold, can be found in [D2] and [CD1]. For compact
manifolds, some results can be found in [DK] and [H].

Cao and Deturck [CD2] studied the existence and uniqueness of global solu-
tions in R™ and S™, for rotationally symmetric and nonsingular tensors. In this
case, they showed that problem (P) has a unique solution (up to homothety)
and that for certain tensors in R”, there is a complete metric g, globally defined
on R", such that Ricg = T'. On the sphere S™, they proved some nonexistence
results and found necessary conditions on a given tensor T , for the existence
of a metric g on S™ satisfying Ric g =T

Uniqueness and even local existence may fail (see [DK] and [D1]) if nonsin-
gular tensores T are considered as in [CD2].

Our main purpose in this work is to study problem (P) in the hyperbolic
space H*(—1) = {(R%,g) with n > 3, g;; = % and R = {(z1,...,2,) €
R™; x,, > 0}},for symmetric tensors of the form

T=Ricg+), %dmz ®dx; with ¢; € R (1)
i tn
We want to find conformal metric to g such that
1
s (2)
Ricg =T,
where Ric § = R;;dz; ® dz;.
Considering T given by (1), we show in the Theorem 1.1 the existence of
metrics g, conformal to g, satisfying Ric § =T, if and only if, 7= 0 or

) 2n — 3 n—-2) , de? ¢,
T—Rlcg+<n_1c—(n_1)2c ;I%Jr—%dxn

with ¢ € R.
As a consequence of Theorem 1.1, we find explicit solutions of C* class,

defined on R for the equation

n
—pAgp+ §||V9s0\|2 + A =0
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where A, and V are the laplacian and gradient in the metric g respectively and
A€ <oo. M)
"2(n—2)

Finally, we show that for certain functions K defined on R, there are
metrics g, conformal to g, with scalar curvature K. These provide examples
of unbounded functions which have positive answers to the following problem:
Given a smooth function K : M™ — R on a manifold (M, g) is there a metric g
conformal to g whose scalar curvature is K ?

This problem has been studied by various authors . Particularly , when K
is a constant it is know as the Yamabe Problem . In the hyperbolic space ,
various results can be found in [BK] ,[CKY], [LTY], [MR], [RV] and in their
references.

We can now state our results.

Theorem 1.1. Let H"(—1) be the hyperbolic space and T given by (1). Then
there is a metric g = %g such that Ric g = T, if and only if, (c;; = 0 for all
i # j) and T satisfies the following conditions:

Dei=n—1foralll <i<n (T =0). In this case, all the solutions are given
by
1
D Fiy o oo Toig) = (

Tn

> (g:rf + aZin) + r> (3)

i

where the constants satisfy 2ar = _ a?.
i=1

A (2n —3) (n—2) , de? &€ .5 .
ITI) T = Ric g—l—( — C_(n—l)Qc ;xi —I—x—id:vn with ¢ € R. In

this case, all the solutions are given by ¢(z,) = kxﬁ where k s a nonzero

constant.

Corollary 1.2. Let H"(—1) be the hyperbolic space and T given by (1). Then
there are no complete metrics g conformal and nonhomothetic to g, such that
Ricg=T.

Corollary 1.3. Let H*(—1) be the hyperbolic space and A € R. Consider the
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differential equation

—p(8g9) + 5 (IIV4l%) + Ae* = 0. (4)

DIfA= % and exist i # n such that ¢,, # 0, then the functions given by (3)

are solutions of (4).

—1)2

I) If A € <—oo,%], then the equation (4) has at least two solutions
- — ]_

given by ¢(x,) = kxi ' with ¢ = % ((n e E= \/(n — 12 —-2\n— 2)).

Corollary 1.4. Let H*(—1) be the hyperbolic space. For each ¢ € R, consider
the functions K : R% — R given by

K(21;+ 1 %0) = pEr

with

p=2(n—1)c—

1
Then the metric § = Eg, where @ is given in (1) or (II) of the Theorem 1.1,
has scalar curvature K.
Before proving the main results, we observe that a similar theory in the

pseudo-euclidean was treated in [PT].

2. Proof of the main results

We will start with some lemmas which will be used in the proof of Theorem
1.1.

Lemma 2.1. Solving the problem (2) is equivalent to studying the following

system of equations

Pan | 1 IVgell?
Priz = ( +)xn+x%<s0+ 20

Cij P Pa Pa
wz:—_(sn_l_ézn !
Pz (n—2)22 ", T,
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where 1 <1 # j <n and

Cu Z Crk

= 2(n—1)(n—2) (©)

Proof. We know (see by example [KR]), that if (M, g) is a semi-Riemannian

1
manifold and § = = g, then the Ricci tensors satisfy the relation

Ricg — Ricg = % {(n —2)pHess, (0) + (A0 — (= VIIV0lP)g}  (7)

Using (7) we obtain that (2) is equivalent to studying the following system of
equations

Z5{(n = 2)p Hess, (0 + (08,0 — (= DIIV,plPgs} =2 ®)

where, 1 < 4,7 < n and Hess;, A, and V,, are the Hessian, Laplacian and

gradient in the metric g respectively.

The system of equations (8) is given by

n

1 . 1 "
5 {(1= 20 [+ (14 8 E2] + (80— (0= DIVIP) 5} = 5

1 P Cij
E {(n - 2)90 {‘Pm iTj =+ 5]71_ =+ 6m -Tn]:|} s E
(9)

Substituing Ao = x2 (Z gpmj) — (n — 2)z,p,,, in the first n equations
J

of (9) we have
> Guyay + (0= Dprias = 2(n — 2)222 — 2(n — 2)6, Pan
j 71 Tn Tn
J#i
cip® + (n = DIIVyol®
Pz,
For a fixed i ;multiplying the equation (10) by (2n — 3) and adding with the

(10)
+

V1< <n.

(n — 1) remaining equations we obtain

Pan | 1 IVgoll®
=(=1420m)—=+—= (A ;
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where ), is given by (6). The proof of the Lemma follows from (9) and (10).
O

Lemma 2.2. If ¢ : R? — R is a solution of the system of equations (5) then

the following equations are satisfied.

Cij (SOxk - 6%%) = Cik (SOxj = 5jnx£> 1<i#j#k<n (11)

Cje Biaf %
RESWEYFIRED S Iy S
(=1+A +A])¢]+MZ mogPut g (Pt ) =0 (12)
02 0#n
1<i#j5<n
Cej 2ch; @ .
14X+ M) s, )y I Y -0 1<j< 13
l#n
(1M A0+ 3 e + = M) 2 =0 1<i<n  (14)
#111—2 i T
l#n

Proof. The proof follows from the comutativity of the derivatives of third order

of .

The proof of Theorem 1.1 will be completed after various steps.

Proposition 2.3. Let H*(—1) be the hyperbolic space and T given by (1). If
there is § = — g with ¢ non-constant, such that Ricg =T, then ¢;; =0 for all
1<i#j<n.

Proof. We shall consider two cases:

I) Case: Suppose that ¢, — ¥ # 0 in a open subset U C R%. By equation
Tn
(11) we have that in U

Taking derivative of (15) wiht respect to the variable z; and using the system
(5) we obtain
Cipe; =0 V1 <i#k<n. (16)
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If there is at least one pair (io, ko) with 1 < ig # ko < n such that ¢, # 0, it
follows from (16) that ¥, = 0 and since ¢ satisfies the system (5) we obtain
that ¢ = 0 . (a contradition). Therefore, c;; =0V 1 <14 # k < n. In this case,
the equation (15) is given by

Cinz, =0 V1I<i#k<n. (17)

If there is ip < n such that ¢, # 0, using (17) and the system (5) we prove
that ¢k, = 0V 1 <'ig # k < n. Considering i = ip and ¢ # io fixed in (14) we

obtain the following equations

(_1 + >\i0 + )\n)soacn -+ ()\n - Aio)i =0

Tn
(=1 + X+ XN)@a, + (A —A-)£+ %ngo =0
7 n Zn n 7 «Z'n n_2 g

Considering the difference of the equations above we obtain

Cion (p
n_2¢wlo+()‘z i) <()0n In> 0 (18)

Now considering i # io and j = io in (12) we obtain

cion (/9
—{ i io )P z )=
(=1+A +)\o)g0m+n_2<<pn+xn> 0

If j =g in (13), we have

2¢; )
1 D i), —<—) —0.
(=1 An o Aig)my + 5 .

Considering the difference of the equatios above we obtain

Cion
(X — An) Py, + - - 5 ((pwn - x£> = 0. (19)

¥u;, = 0, otherwise if ¢, # 0 in a open subset U C U, it follows from (18) and
(19) that

(Ci_o">2 = Be— 30— ) (20)

n—2
Taking derivative of (18) with respect to the variable x;, we have

Pai

e~ 0 (21)

Cion
n i 2S0zi0wi0 + (>\1 - )\io)@ziown == ()\zo - )\z)
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V1<ig#i<n Asy, =0foralli#ip i <n, it follows from system (5)
that )
IVgoll _
20, + P = T
Using (22) and the system (5), we have that the equation (21) is given by

(22)

Pasy

Tn

(/\io = Al) = 0

Therefore, A\j, — X = 0 in U. It follows by (20) that c;,, = 0; that is a
contradiction. Therefore ¢,, = 0. Since, ¢, # 0 we obtain from system (5)

that ¢ = 0. In this case, we conclude that ¢;,, =0V 1 <i <n.

IT) Case: If ¢, — 3:£ =0 in a open subset V' C R, we obtain from (15) that

n

CinPz, =0 V1<i#£k<n. (23)

If there is iy < n such that ¢y, # 0, it follows from (23) that ¢,, = 0 for all

k < n, k # io. Then from system (5) ¢k, =0V 1 # k # 9 < n. Considering

i=1p in (14) we obtain that (—1 4 2)\n)x—i = 0. In this case, —1 + 2X, = 0.
Now considering ¢ = 4o in (14) we obtain that ¢,, = 0 and consequentely

Paigen = 0. It follows from system (5) that ¢ = 0 in V' C R}, which is a

+

contradiction. Therefore ¢;,, = 0 for all ¢ < n. Since ¢,,, — I—i =0andc¢;, =0

for all i < n, it follows from system (5), that ¢;; = 0 for all 1 < i #< n. ¢; are

constants hence we obtain from (I) and (II) that ¢;; =0 forall 1 <i#j <n
in R%.

O

We showed that if problem (2) has a solution then the given tensor T is

necessarily diagonal.

Lemma 2.4 Let H"(—1) be the hyperbolic space and T = Ric g+ %dxf

1
Suppose that there is g = Eg satisfying Ric g = T. If there is at least one
Jo < n, such that a5, #0, thency; =n—1,V1<i<n.

Proof. It follows directly from equations (12), (13) and (14).
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O
Now we shall study the problem (2) when ¢; =n— 1,V 1 < i <n. In this

case, ' = 0.

Proposition 2.5. Let H"(—1) be the hyperbolic space and T = 0. Then there
1
15 g = Eg such that Ricg =0, if and only if,

gp(xl,...,xn):—<zn:

(9362 + aixl») + 7") where 2ar =Y aZ,

i=1
a,r,a; € R.

Proof. Since T = 0, the system (5) is given by

« 1 \VAZIIE

T @2 \2 2¢p
Goio; =0, 1<i#j<n (24)
— P
Pason = .

Since Yg,e; =0,V 1 <1 # j <n, we have that
B » sa5illy) = 3 Wl B
i<n

It follows from (24) that ., = Qaje; V1 <0 # 5 <n . Therefore

Using (24) and (25) we obtain that

Wi(25,T,) = a:i (gxf -+ am) + hi(z,) (26)

n

where ¢ and a; are constants.
The function ¢(z1,...,z,) = Zﬂ%(%,%) with 1; given by (26) satisfies
=<m
the last two equations of (24). We still have to see if the first equation of (24)

is satisfied.
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. a . . . .
Since @y, = . V i < n, this equation reduces to the following

1 V0|2
s 1 (2 1T0)

w \ 2 2
1 (e [Tl a
b ", <2 M )
Taking the difference of these equations we obtain
a D
iy, = — — 2——. 28
Ponan = == 27 (28)

Substituing ¢ given by (26) in (28) we obtain that

3 hla) = <2xn+anxn+r>

i<n

Therefore the function ¢ is given by
1 n
o(@1,..., X)) = — <Z <9x? + aixi) + 7") .
Ty \IZ7 \2
Finally, it is easy to see that ¢ satisfies equations in (27), if and only if,
oar =3 s
i=1

O

Remark 2.6. We see from Lemma 2.4 that if T is a nonzero tensor then
¢ : R} — R satisfying (2), depend only on the variable x,,. In this case, we
necessarily have that ¢;; = ... = ¢,_1,_1. Therefore, we need to study the
problem (2) only for tensors of the form

P Rlcg—i-x—Zd 1. S i (29)

n i<n "

with G115 Crn € R.

Lemma 2.7. Let H"(—1) be the hyperbolic space and let T be a tensor given
1
by (29). If there is § = Eg such that Ricg =T, then

— G,
kyxll + koxl? if 7_ 5 T
_ —§ . C11 — Cpn _ 1
plan) =3 (ka + kollogr )t if DL 2 (30)
i — 1
Tn 2 (kycos(plog x,) + kasen(plog x,)) if % >
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where

11400 — M) 1T 4n M)
1= , T2

o= 4()\1 = >\n) -1

and ki, ks € R.
Proof. In this case, it follows from Remark 2.6 that the system (5) is given by

1 Vgoll?

1 T 2
@"(xn) :—x—n”JrE <)\ng0+297>.
Considering the difference of these equations, we obtain
220" (20) + 220" (T0) + M(p =0. (32)

-2

Equation (32) is a particular case of the Euler equation. Its general solution is
given by (30), (see [BD]).

Using Lemma 2.7 we shall prove the following results.

Proposition 2.8. Let H"(—1
given by (29) with % <
T, if and only if,

~—

be the hyperbolic space and let T be a tensor
1

. Then there exists § = — g such that Ric g =
2

=

_ (2n-3) n—2) ,
C11 = n—1 Cnn (n — 1)2Cnn.

nn

In this case, all the solutions o = (x,) are give, explicitly by ©(v,) = kxn "

where ¢,, € R and k is nonzero constant.

Proof. In the proof of the previous Lemma we have seen that for a tensor

given by (29), studying the problem (2) is equivalent to study the system (31).

If % <7 it follow from Lemma 2.7 that the solution of (31) is necessarily
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given by ¢(z,) = k127t + kox2. Substituing ¢ in (31) we see that a solution

exist, if and only if,

. 7(211—3)0 o n=2 e #n—l
il = n—1 nn (’I’L—l)Q mny “nn 2 .

c

_ Cnn — G ]_
Moreover, all solutions are given by p(x,) = kxn "', If O e

— 2, th
n_2 41 , then
the solutions of (31) are necessarily given by ¢(z,) = (ki + kzlogz,)xs 2.

Finally, we see that equations in (31) are satisfied, if and only if, ky = 0, ¢y =
3n—4 n—

_1
5 Cm = —5— - Therefore, all the solutions are given by ¢(z,) = kan 2.

O

—_

Proposition 2.9. Let H"(—

given by (29) with % >

2
Ricg=T.

) be the hyperbolic space and let T be a tensor

1
. Then there are no metrics g = Eg such that

| =

- Lnn 1 «
% > 7 ve have from Lemma 2.7 that the solution of the
system (31) is necessarily given by

Proof. Since

o(xn) = x;%(kl cos (ulogx,) + ke sen (nlogw,)).

Substituing this expression in (31), we see that the system does not admit

non-null solution.

Proof of Theorem 1.1. It follows from Propositions 2.3, 2.5, 2.8, 2.9, Lemma,
2.4, and Remark 2.6, denoting ¢,,, by c.
O

Proof of Corollary 1.2. One can prove that the metrics obtained in the
Theorem 1.1 are not complete.
O

Proof of Corollary 1.3. If ¢ : R} — R is a solution of the system (5), in
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particular it satisfies the following equations

1 Cii
7 {(n=2)pHessy ()i + (¢Vyo = (0= DIVol g} = 5 (33)
forall 1 <i<n.
Ifei; =n—1,1<i<n it follows from Proposition 2.5 that

e, or) = o (3 (et +) +1)

where 2ar = Y a?, are solutions of (33).
i=1
In this case, we obtain equation (4) with A = g by adding the equations
above multiplied by z2.
2n—3 n—2) , . ;
Ifc; = (—) Con — —=c.forall1 <7< nand c,, € R, it follows

n—1 (n—1)2""
from Propostion 2.8 that o(z,) = kz, "~ are solutions of (33).
— D,
For to obtain the equation (4) with A = ¢ — %02 it is enough to add

the equations in (33) multiplied by z2.
O

Proof of Corollary 1.4. It follows from the relation (7) that, if H*(—1) =
(R, g) is the hyperbolic space and K : R — R, K = Y_g”R;; is a smooth
i
1 _
function, finding g = — ¢ with scalar curvature K is equivalent to solving the

following differential equation

Cod ot UVl 4 (P 4 R =
eByp+ IVl + gy (" + ) =0 (34)

we have that if p = 0, it follows from Corollary

e &,
n—1

Considering K = p;v;2

1.3 that the solutions of equation (34) are following functions

1 n
@(xb B xn) == (z (%,’L’? + aixi> + 'f’>

In \iz1

n
where 2ar =Y a?,
=1
.

p(x,) = key' and  p(ea) = ka7,

7
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If p # 0 we have that ©(2,) = kzn "1 is golution of (34).
O
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