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COMPLEX STRUCTURES ON RH! AND CH?

Gabriela P. Ovando *

Abstract

Left invariant complex structures in RH* and CH? are classified.
Using the model of these symmetric spaces given by Heintze, we take
the correponding Lie algebras and then we classify left invariant complex
structures. On the real hyperbolic space there exists only one complex
structure (which correspond to the canonical one) and on the complex
case there are three, one of them is a K&hlerian structure with respect to
the symmetric metric. Then we study the associated hermitian geometry
after attaching a left invariant metric to the Lie algebra.

1. Introduction

The invariant complex structures on a compact semisimple Lie group or, more
generally on compact homogeneous manifolds with finite fundamental groups
was treated by Wang [W]. In the non-compact case, Morimoto [M] showed that
there always exists an invariant complex structure on any even dimensional
reductive Lie group. D. Snow [Snl] gave a classification of regular invariant
complex structures on reductive Lie groups.

On the solvable case, J. E. Snow [Sn2] classified invariant complex structures
on four dimensional solvable real Lie groups with conmutator of dimension less
than three and L. Barberis [B] classified left invariant hypercomplex stuctures
on four dimensional Lie groups.

The symmetric spaces RH* and CH? modelized as real Lie groups with a
left invariant metric are examples on dimension four of real solvable Lie groups
whose conmutator has dimension three. The purpose of this note is to classify

complex structures on the corresponding Lie algebras. The existence problem is
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reduced to find certain subalgebras on the complexification of these Lie algebras
and then after introducing an equivalence relation, to get representatives of each
class.

The author would like to thank Prof. 1. Dotti Miatello for suggesting the
problem and for general supervision and invaluable comments. This work is part

of the author’s doctoral thesis under the guidance of Prof. 1. Dotti Miatello.

2. Preliminares

Let G be an even-dimensional connected real Lie group and g its Lie algebra
of left invariant vector fields on G which is identified with the tangent space
of GG at the unit element e. A complex structure on the underlying manifold
consists of an atlas of holomorphic coordinate systems. A complex structure on
G is said to be left invariant when the left multiplication by each element in
G is holomorphic. Because of the Newlander-Niremberg theorem and the left

invariant condition we have the following equivalent definition:

Definition 1. A left invariant complex structure on G is an endomorphism

J € End(g) such that:
(1) J2=-1

(2) 0= N,(X,Y)=[JX,JY]—[X,Y] - JJX,Y] - J[X,JY] VX,Y€g

Condition (2) is called the integrability condition.

Let g = {X +iY,X,Y € g} be the complexification of g and o be the
conjugation in g°, that is o : g — g©, o(X +4Y) = X —4Y. There exists a
natural extension of J to g© denoted also by J. Now in g® we have the subspaces
corresponding to the eigenvalues ¢ and —i. In terms of these subspaces there is

an equivalent definition of a left invariant complex structure.

Proposition 2. A real Lie group G has a left invariant complex structure if
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and only if g€ admits a decomposition:

gd“=mao, (3)

where m is a subalgebra of g®.

Proof. Condition (1) in definition 1 is equivalent to have a decomposition of g©
into a direct sum of subspaces (one is the conjugated of the other). Condition
(2) is equivalent to the fact that these subspaces are subalgebras.

Thus, there exists a one to one correspondence between left invariant com-

plex structures J and subalgebras that satisfy (3). a
A subalgebra m as in (3) is said an (invariant) complex subalgebra.

Definition 3. Two left invariant complex structures J; and Jy are equivalent

if there exists an automorphism x of g such that xJ, = Jyx.

In the terminology of complex subalgebras this equivalence relation is stated

in the next proposition.

Proposition 4. Let m; be complex subalgebras corresponding to complex struc-
tures J;, v = 1,2. Then Jy is equivalent to Jy if and only if there exists

z € Aut(g®) such that x o0 = ox and xm; = m,.

Troughout this work all complex structures and complex subalgebras con-

sidered will be left invariant.

Non-compact rank-one symmetric spaces admits a solvable group of isome-
tries acting simply and transitively on them [H]. So these groups endowed with
a left invariant metric became isometric to the symmetric spaces in which they
act. In this way we can see CH? and R H*, the only two non-compact rank-one
four dimensional symmetric spaces, as a real Lie algebra with a left invariant
metric.

Thus, RH* corresponds to g = RA > n, where n =< B,C,D,> is
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an abelian ideal and adA|, = Id and CH? corresponds to g = RA > n,
n=< B,C, D > the three dimensional real Heisenberg algebra and the bracket

relations:

[4.B]=B, [AC]=3C, [4.D]=D (4)

In both cases, the metric that makes the basis {A, B,C, D} an orthonormal
basis is the symmetric metric and realize the isometry between (G, <,>) and

the corresponding symmetric spaces.

Lemma 5. Let g be the real Lie algebra, g = RA > n, then

a) When n is abelian, the automorphisms of g in the basis {A, B,C, D} as
above have a matriz A = (a; ;) with 0 = a1 = a13 = a14.

b) When n is the Heisenberg ideal, the automorphisms of g in the basis
{A, B,C, D} as above have the following malricial representation:

0 0

10

a e [ g
b 0 ayy a2
c 0 a1 a2

where e = ay1l — 12021, f = 2((;(111 — 6(121), g = 2((;(1,12 = bdgz).

THE CLASSIFICATION

The technique used to determine the existence of a complex subalgebra is
basically the same in both cases.

First we take the basis {A, B,C, D} as a basis of g°. We suppose that a
subalgebra m as in (3), exists. So, we may take linearly independant elements

X, Y of m as follows:
X:A—|—61B—|—Clc—|—d1D Y:bgB+CQC—|—(L’2D
As we need [X,Y] € m, we have

[X,Y] = BY, for some (€ C. (5)
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(5) give us a system of equations. The existence of solutions is equivalent to the
existence of a sum m + om, m subalgebra. Then we put some extra conditions

on the coeflicients of X and Y to force the sum to be a direct sum.

Proposition 6. Let g be the real Lie algebra g = RA >3 n, n a three
dimensional abelian ideal and adAy, = Id. Then g admits (up to equivalence)

only one complex structure, given by:
JA=B JC=D

Moreover every almost complex structure is integrable.

Proof. In this situation from (5) we have:

by = by
C2 2/302
dy = Bdy

As at least one of the coefficients of Y should be different from zero, we get
B=1.

Now we will select the coefficients of X and Y to make {X,Y,cX,cY} a
basis of g€.

If ¢z = 0, then dy # 0 and we can choose a basis as X = A+ B+¢C, Y =
boB + D with I'mbyIme; # 0.

If ¢; # 0, then we can take the basis as X = A+ b;B+d; D, by B+ C +dyD
and I'mbyImd; + I'mbyImd; # 0.

Finally any complex subalgebra is equivalent to m =< A+ ¢B,C + 1D >.
In fact, let = be the automorphism of g© given by z(A) = A + Reb, B +
Rec;C + Redy D, x(B) = Imbi B+ ImciC + Imdi D, x(C) = Reby B+ Rec,C +
RedyD, (D) = ImbyB 4 I'mcy,C + ImdyD. Then zo = oz and am = q with g

any of the complex subalgebras above. ]

Remarks: 6.1. Let J be the complex structure corresponding to the complex
subalgebra of proposition 6. Consider the action of GL(4,R) on the space of

almost complex structures ((x,J) — xJz~1). It is known that the isotropy at
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any almost complex structure is GL(2,C). In our case, as any almost complex
structure is integrable, the space of complex structures is GL(4,R)/GL(2,C).
An analogous result holds for RH™. In fact, I. Dotti-L.Barberis [B-D] showed

that any almost complex structure on RH?" is integrable.

6.2. Using known identifications, the real Lie group ' corresponding to this
Lie algebra is the semi-direct product (R* >< R¥, ) where the multiplication
is (X, a) % (Y,b) = (X + aY, ab).

We have seen that ¢ admits (up to equivalence) only one complex structure.
Multiplication on the left by (X,a) on R® < R7 is holomorphic with respect
to the complex structure defined by any endomorphism .J of R*! such that J? =
—Id. Thus, the almost complex structure on GG obtained by left translation of
J is integrable (it correspond to the pullback of the standard complex structure

on R? x R* as an open subset of R*).

Proposition 7. Let g be the real Lie algebra g = RA >3 n, n a three
dimensional Heisenberg ideal and the Lie bracket relations as in (4) above. Then

g admils (up to equivalence) three complex subalgebras given by:

m =< A+:1B,C+iD > my =< A—iB,C+1D > my =< A+:D,C+ 2B >

Proof. The equation (5) has the form:

Bby =by+ c1dy — dycy

Bea = e

Bdy = §d2

One of the coeflicients ¢y, dy must be different from zero because if ¢; = dy = 0,
then Y = b,B so, B=0B € mNom = 0, contradiction.

Suppose that ¢, is different from zero. We can take ¢; = 1,¢; = 0 and
we get S = 1/2 and by = 2d;. Thus, we obtain the complex subalgebras
My, dydy =< A+ B+diD, 2dy B+ C+ dyD > with —2[md]2 + I'mbyImdy # 0.
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If dy # 0 with a similar procedure as above we get My, ¢, =< A+ 0 B +
a1C, —2¢1B + ¢;C + D > with 2Imc? + ImbImcy # 0.

But any mp, ¢, , is equivalent to some my, 4, 4,. In fact, take the automor-
phism of g© given by z(4) = A, 2(B) = B,z(C) = —D, (D) = C. Then
zo = ox and x(A+ 0B+ aC) = A+ 0B —aD, 2(-20B+c¢C+ D) =
—2cB+C —cyD.

The equivalences:

(1) my =< A+¢B,C +iD > is equivalent to my, 4, 4, if and only if I'md; # 0
and —2Imd? + I'mbyI'md, > 0.

(2) my =< A—1iB,C+tD > is equivalent to my, 4, 4, if and only if Imd, # 0
and —2I'md? 4+ Imb,Imd, < 0.

(3) my =< A+iD,C+2iB > is equivalent to mp, 4, 4, if and only if Imdy =0
and Imd; # 0.

(i) Suppose that there exists z € Aut(g®) such that zo = oz and zm; =
My, 4,d,- Then there exists a, ¢, v, € C such that (A +iB) = oX' +
@Y, 2(C +iD) = vX' 4+ §Y’ where X', Y’ is a basis of my, 4, 4,- Because of
Lemma 5 we have vy = 0, a = 1, § # 0 and the following system:

a+ie = bl+2d1¢

b = ¢
c = dy+ ¢dy (7)
f+ig = 2did
ap+iay, = 6

ag +azgn = dd;
The third equation implies that I'md; + bImd, = 0. If I'mdy = 0 then we
must have I'md; = 0 but this fact is not possible because I'mb, Imdy — 2Imd? #
0. So, Imd; # 0 and b = i

I'mdy
given in the fifth, we get ayy = I'mdqyay; + Redyary, ayy = Redyar; — Imdgays.

. Replacing § in the sexth equation by the value

From the first two equations, we have ¢ = I'mb; + 2bImd, and by the other

hand e = ay1a99 — aq2a21, then:



244 G. P. OVANDO

arn(Imdyary + Redyayy) — aja(Redyary — Imdyary) = Imby + 2bImd,

Thus,
Imdy(a?, + a2,) = Imb, + 2bImd,

that is a?,+a?, = (['mdgfmbl—2[mdf)/[md§7 and from this it follows I'mb; I'md,—
ZImdf > 0.
Assume now that mp, 4, 4, is a complex subalgebra with I'md, # 0 and

I'mbImdy — 2Imd? > 0. Let ¢ be the automorphism of g© as in lemma

5, Wlth ayjp = 0’ ay; = % _ 2(%
I'md

_Imdl’ a = Reby + 2bRedy, ¢ = Red; + bRed,, f, g, e defined following the
mdy

lemma. Then to = ot and (7) holds.

)27 az = ledzan, a2 = [mdzauub =

(ii) Similar to the case (i).

(i) We start as in (i), but the system of equations we have now, has the

following form:
a+i1g = b+ 2d¢

b+ia;, = ¢
ctiaxy = di+ ¢dy o
f+i2 = 2di¢ (™)
a; = 0
azn = 0d,

The last two equations of (7') imply Imd; = 0. On the other hand, let

My, 4,4, be a complex subalgebra with I'mdy, = 0. Choose ¢ € Aut(g®) as in

I'mb
lemma 5 with ajg = 07 ap; = 1, ag = dg, U9y = I‘fﬂdhb = — s ,a =

41Imd,
(Reby + I'mbyRedy)/(2Imd;). Thus, to = ot and the system (7') holds. O

Remarks: 7.1 The complex subalgebra m; corresponds to the canonical com-
plex structure on g such that (G, <,>,.J), where <, > is the symmetric metric,

is the Hermitian symmetric space CH?, which is also a Kéhler manifold.

7.2 Let Ji,.J2,J3 be the complex structures corresponding to the complex

subalgebras my, my, ms, respectively. Consider the action of Aut(g) in the space
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of complex structures. The isotropy group of Aut(g) at either J; or J; is repre-

sented by matrices:

o O o=
SO = O

=

w

w

=)

w

b

—@34 asz3

and at J3 by:
1 0 0 0

0 ap 0 —2a3
a1 0 agy 0 oz # 0
0 0 0 1
Thus, the orbit space {zJ;z='} though .J;, i = 1,2 has dimension six and

dimension five through Js.

ABOUT THE HERMITIAN GEOMETRY

Now we will discuss about metrics compatibles with complex structures.

Recall that a hermitian inner product on a real vector space V' with an
almost complex structure J is an inner product h such that A(JX,JY) =
MX,Y)VX)Y e V.

Denote also by h the extension of h to a complex symmetric bilinear form

of VC. Then h satisfy:
(1) MZ, W) = h(Z,W) for Z,W € VE;
(2) W(Z,Z) > 0 for all non zero Z € VE;
(3) h(Z,W)=0for Zc VCand W € VE.

where V€ is the eigenspace corresponding to the eigenvalue k € C.

A metric which is invariant by left multiplication by an element z of the
group (G is determined by its value at the tangent space T.G, e the unit element
on (. In fact, it is defined by < X,V >,=< dL;'X,dL;'Y >., X|Y left

invariant fields on G.
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Let us consider <, > a left invariant metric on G, corresponding to the Lie
algebra g = RA > ¢, g’ an abelian ideal and adA as in preposition 6. Choos-
ing an orientation, the space of complex structures wich are orthogonal with
respect to the metric and preserve orientation is represented by SO(4,R)/U(2).
The proof of this fact is similar to that given in Remark 6.1.

If the conmutator of g is a Heisenberg ideal, the question is not so easy to
determine. We will consider two examples to demonstrate that the space of
orthogonal complex structures depends on the metricon g = RA >J n, adA

the derivation as in proposition 7.

Take hs the symmetric metric on g, with the orthonormal basis {A, B, C, D}.
Denote also by h, the extension to g©. So, to have an hermitian complex

structure corresponding to a complex subalgebra ms, 4, 4, we need:

ND1+63+d2=0
2) 1+ (2d1)* +d3=0
3) 2d161 +d1d2 :0

From the equation 3) we need a)d; = 0 or b)2b; + dy = 0. If b) holds,
replacing b7 by d3 /2 we get a contradiction with 2). Then a) holds and this fact
implies b = —1 = d3. Thus , the complex structures orthogonal with respect

to the symmetric metric are Jy, —Ji, Jo, —J5 given by:

hA=B JC=D J'=-Id
hA=B  L,C=-D Ji=-Id

It is not difficult to see that we obtain the same results from the equations

for my, ¢, 0,

Consider now h, the left invariant metric induced by the inner product with

V2 ., V2

2
70, > D}. This metric is hypermitian with respect
to the hypercomplex structure (see [B]):

orthonormal basis {4, B,



COMPLEX STRUCTURES ON RH* AND CH? 247

hA=B IP=0 F=-Id

5 5
JoA = gc LB = % 2= —1Id

The metric h, is not symmetric and has negative sectional curvature.

Let {X,Y} the basis of my, 4,4, as in preposition 7. In this case to have an

Hermitian complex structure we need:

D1+ b} +2d% =
2) 1+ (2d)*+2d2 =0
3) 2dlbl +2d1d2 :0

From the equation 3) we have a) d; = 0 or b) by + dz = 0. If a) holds, we
get the complex structures as above.

Suppose b) holds. Then 2d? = —1—b% and the complex subalgebras my, 4, 5,
with 2d? = —1 — b? and Imb; # 0, corresponds to the complex structures
compatibles with h,.

Now we will search almost Kahler structures on g.

Let (G, <,>,J) be an (almost) Hermitian Lie group, where both <, > and
the (almost) complex structure .J are left invariant. Let ¢ be the fundamental

2-form of GG, that is:
H(X,Y) =< X,JY > forall XY € g

The (almost) Hermitian Lie group G is called (almost) Kihlerian if d¢ = 0,
explicitely:
<X YLJZ>+ <[V, Z2],]JX >+ <[Z,X],JY >=0 VX, Y,Z€g (8)
When the conmutator is abelian, (8) implies J(g') C RA, which is impossible
because .J is an isomorphism. Thus, there is no Kahlerian metrics in R /%,

When the conmutator is the Heisenberg ideal generated by { B, C, D} form
(8) we have:

<B,JC>=0=<B,JD > <JA,B>=<JC,D>#0 (9)
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In particular, if {A, B,C, D} is orthogonal with respect to <, >, there are

only two almost complex structures with fundamental two form closed, wich

are:
0 Ta 0 0
+a 0 0 O
0 0 £b 0

Moreover J is integrable (it follows from simple calculations).
The triple (g, <,>,.J) is a Kéhlerian subalgebra which corresponds to CH?.
This fact result from the following theorem due to Heintze [H]:

Theorem. Let (g,<,>) be a solvable Lie algebra with inner product and a
orthogonal complex structure such that the associated 2-fundamantal form is
closed. Assume that:

A) dimg =dimg—1;

B) There exists a unit vector A, € g orthogonal to g’ such that D, : g/ — ¢
is positive definite, where D, is the symmetric part of adA0|B, g — 9.

Then the pair (g, <,>) corresponds to the complex hyperbolic space.

Take now g = RA > n n the Heisenberg ideal and adA as in proposition
7. Let J be a complex structure with fundamental two form closed and <, >
be an inner product on g. We would like to exhibit conditions to apply the

theorem in this situation. From (9) we have that JB is orthogonal to g'. So,
JB

A, = —
|/ B|
positive definite and then we apply the theorem above.

Write JB = aA+ bB + ¢C + dD, from the condition that J is orthogonal

B2
% The matrix on the basis {B,C, D} of adJB is:

is a unit vector and we need that the symmetric part of adA, be

we get a =

a —d ¢
adJB = |0 a/2 0
0 0 a/2

So if < A,JB >> 0 and 8a* > ¢? + d? then the condition B) of theorem
holds and (g,.J,<,>) corresponds to CH?. (Note that if < A,JB >< 0, we
can take J(—B)). O
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