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Abstract

In this note we give a analyse Hermitian structures on flag mani-
folds and its relationship with tournament theory. We also discuss equi-
harmonic maps into flag manifolds (i.e maps which are harmonic for any
left invariant Borel type metric), as well as some stability properties of a
very important class of maps, namely: the Eells-Wood’s maps.

Resumo

Nesta nota fazemos uma exposi¢ao sobre as estruturas Hermitianas
em variedades bandeira e a relagio destas com a Teoria de torneios.
Discutimos também aplica¢oes equi-harmonicas em variedades bandeira
(isto é, aplicagdes as quais sdo harmonicas relativamente a cada métrica
invariante do tipo de Borel), assim como algumas propriedades de esta-
bilidade relativas a uma classe muito importante de aplicagoes, a saber:
as aplicacoes de Eells-Wood.

1. Introduction

In this paper we give a survey on some results obtained during the process of
understanding harmonic maps from compact Riemann surfaces into flag mani-
folds. Since minimal surfaces are harmonic in some conformal structure, special

examples are provided by them.
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Calabi [8], Chern [9] and Eells-Sampson [13] initiated the modern study of
harmonic maps into Riemannian manifolds. It was given a special attention to
the case of 2-spheres in S™ (or R”). Important results were obtained in [10],
[12] and [1].

The physicists Din-Zakarewski and Glaser-Stora showed that it could be
very useful to complexify the problem, i.e. to consider the natural and totally
geodesic embedding of RP" into CP™

Eells-Wood [14] classified all harmonic maps ¢ : S? — G4(C") ~ (CP"~!,
metric of Fubini-Study) in terms of full holomorphic maps & : §? ~ CP! —
CP"=!. Chern-Wolfson [11] and independently Burstall-Wood [7] classified ev-
ery harmonic map ¢ : S* — Gx(C"), k = 2,3,4 and 5 in terms of the holomor-
phic maps between these manifolds. More generaly, using Cartan’s embedding,
Uhlenbeck in [25] classified all harmonic maps ¢ : 5% — G(C") for arbitrary k
also in terms of holomorphic data.

In this note we describe some properties of Hermitian structures on flag
manifolds. We will give some results relative to f-structures. Such structures
appear naturally in the theory of twistors.

In [20] is derived the harmonic map equations for the energy functional de-
fined in the space of maps from surfaces into flag manifolds in order to construct
an infinite family of examples which show that a converse of a well known the-
orem due to Black [2] is not true. We recall that Black’s theorem states that a
holomorphic map with respect to a horizontal f-structure from a surface into a
flag manifold must be equi-harmonic.

Finally, we discuss some stability properties of a very important class of

equi-harmonic maps, namely, the Eells-Wood’s maps.

2. Complex Geometry of F(n)

We can see geometrically the maximal flag manifold F'(n) as the space formed

by n-tuples (L1, ..., L,) such that L; is a rank one subspace of C*, L; & L;,1 # j
and é L;= CP.

=1
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.
Algebraically we can describe F(n) as %n) where U(n) = {A € M(n x
n, C);
AA = AA* = I'} and T is an maximal torus of U(n) i.e., T = U(1) x ... x U(1).
—_———
n—times

Let p = T(F(TL))(T) the tangent space of F(n) at (T) and u(n) = {X €
MnxnCiyX4+X*=0t=p&u(l)®..ou(l).
. =

u—times
Now we consider U(n)-invariant almost complex structures J : p — p;

J* = —I. Borel and Hirzebruch [4] showed that there are 2(3) such invari-

ant structures.

Example 2.1. We consider n = 3 and J : p — p defined in the following way:

0 a2 a13 0 eiv—lay exv—1lais
J —az 0 ag = | av—1lap 0 e3v —1 ags

—a13 —dy 0 oV —la1z e3v/—1ays 0

where ¢; = &1, 7 = 1,2 and 3. There are 92() — 93 = 8 distinct invariant almost

complex structures.

Definition 2.1. A Tournament T consists of a finite set T = {1,2,... ,n} of
players together with a dominance relation thatl assigns to every pair a winner.
Thus, if 1,5 € T(¢ # j), then either i — j or j — i. Let 7 and 7 be two
tournaments. A map ¢ : Ty — Ty of their sets is called a homomorphism
ifi = 7 < o) = ¢(j) or &(i) = ¢(j). If ¢ is bijective, it is said to be
an isomorphism from 7 to 7. We define the canonical tournament 7, in the
Jollowing way:
Py = i<
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We notice that there is a natural 1-1 correspondence between almost com-
plex structures J on F'(n) and tournaments 7; with n elements. More precisely,

if J(a;;) = (agj), then 7; is determined by
i = j(i < j) == df; = V~Tay
J =it < j) <:>an — —\/jlaij
For example, if J is the invariant almost complex structure defined by

0 12 13 0 vV—=la, —v—1las
J —612 0 a93 = kV4 —1 612 O RV —1 a93
—a13 —dz 0 —v—=laz V—1ay 0

then the associated tournament 7; is

Theorem 2.1 (Burstall - Salamon [5]). There is a 1-1 correspondence between
invariant almost complex structures J on F(n) and n-dimensional lournaments

77. Also,

J is integrable & Ty ts isomorphic to T, < 77 does not contain 3-cycles,
(canonical tournament)

where 3-cycles are closed paths of the form

We define the following left invariant metrics on F(n) (called Borel type
metrics [3]):

<A, B> = Z )\U(Z )\UAEZB*E]),
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Here A = ()\;;) is a symmetric matrix with A;; > 0, A\;; = 0 and E; = (c,p)
with ¢;; = 1 and ¢,5 = 0 if p or ¢ is different from 7, and 1 <4, 7,0,8 < n.

We define the Kahler form as usual by Q(A, B) = (4, JB)ds%. If dQ =0 we
say that (F'(n),J,ds3) is almost Kahler. If .J is integrable we call (F(n), J, ds3)
a Kéhler manifold. In [23] the following theorem is proved:

Theorem 2.2. ([16]) If (F(n), J, dsi:(/\”)) is almost Kahler < it is a Kahler

manifold.

The case Ajj = 1V1 <1 # j < n is called the Killing form metric or simply
the Killing metric. It is known that (F(n),J, Killing metric) is not a Kahler
manifold for n > 3 (nevertheless, there are an infinite number of metrics such

that (F(n),J,ds%) is a Kihler manifold).

Definition 2.2. A map ¢ : (M,.J1,9) — (F(n),J,ds%) is J-holomorphic if
dpoJy = Jodd (ie., ¢ satisfies the Cauchy-Riemann equations).

Lichnerowicz in [17] has proved a theorem showing that .J-holomorphic maps
are harmonic if g and ds3 are (1,2)-symplectic, i.e. the (1,2)-component of dQ
is zero, i.e. d"* = 0. (Notice that a Kahler metric is always (1,2)-symplectic).
These metrics appear naturally in the theory of twistors. We can give an alter-
native proof of the following theorem of Gray-Wolf [16]. We use only tournament
theory.

Theorem 2.3. The Killing metric on F(n) is (1,2)-symplectic if and only if
n < 3.

Sketch of the Proof: Using moving frames and Cartan structural equations
(see [18] for all the details) we can prove that the number of 3-cycles in 7 is (g)

However, this is impossible, because if n > 3, according to Gale’s inequality [15]
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2

1
the number of 3-cycles in 77 is less than or equal to ﬂ(n —n) if n is odd or

1
ﬂ(ng’ —4n) if n is even.

3. Harmonic maps on F(n). Eells-Wood’s maps

Let ¢ : M?* — F(n) be a smooth map from a Riemannian surface M? and qg :
M — U(n) it lift map, i.e. ¢ = ITo$ where II : U(n) — F(n) is the natural pro-
jection. Let ey, ... e, be the standard basis in C*, i.e. ¢; = (0,...,1,...,0)".
We denote by II; : M — gl(n,C) the matrix of the orthogonal projection onto
E; = {aej; a € C} with respect to ej,...,e,. Then ¢ can be thought as
¢ = (Ily,... ,II,) : M? = F(n). Then Hi% := AY are the matrices associ-

tated to the second fundamental forms Aj;, i.e.

Al 815y ) = (B ey B A
ie. Aj;(e;) = e;AY. According to Burstall [5], for V € ['(¢*T(F(n)) we set
q = ¢*B(V) where ¢*3 : ¢*T(F(n)) = M x u(n) is the pull-back of the Maurer-

Cartan forms. We define a variation of ¢ by: ¢;(z) := II(exp(—tq)¢$). Denote
associated objects by T1;(¢), A¥(¢), ...
Then with respect to ds?\:(),-]) the energy of ¢; is defined by:

B(g) = [ T xR0,

After some calculations (see [18] or [19] for details) we obtain the Euler-

Lagrange equations for the energy functional:

Propostition 3.1. ¢ : (M,g) — (F(n),ds}) is harmonic if and only if

0 i) 0
e [2AM) =0 —AB A0 =
Re(az ) 0@ gAs+ 5.4y =0,

ol o,
where Aj} = Z)\z’jnia—;) A?{/‘ = Z)‘UHI'TU]’
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On the other hand, given a holomorphic and nondegenarate map h : M —
CP™~1 we can lift it locally in C*, i.e., for every p € M we can find a neighbor-
hood of p such that v : U — C” satisfies h(z) = [(uo(2), ..., un—1(2))].

Now we define the k-th associate curve of h (or u) denoted by Oy as: Oy :
M = Ga (C); 2 0> u(z) A'(2) A oo Aull.

We can see that Oy is well defined. Hence, we consider hy : M — CP"™! as
hi(z) = O (2) N Opy1(z), 0 < k < n — 1. We have the following theorem due
to Eells, Wood, Din, Zakarewski, Glaser and Stora.

Theorem 3.1. ([14]) For each k € [0,n — 1] N IN, hy : M — CP"! s
harmonic. Furthermore, given ¢ : (CP',g) — (CP"~', Fubini-Study metric)

harmonic, then there are unique k and h like above such that ¢ = hy,.

Then this theorem above provides us with a natural set of maps v : M —
F(n), namely: ¢(z) = (ho(2),...,h,—1(2)) for an arbitrary map h : M —
CP"~! holomorphic and full (a map ¢ : M — CP"~! is said to be full if ¢(M)
is not contained in any proper subspace of C*). We call any arbitrary map in

this collection an Eells-Wood’s map.

Definition 3.1. An arbitrary map ¢ : M? — F(n) is said to be equi-harmonic
if ¢:(M,g) = (F(n),ds}) is harmonic for any left invariant Borel type metric

2
dsj.

Theorem 3.2. ([20]) If ¢ = (ho, .., hiye1) : M? — F(n) is an Eells-Wood’s

map then v is equi-harmonic.

4. Equi-harmonic tori

In this section we extend Uhlenbeck’s separation of variables method as de-

scribed in [24].
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Definition 4.1. An f-structure on F(n) is a section F of End(T(F(n))) such
that F2 + F = 0. This concept is due to Yano.

The set of U(n)-invariant f-structures on F'(n) is naturally identified with
the set of T-equivariant (7' = U(1) x --- x U(1)) endomorphisms F such that
T V. '

ntimes
F? 4 F = 0. Therefore, an U(n)-invariant almost complex structure .J on F(n)

results from a T-invariant f-structure.
We notice that an invariant almost complex structure J on F(n) is a special

case of f-structure. Suppose that ¢ : R* — F(n) is defined by
p=To¢ ¢uy)=e*w,

where A, B € u(n), [A, B] = 0. Then %(x,g/) = PV A% and

a% — 8%* _ Tk
o PA, 5 —Ad".
Therefore
oll; i A ~,
9 8—x(¢>Ei¢ = ¢[A, Ei]¢".
So,
. ol ~ ~ ~ ~
Al =TI, o OF;[A, Ejlo" = ¢E;AE;¢".
x

Similarly we have X = %(A —+v—1B). But

B . = = 8 . = N
Z] — . & x* Z] — / : & x*
—ax(AI) = ¢[A, E;AE;]¢"  and —ay(Ay) = ¢[B, E;BE;|¢".

Using Proposition 3.1 we have:
Proposition 4.1. Suppose that ¢ : R? — F(n) above defined is doubly peri-

odic. Then ¢ is harmonic with respect to ds?% if and only if [A, Z)\ijEiAEj] +
[B,Z/\,-]-EZ-BE]-] =0.
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We will construct a class of non-f-holomorphic tori for any f-structures on
F(n) which are equi-harmonic, thus showing that the converse of Black’s theo-

rem is not true.

Theorem 4.1. ([19] or [20]) Let ay,... ok, Bi,... 0k € Q— {0} and

X:(?(1)>’Aj:<a6X ﬁ:)X)qu:(ﬁjbX a?X)’ j=1,.., k<
Ay L. 0 B, ... 0
A=v-1 P Ag and B = L By
0 0 ...0 0 0 0

Then:

1) ¢(z,y) = MeA*+BY) has double periods;
2) ¢: T?* — F(n) is equi-harmonic;
3) ¢ is not f-holomorphic with respect to any f-structure F on F(n).

Sketch of the Proof: The proof is similar to the particular case discussed in
[21] where the f-structure is in fact an almost complex structure; see [19] for

more details.

5. Stability of Eells-Wood’s maps

Now we can compute the second variation of the energy; see [22] for the details

of this long computation.

Proposition 5.1. Let ¢ = (IL;,....1L,) : (M?,g) — (F(n),dsi_,,,)) be a

harmonic map. Then

d? dq dq_ Jq
d12 E(ét)|i=0 = IX(q) 4R€/M<q142, ‘dzﬂg + 2Re %J: Aij /M<H2 azHJ’ az>vgv

B ]
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where g : M? — u(n) is an arbitrary variation.
We will now prove a very useful proposition.

Definition 5.1. A" = (X)) is said to be a perturbation of A = ()i;) associated
to a map ¢ = (Ily,... ,1,) : M? — F(n) when:

(i) )‘/ = )‘l] Zf (Zv.]) 7é (ihj]); (j]ail)) ey (ihj?") and (jﬁir)'
(i) X ;, = Nipj e for L< k<.
(iii) A = A = ... = Alrir = Alrir = 0, where ds3 and ds3, are Borel

lype metrics.

Proposition 5.2. Let ¢ : (M? g) — (F(n),ds}) be an equi-harmonic map.

Then:
2
) +-+

oot Lo

dq dq
) 8 I1;, =11,
10z

2
+ Jld

ag
(’ ZT’@Z ’HJT BZH )} Vg
where A’ is a perturbed A-matriz associated to ¢.
991 12 n 2 9q
Proof: I},(¢q) = 2Re Z)\ |H H i|fvy r+2Re ([AS ,q],a—>vg . But
M z
we notice that A = AQ since A;”l = -+ = Al"'" = 0; therefore:

dq dq
2 Z €k/ 'Lk() + ijd Hlm 0_>v9+

+2Re{/ Z)\”H ST, + 42, ]g% }:

= [¢ —|—2/ Z€k< kQ)'Ug

Theorem 5.1. Let ¥ = (ho,....hn_1) : (M? g) — (F(n),ds3,) be an Fells-

Wood map where A’ is the perturbed A-matriz associated to ¢; e1,¢q,... ¢, are

I3(q)

2
dq

de
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non-negative real numbers and I}\p(q) > 0 for any variation q. Then 1) is stable.

2

H@Hr)}‘ >0
nyz 1 Uy =Y

Proof:

0
so=izsa , fu [n 2,

2

17,
+ Ha—qnl

0z

+er <\H1§—§Hn|2 +

Borel in [3] described precisely the set of invariant Kahler metrics on F(n),

which are, up to permutation, given by:

0 A A+ A M4 A
0 Ay Az + As...
0
A= *
*
* 0 /\n—l
0

Therefore, associating Lichnerowicz’s theorem [17] with theorem 5.1 we will
see that the perturbation A’ of a K&hler metric produces unstable Eells-Wood’s
maps ¢ : (M?,g) — (F(n),ds},). In fact, consider now A’ = (X;) the follow-
ing perturbation of A = (Ay): Ay = Az, Mg = Aas, ooy Asiyn = A-t)ns
Ms =Adpd+Adm—er =M+ —c1, .., My, =Adn 4o Aoy — & =
A+ oo+ Ao — &0 We recall that the Lichnerowicz theorem may be seen as

stating that I{(q) > 0if ds} is a Kihler metric. According to [20] we can prove:

Theorem 5.2. Let ¢ : (M?,g) — (F(n),ds3,) be a full Eells-Wood’s map
where A’ is the perturbation of A right above defined. Then b is not stable.

Corollary 5.1. ([20]) Let ¢ = (ho,....,hn_1) : M? = F(n) be a full Eells-
Wood’s map, where F(n) is equipped with the Killing form metric. Then ) is

not stable.

Proof: Just apply theorem 5.2 for Ay = ... = Aoy = L ey =1, ...,

€g:n72.
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