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ISOTROPIC PLURIMINIMAL SUBMANIFOLDS

J.-H. Eschenburg R. Tribuzy

Abstract

Pluriminimal immersions and more generally pluriharmonic maps into
symmetric spaces allow a one-parameter family of isometric deformations
rotating the differential; in fact, they are characterized by this property.
We investigate the ”isotropic” case where these deformations are trivial.

Resumo

Imersoes pluriminimas e mais geralmente, aplica¢oes pluriharmonicas
em espagos simétricos, admitem uma familia a um parametro de de-
formacoes isométricas, obtidas pela rotacao da diferencial; de fato, elas
sdo caracterizadas por esta propriedade. Nds investigamos caso isotrépico
onde essas deformagdes sdo triviais.

1. Introduction

Minimal surfaces in euclidean or constantly curved 3-space locally allow an asso-
ciated one-parameter family of isometric deformations preserving the principal
curvatures but rotating the second fundamental form in the parameter plane;
the most prominent example is the deformation of the catenoid into the helicoid.
This phenomenon is not restricted to ambient spaces of dimension three or of
constant curvature. When we wrote our first joint paper [EGT] in 1982, we
were very surprised to encounter it for minimal surfaces in CP%. Nowadays it is
well known that harmonic maps of Riemann surfaces into arbitrary symmetric
spaces allow such an associated family of deformations and in fact, harmonicity
is equivalent to this property (e.g. cf. [U], [DPW], [BFPP]). Recall that mini-
mal surfaces are nothing else but harmonic isometric immersions of surfaces; in

fact, 7isometric” can be weakened to ”conformal”.
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If one wants to pass from surfaces to higher dimensional immersed subman-
ifolds, then minimality or harmonicity is no longer sufficient; instead, one intro-
duces the notions of pluriharmonicity and pluriminimality: If S is a Riemannian
and M a Kahler manifold, then a smooth map f : M — S is called plurihar-
monic if its restriction to any complex curve in M (complex one-dimensional
submanifold) is harmonic or equivalently, the (1,1)-part of its hessian vanishes,

#f
82;0%;

i.e. = 0 for any holomorphic coordinate chart (z1,...,2y). An isometric
pluriharmonic immersion is called pluriminimal or (1,1)-geodesic. Thus its re-
striction to any complex curve in M is a minimal surface or equivalently, the
(1,1)-part of its second fundamental vanishes. As in the surface case, a pluri-
minimal immersion need not really to be isometric but only pluriconformal,
i.e. conformal when restricted to a complex curve in M: in fact, an immersion
f: M — S is pluriconformal iff the induced metric on M is K&hler and com-
patible to the complex structure (cf. [ET3], Thm. 1). Now the phenomenon

mentioned above passes over to the higher dimensional case (cf. [OV], [BFPP],

[ET4]), and it is one of our aims to give a simple direct proof for this fact:

Theorem 1. If M is Kihler and S a Riemannian symmetric space of nonpos-
itive or nonnegative curvature, then a smooth map f : M — S (in particular,
a pluriconformal immersion) is pluriharmonic iff it allows an associated family

of deformations.

A cheap way to obtain an isometric deformation of an immersion or a smooth
map is to compose it with a one-parameter family of isometries of the ambient
space; we will call such a deformation trivial. But note that the associated
deformation of a (non-planar) minimal surface in a 3-space form must be non-
trivial since it rotates the principal curvature directions: If such a deformation
is by extrinsic isometries, than every direction must be a principal curvature di-
rection, hence such a surface is minimal and umbilic, i.e. totally geodesic. This
is different if the codimension is bigger than one: There are minimal surfaces
and pluriminimal immersions (or pluriharmonic maps) with trivial associated

families which (following a notation in [EW]) will be called isotropic. In R*
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these are locally the graphs of holomorphic functions (after a suitable identi-
fication of R* and C?), and an analogue is true for arbitrary dimensions and

codimensions:

Theorem 2. The isotropic pluriharmonic maps f : M — R*™ = C* are pre-
cisely the holomorphic maps, up to isometries of R*". There are no full isotropic

pluriharmonic maps into R?*"+1,

In 5%, the isotropic minimal surfaces were called superminimal and classified
by R. Bryant ([B], cf. also [ET1]). Long time before, E.Calabi had already
given a less explicit description of isotropic minimal surfaces in S™ for any
n ([C], cf. [L]) which was later extended to CP" by Chern, Wolfson ([Ch],
[ChW]) and Eells and Wood [EW]. Similar constructions in Grassmannians and
other symmetric spaces followed (e.g. [BS], [BR], [K1], [ET3]). All those are
projections of holomorphic and (”super”-)horizontal maps into certain complex
flag manifolds or flag domains fibering over the given symmetric space (cf.
[BR]); in Bryant’s S*-case this fibration was the classical twistor map which
is the natural projection CP? — HP! = S% We will show that isotropic
pluriharmonic maps generally are characterized in this way; the flag manifold

will arise naturally from the submanifold geometry:

Theorem 3. Let S be an inner symmetric space of compact (resp. noncompact)
type and f : M — S a full smooth map. Then f is isotropic pluriharmonic if
and only if there is a flag manifold (resp. flag domain) Z over S with canonical
projection T : Z — S and a holomorphic superhorizontal map ¢ : M — Z such
that f =710 ¢.

What made the subject specially attractive for us was the intimate rela-
tionship between submanifold geometry and symmetric space theory. E.g. full
isotropic pluriminimal submanifolds arise only in a symmetric space which is

inner, i.e. a geodesic symmetry (point reflection) belongs to the identity com-
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ponent of the isotropy group. Among spheres and other spaces of constant
curvature, these are precisely the even dimensional ones which explains the
fact already noticed by Calabi [C] that there are no full isotropic pluriminimal
immersions in odd-dimensional space forms.

Fortunately, in the isotropic case there is no difference between plurihar-
monic maps and pluriminimal immersions: An isotropic pluriharmonic map is
automatically pluriconformal (cf. Ch. 3) and hence locally (outside a sigu-
lar set of complex codimension one) a pluriminimal immersion of a complex
submanifold of M (cf. [ET3]).

In this survey article, we will outline the ideas of the proofs; further details

can be found in the references, mainly in [ET3], [ET4].

2. Associated families

Let M be a simply connected (but possibly incomplete) Kdhler manifold, i.e. M
is Riemannian with a compatible parallel almost complex structure J on T M.
This determines a one-parameter family of tensors (called canonical rotations)
R = (cos0) + (sinf).J where I denotes the identity on TM. Further, let
S be a Riemannian symmetric space with curvature tensor Rg which will be
considered as a parallel algebraic structure (Lie triple product) on any tangent
space of S. An associated family for a smooth map f, : M — S will be a smooth

family of maps f : M — S such that roughly dfy = df, o Ry, more precisely
q)godfg:(],fooRg (1)

for some parallel bundle isomorphism ®4 : f;T'S — f*T'S preserving Rg. Thus,
to construct an associated family for f,, we have somehow to integrate the
"rotated differential” Fy := df, o Rs.

This can be put into a more general framework (cf. [ET2]): If some F
looks like the differential of a map f : M — S, when is it really a differential
F = df? "Looks like” means that F'is a linear map on TM with values in some

vector bundle F over M which is a candidate for f*T'S, i.e. its fibres have the
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dimension of S, and any fibre carries an inner product ( , ) and a Lie triple
product Rs which makes it isometrically isomorphic to any tangent space of 5,
and these structures are parallel with respect to a covariant derivative D on F.
In the simplest case S = R or S = R™, our [ is just a one-form on M which is

exact (F' = df) if and only if dF =0, i.e.
(DxF)Y = (DyF)X (24)

for any two vector fields X, Y on M. (We will denote any covariant derivative
by D if no confusion is possible; here it denotes the Levi-Civita connection on
T*M.) In the general case, (2a) is still necessary (where D now denotes the
induced connection on Hom(T'M, E)) but not yet sufficient; a second necessary

condition is

Re(X,Y)A = Rs(FX,FY)A (2b)

for any section A of E, where R : TM @ TM — End(E) denotes the cur-
vature tensor of (£, D). These equations are equivalent to the Cartan struc-
ture equations and thus yield integrability (cf. [ET2]) which means precisely
® o F = df for some smooth f : M — S and some parallel bundle isomor-
phism ® : f*T'S — FE preserving the Lie triple product Rs. To our knowledge,
Equations (2a) and (2b) were stated first in [GKM] (p. 48, (5) and (6)).

In the following, we shall have to complexify the real vector bundles and
extend all linear maps complex linearly. The reason is that we need the splitting
of the complexified tangent bundle T°M = TM ® C into the +i eigenbundles
for J (where 7 always denotes v/—1). Due to the parallelity of .J, this splitting is
parallel with respect to the (complex linearly extended) Levi-Civita connection.
On these subbundles, denoted by 7'M and T"M = T'M, the application of Ry
is easy enough: it is just the multiplication by the constant factor e*?. Since
(2a) holds for F, = df,, we obtain (2a) also for Fy = F, o Ry provided that X
and Y are complex vectors of the same type (both in 7"M or both in 7”M). On
the other hand, if X and Y are of different type, then (2a) holds for Fjy if and

only if both sides vanish since they take up the different factors ¢ and e=%.
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But the vanishing of (Dxdf)Y for different type vectors X and Y is precisely
the pluriharmonicity of f.

Equation (2b) is true for f; provided that both sides vanish for f, if X
and Y have the same type. This is a bit more complicated and needs the
fact that the curvature operator of S is semi-definite. Let F, = df, and put
DFE,(Y,Z) :==(DyF,)Z for Y, Z € T°M. An easy standard computation using
Dy (F,Z) = (DyF,)Z + F,(DyZ) leads to the substitute for the Gauss and

Codazzi equations
R5(X,Y)F,7 = (Dx(DF)(Y, 7) — (Dy(DF))(X, 2) + F(R(X,Y)Z) (3

for any X, Y, 7 € TM, where Rg denotes the curvature tensor of £ = f*T'S
with the induced Levi-Civita connection of S. We apply this equality in the
case where X and Y are complex vectors of the same type, say X,Y € T'M,
and Z =Y € T"M. Since M is Kahler, the expression R(X,Y) vanishes;
in fact, by parallelity of 7'M we have R(U,V)X € T'M for any U,V €
T°M, but the complexified Riemannian metric vanishes on T’M (consisting
of vectors of the type X — ¢JX with X € TM), hence (R(U,V)X,Y) =
0. Further, if f, is pluriharmonic, then DF, vanishes on vectors of differ-
ent types and the same is true for a covariant derivative of DF,. Thus from
(2b) and (3) we get Rs(F,X,F,Y)F,Y = Rg(X,Y)F,Y = 0. In particular,
(Rs(F, X, F,Y)F,Y,F,X) = 0 and hence Rs(F,X,F,Y) = 0 by semidefinite-
ness which in turn shows by (2b) that Rg(X,Y)F,Z = 0 for any Z € T°M.
Thus the proof of Theorem 1 is complete.

3. Isotropic pluriharmonic maps

As before, let M be a Kahler manifold and S a symmetric space. Now let us
consider a pluriharmonic map f : M — S whose associated family is trivial,
ie. fo = f for all 0 (we may neglect a possible extrinsic isometry since fy is
determined only up to isometries of the ambient space anyway). We assume

further that f is full, i.e. it does not take values in a totally geodesic subspace
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of S. By Theorem 1 and the definition (1) of an associated family in Ch.2 this
holds if and only if £ := f*T'S has a one-parameter family of parallel bundle
automorphisms @4 € End(FE) preserving the Lie triple product Rs on each fibre
of F such that

&y 0df = df o Ry. (4)
An easy example is a holomorphic map f : M — S when S is also Kéahler; in
fact, (4) is satisfied with ®; = Rj (the canonical rotations of S). The general

situation is not too far from this case as we shall see.

Lemma 1.

(a) (Pg)secr is a a one-parameter group of parallel automorphisms of (E, Rs)
with ®qr(p) = I and ®.(p) = —1.

(b) There is a parallel subbundle By C E containing the values of df and being
invariant under all ®5 such that ®y has only eigenvalues €° on E¢, and

Fy generates I by the Lie triple product Rs.

Proof. Let F; be the smallest parallel subbundle of £ = f*T'S containing
the values of df. From (4) and the parallelity of ®; we see that ®y preserves
E, with eigenvalues e*?. Moreover from the group law Ry o Ry = Ry we
get the corresponding group law for ®4|p,. Since all @4 are automorphisms
for the curvature tensor Rgs, the same group law is true on the smallest Rg-
stable subbundle Fy containing Fi. (A subbundle Ey C E is called Rgs-stable
if Rs(A,B)C € Eg for any A, B,C € Ey.) Since Rg is parallel, Fy is also a
parallel subbundle, and moreover Ey is Rg-stable and contains df (T'M). Since
f is full, we conclude Ey = E (cf. [ET2], Thm. 2), i.e. E; generates all of E.
Further, ®,, = I on E; and hence on Fy = FE.

Now let § = 7. Since ®2 = ®,, = I, the only eigenvalues of ®, are £1. Let
E_ C F be the (—1)-eigenbundle. This is parallel and contains df(T'M), and it

is also Rg-stable since for any A, B,C € E_ we have

®,(Rs(A, B)C) = Rs(®,A,®,.B),.C = —Rs(A, B)C.
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As before we conclude F_ = E which finishes the proof.

O
As an immediate consequence we see that
Jo 1= ¢7'r/2
is a parallel almost complex structure on F since j2 = &, = —[. If § = R",

then F, = R” for any p € M and j is a constant complex structure of R™. Thus
(4) shows that f is holomorphic which proves Theorem 2.

Another consequence is that any isotropic pluriharmonic map f : M — §
is also pluriconformal, i.e. the complexified metric vanishes on df(T"M) (a
subspace with this property is called isotropic). In fact, df (T"M) is contained

in the isotropic subbundle
E'={WekE% j,(W)=iW}={V-ij,(V); VeFE}

Hence, if f is an immersion, the induced metric on M is a compatible Kahler
metric (cf. [ET3]) and f is an isometric pluriminimal immersion with respect
to this metric.

For any p € M, the one-parameter subgroup ®4(p) C Aut(T(,)5) has an
infinitesimal generator ¢(p) = L ®(p)|s=o which gives also a parallel endo-
morphism field ¢ of E. We will see below that ¢ can be re-interpreted as a
holomorphic and horizontal map into some complex manifold Z fibering over
S. In fact, the horizontality is just the parallelity of ¢ while the holomorphic-
ity will be equivalent to (4). But before we have to recall some facts on inner

symmetric spaces.

4. Flag manifolds and flag domains

In this chapter, we consider a symmetric space S of compact or noncompact
type. Let GG be the identity component of its isometry group. For some fixed
o€ Slet K = {g € G; g.o = o} be the isotropy group. Let g = €+ p be
the Cartan decomposition of the Lie algebra g of G, i.e. &,p C g are the (£1)-

eigenspaces of the involution Ad(c) on g where o is the geodesic symmetry of
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S at o. Recall that the identity components of K and of the fixed group under
the conjugation by o agree, hence £ is the Lie algebra of K.
The symmetric space S is called inner if o lies in the identity component of

K, i.e. there exists £ € € with o = exp (7€) and in particular
Ad(0) = exp (- ad(£)). (5)

Since ad(§) is skew symmetric with respect to an Ad(K)-invariant inner product
on g, the eigenvalues X of ad(§) are purely imaginary, and from (5) we see A = ik
where i = /=1 and k is an integer. Let u, C g° := g ® C be the corresponding
eigenspace. From the eigenspace decomposition g° = >, u; we get the real

decomposition g = 37450 gk where
gr = (Upg + ) N g;

observe that ; = u_j. Since £ and p are the (41)-eigenspaces of Ad(c), we see

from (5) that

b= X o PSS X, O

k even k odd

The generating element & € g will be called canonical if g; generates g as a Lie
algebra (cf. [BR] for further details throughout this chapter).

Now let us consider the adjoint orbit Z = Ad(G)¢ C g. It can be identified
with the coset space Z = G/H where H = {h € G, Ad(h)¢ = &} is the
centralizer of £ with Lie algebra ) = go. We call Z a flag manifold over S if S is
of compact type (i.e. G is compact) and otherwise a flag domain. The canonical
element £ € g is uniquely determined (up to conjugacy) by Z (cf [BR]). Any
¢ € Z shares the property of ¢ that & := exp (7() is a geodesic symmetry; in
fact, if ¢ = Ad(g)&, then & is the reflection at the point g.o.

Lemma 2. There is an equivariant fibration 7 : 7 — S with 7(Ad(g)¢) = g.o.

Proof. We must show that 7 is well defined. In fact, if Ad(g)¢ = Ad(g')€, then
g = gh for some h € H. Any such h commutes with ¢ = exp (7£) and thus

preserves its fixed point set. If S has noncompact type, a geodesic symmetry
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has only one fixed point. If S is of compact type, then G is compact and H
(being the centralizer of a torus) is connected (cf. [H], [E]). In both cases, each
h € H preserves the isolated fixed point o of o which finishes the proof. In other

words, we have shown H C K, and 7 is the canonical projection G/H — G/ K.

The tangent space of Z = Ad(G)€ is 3 := TeZ = ad(g)f = Yoo G- It con-
tains the Ad(H )-invariant subspaces p and q := 3N¢ which define two transversal
G-invariant distributions H and V on Z, called horizontal and vertical distri-
butions: for any ( = Ad(g)¢ € Z we put H(() = Ad(g)p and V({) = Ad(g)q
(which is well defined since p and q are Ad(H )-invariant). Since q = 3N &, the
vertical distribution consists of the tangent spaces of the fibres of 7: Z — 5.
The Ad(H )-invariant subspace g; C p defines a subdistribution H; of H (where
H1(¢) = Ad(g)p1) which is called superhorizontal.

Remark. An important special case is when ad(§) has only eigenvalues 0 and
+i. Thus H = K and p = 3, and ad(§) gives a parallel almost complex struc-
ture on S turning S into a Kéhler manifold. In this case 7 : Z — S is an
isometry; in fact, S — Z C g is the extrinsic symmetric standard embedding of

the hermitean symmetric space S into g (cf. [F]).

In order to see the complex structure on Z in the general case, we consider
the complexified Lie algebra g° and the corresponding complex Lie group G°
containing G. We have seen already that g decomposes into a finite sum of

eigenspaces of ad(&):
= W
&

where uy, is the eigenspace corresponding to the eigenvalue ik. We have [ug, u;] C

U4 since by the Jacobi identity
(&, [ Xk, Xil] = [[€, Xil, Xa] + [ Xk, [€, Xi]] = i(k + 1)[ X, X)]

where X; € u;. Thus np = 3 0u; and n_ = 3w are nilpotent complex

subalgebras. Also, p1 = Fpsour = ny + b is a complex subalgebra (called
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parabolic), and we have a vector space decomposition g° = py @ n_. There is a

closed complex subgroup of G° with Lie algebra p, namely
Py ={g € G% Ad(g)¢ € E+ny}.

In fact, on the one hand, exp py is contained in Py since for all X = 37,50 X}, €
py with Xi € uy, the expression exp (ad(X))€ — € is a sum of iterated Lie
brackets

acl(Xkl)ad(Xkr)f C Uk +...4k, Cng

(note that this expression vanishes if all £; = 0), and on the other hand, the
Lie algebra of P, consists of X = ¥, X}, such that [£, X] = 3 tkX; € ny which
implies that Xz =0 for & <0, i.e. X € py.

We claim that Z = G/ H is essentially the coset space G¢/P, of complex
Lie groups and hence a complex manifold. In fact, both manifolds have the
same dimension since the R-linear map r : g° — g with 7(X) = X + X maps
n_ isomorphically onto 3. On the other hand, G°/P; D G/(P; N G), and
P. NG = H since g € G satisfies Ad(g)§ € (E+np)Nng={iff g € H.
Thus G/ H is an open subset of G°/ Py; in the compact case it is also closed and
the two spaces agree. In any case, G/H inherits a G-invariant almost complex
structure from the complex manifold G/ P,.

It remains to compute how the almost complex structure on 7 is transferred
to Z C g. We have T;Z = ad(g)é = 3. On the other hand, the tangent
spaces of G/H and G°/ P, at their basepoints are viewed as 3 and n_, using the
decompositions g = h@ 3 and g° = p B n_. The G-equivariant diffeomorphisms
G/H — Z, gH — Ad(g9)¢, and G/H — G°/P,, gH ~ gP, induce the linear
maps of tangent spaces —ad(€) : 3 — 3 and r~' : 5 = n_; the latter holds since
X cu_and r(X) = X + X € g, are congruent mod p,, for any k > 0. The
almost complex structure on n_ is given by the multiplication by ¢ on any of
the u_y; this is transferred to a 90°-rotation on g; which commutes with ad(£).
Thus we have established the almost complex structure j on 3 = T:Z. On gy,
it agrees to the action of ad(£) and of Ad(exp (5€)). Thus we have shown:
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Lemma 3. H; is a complex subbundle of TZ, and on H,({) we have j =
Ad(exp (5C)) = ad(Q), for any € Z.

5. Proof of Theorem 3

As before, let S = G/K be a symmetric space of compact or noncompact type.
For any x = g.o € S let G, ={g € G; gr = 2} = gK ¢! be the isotropy group
at z. The isotropy representation p, which sends each g € G, to its differential
dg, € End(T,S) is faithful and takes values in the group Aut(7.5) of linear
maps on T,S which preserve the inner product and the Lie triple product Rs
on T,.S; in fact, the connected components of p,(G,;) and Aut(7,S) agree (cf.
[H], [E]). In other words, any such automorphism of (7,.S, Rs) is the differential
at x of a unique isometry of S fixing x. In the sequel, we will not distinguish
between p,(G,) and G,

Now we consider an isotropic pluriharmonic map f : M — S on some
Kéhler manifold M. Let ®5 = exp (0¢) be the associated parallel bundle auto-
morphisms of E = f*T'S satisfying (4). Since ®¢(p) for any p € M and any 6 is
an orthogonal automorphism of (TS, Rs), it can be viewed as an element of
the isotropy group G, C G (using py(py). In particular, ®.(p) = —I becomes
the geodesic symmetry at f(p). Thus S is an inner symmetric space.

Since @y is viewed now as a map M — G, the generator ¢ = d%@ﬂg:g
becomes a map ¢ : M — g. Fix some p, € M and consider o = f(p,) as the
base point of S, i.e. put K = G,. Let £ = ¢(p,) € £. Then ¢ satisfies (5), hence
Z = Ad(G)¢ is a flag manifold or a flag domain over S. From Lemma 1 we see

that g3 C p generates g as a Lie algebra since it generates p by the Lie triple

product Rs(X,Y)Z = £[[X,Y], Z]. Thus £ is canonical.

Lemma 4. The map ¢ : M — g takes values in Z and is a superhorizontal lift
of f, i.e. do takes values in ¢*Hy, and To p = f.

Proof. Recall that ¢ is a parallel endomorphism of E. Parallel translations in

S are given by horizontal curves in G, where a curve g(t) in G is called horizon-
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tal if ¢'(t) € dLyp for any ¢ (as usual, L, : G — G denotes the left translation
Ly(h) = gh). Parallelity of the endomorphism field ¢ means: For any curve p(t)
in M with p(0) = p, there is a horizontal curve g(t) in G with f(p(t)) = g(t).0
such that ¢(p(t)) is conjugate to ¢(p,) = & by dg(t), or (using the above iden-
tification) ¢(p(t)) = Ad(g(t))¢. This shows ¢(M) C Z and 70 ¢ = [ (using
Lemma 2), and moreover % (p(t)) € Ad(g(t))ad(p)é C Ad(g(t))p = H(f(p(t)),
hence ¢ is even a horizontal 1ift of f. But by Lemma 1, df takes values in the
subbundle F; C f*T'S whose preimage in H under d7 is the superhorizontal
bundle H;. Thus ¢ is in fact superhorizontal.

Now we can show that ¢ : M — Z is holomorphic. By Lemma 3, the
complex structure j on Hy(p(p)) C Typ)Z is given by Ad(®rj;(p). Further
recall that 7 is equivariant, so d7¢ interchanges the isotropy actions of H on
TeZ and T,S, hence it commutes with the adjoint action of H C K on p C 3.
In particular,

dT¢(p) e} Ad(q)g(p)) = ‘1)9([)) (@] dT¢(p). (6)

If we denote by dr~' the inverse map of dr|y : H — 7*T'S, then we get the
holomorphicity of ¢ using (4) and (6):

dpoJ =dpoRsy,
=dr~' odf o Ry
=dr ' o®,ppodf
= Ad(®,jy) odr=" o df
= jodg.

Vice versa, if a superhorizontal holomorphic map ¢ : M — Z C g is given,
where 7 is a flag manifold or a flag domain over S, then f = ro¢: M — Sisan
isotropic pluriharmonic map. In fact, since ¢ is horizontal, it can be viewed as
a parallel derivation (infinitesimal automorphism) of (E, Rg) where £ = f*T'S
(see proof of Lemma 4). Then ®4(p) = exp (0¢(p)) defines a one-parameter
group of parallel automorphisms of (£, Rg). Since the almost complex structure

j of Z agrees with ad(¢(p)) on the complex subspace H1(¢(p)) C T4 (Lemma
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3), we get from the holomorphicity of ¢:

dép 0 Rg = exp (Bad(¢p(p)) = Ad(Ps(p)) o d, (7
Now (7) and (6) yield equation (4) which finishes the proof of Theorem 3:

dfy o Re = drypy 0 dp, o Ry
= dry(p) 0 Ad(®4(p)) 0 do,
= By(p) 0 dry(y) © dyp
= ®y(p) o df,.

6. Constructions of isotropic pluriharmonic maps

Let S = G.(C*) = U(n)/U(r) x U(n — r) be the Grassmannian of all r-
dimensional subspaces in C* and let Z be a classical flag manifold, namely

the set of all flags
0=WoCcW,CcW,C..CW,,=C

where the W) are subspaces of a fixed dimension dj, with dy_; < dj. Equiv-
alently, such a flag is an orthogonal decomposition C* = Y, Fy where Ej, =
Wy, & Wi_1 has dimension ny = dj, — dj_1; we then have W, = Z?:] E;. As-
sume that r = Y ,qq 7% and consider the projection 7 : Z — S sending the
above flag onto the r-plane Y, 44 Fx. The corresponding canonical element
£ €g=u(n)is{ = Y ik-pg where p;, denotes the projection onto Ey. We have
TEZ = Yp, Hom(Ey, I2), and ad(£) has eigenvalue i(l — k) on Hom(Ey, ;).
Thus

HY(E)= Y. Hom(Ey,E), Hi(E)= Y Hom(E E).

k—1 odd [k—l|=1
Now let M be a Kéahler manifold and ¢ : M — Z be a smooth map. Thus
¢ assigns to each p € M a flag W(p) or equivalently a decomposition E(p) of

the above type, so ¢ determines complex vector bundles Wy, E, C M x C*. For
any X € T,M we let 9x W}, = Span (9x f1, ..., Ox fa,) for any smooth local basis
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Jis ey fu, of Wy; this is a well determined subspace modulo Wy(p). We assume

further that ¢ is holomorphic, i.e. d¢ maps T,M into T} VZ where

(»

TpZ = Hom(Ey, E).
k<l

Let 0" denote the restriction of the differential d on M to T'M. In the following

we will omit the vector X € T"M with respect to which we differentiate.

Proposition. (F.Burstall) Let M be a Kdhler manifold. A holomorphic map
¢: M — 7 is superhorizontal iff Wy, C Wiyy.

Proof. Since the map ¢ is holomorphic, A'E), := 0'Ey N E;- takes values in
sk Ei. Thus ¢ is superhorizontal iff A'Ey C Ej4q. By induction, this implies

OWy =0 (Wiot + Ex) C Wi+ Ejqy = Wiy

Vice versa, if 0'Wy C Wiy, then 0'Ey C FEy + E,, thus A’E; C E,, further
J(Ey + Ey) C By + By + Es, thus A’Ey C Ej3 ete. which shows that ¢ is

superhorizontal.

This construction gives a vast number of explicit local examples: We start
with pointwise linear independent holomorphic maps f; : M — C* for 1 =
1,...,d; (for large enough n) where M is an open subset of C™, and let W; be
the span of the f;, further Wy the span of the f; and their first derivative 9! f;
and Wy the span of f; and their first £ — 1 partial derivatives, as long as those
are pointwise linearly independent. This defines a horizontal holomorphic map
¢: M — 7, and f =70 ¢ is isotropic pluriharmonic.

The construction was first introduced by Eells and Wood [EW] for the case
h = 3, i.e. each element of 7 is an orthogonal decomposition (F1, Fy, E3) of
C" which is mapped by 7 to Ey + E3 € § = G,(C*). The horizontal and the
superhorizontal bundles agree in this case. A map ¢ = (F1, Fa, F3) : M — 7
is holomorphic iff £, is a holomorphic subbundle of M x C* (generated by
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holomorphic maps M — C*) and Es5 an antiholomorphic one, and a holomorphic
¢ is horizontal iff 'E; L F3. This was invented to descibe minimal surfaces
in CP™ = G1(C**'); in fact it was shown that minimal 2-spheres in CP™ are
precisely of this type; in another language, this result was also obtained by
Chern and Wolfson ([Ch], [ChW], [Ws]). The construction was later extended
to pluriharmonic maps into complex Grassmannians (cf. [ErW], [OU]).

Many years before, Calabi ([C], cf. [L]) gave a similar description of minimal
2-spheres in S™. In fact, this can be viewed as a special case of the construc-
tion of Eells and Wood if we immerse the n-sphere as RP" into CP". More
generally, we consider the real Grassmannian G,(R") as the submanifold of
G.(C") containing the r-dimensional subspaces which are invariant under com-
plex conjugation. Thus we need holomorphic and antiholomorphic bundles F;
and F3 such that F; + Fs5 is invariant under conjugation; this is satisfied if
E3 = E;. In other words, the map ¢ can be viewed as a holomorphic bundle
E = E, C M x C such that F is perpendicular to £ with respect to the
hermitean inner product Z'y on C*, i.e. the biinvariant inner product zy
vanishes on E (it is isotropic). Thus the corresponding flag manifold Z over
S = G,.(R") is the set of isotropic ny-planes in C*, where 2n; + r = n, and
7 : Z — S is the realification £ — (E + E)NR" As coset spaces, we have
Z =50(n)/SO(r) x U(ny) and S = SO(n)/SO(r) x SO(2n;) (we have passed
to the oriented Grassmannian). The canonical element ¢ in the Lie algebra of
SO(n) is the antisymmetric real matrix with eigenvalue i on £ and —i on FE,
being 0 on the complement. The case of Calabi is r = 1.

However, this construction is less explicit then the previous one since it is
nontrivial to find a holomorphic isotropic bundle £ with K L E. In [ET3]
we gave an example of such a construction by choosing £ to be the (1,0)-Gauss
map of an immersion F' : M — R” which is either pluriminimal or the standard
embedding of a compact hermitean symmetric space. Examples of pluriminimal
submanifolds of R™ have been constructed by Dacjzer and Gromoll [DG].

But long time before, R.Bryant [B] gave an explicit and complete descrip-
tion in the Calabi case S = S*. This was re-interpreted by Lawson [L] and
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generalized by Burstall [Bs] as follows. As before, let S = G/ K be a symmetric
space and 7 : Z — S a flag fibration where Z = Ad(G)¢ for a canonical element
¢ € g. Recall form Ch.4 the decomposition g° = p, @& n_. Thus the nilpo-
tent group N_ = exp n_ C G° acts on Z = G°/P; with an open dense orbit.
Let us consider the case where ad(£)/i has only two negative eigenvalues —1
and —2 and the (—2)-eigenspace has complex dimension one. This is precisely
the case when 7 is the twistor space over a quaternionic symmetric space S
(a so called Wolf space). It means that the tangent space p of S carries the
structure of a quaternionic vector space, and K = K’ - Sp(1) where K’ acts
quaternionic linearly and Sp(1) by quaternionic scalars, and Z = G/K'-U(1) is
the twistor bundle (cf. [K1]). In this case, n_ = u_; +u_, where u_; determines
the (super)-horizontal subbundle (which is left invariant) and u_, = [n_,n_] is
one-dimensional. It follows easily that between any two such Lie algebras of
the same dimension there is an isomorphism preserving this splitting, and this
extends to a polynomial isomorphism of the corresponding Lie groups. Thus, if
S’ is another Wolf space of the same dimension with twistor bundle Z’, we find
a holomorphic map F between open dense subsets of Z and Z’ preserving the
horizontal structure. (In fact, I extends to a birational map between Z and Z'.)
Hence we may transform any holomorphic and horizontal map ¢ : M — 7 into
another holomorphic and horizontal map ¢' = Fo¢: M — Z'. In this way, the
isotropic pluriharmonic maps with values in .S and S are transformed into each
other. But among the Wolf spaces there are the Grassmannians S = G5(C")
of real dimension 4(n — 2), and in this case Z is the 3-step flag manifold with
n1 = ng = 1 (notation as above). There we have the Eells-Wood construction
which now can be transferred to any of the Wolf spaces. Bryant treated the
case §' = 51 = HP! with Z’ = CP? and used the transformation to the full
flag manifold Z over S = CP2.

The question whether there are similar correspondences of flag spaces in

other cases has been answered negatively by Kobak [K1], [K2].
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7. Further problems

In euclidean 3-space, not only minimal surfaces allow isometric deformations
rotating the second fundamental form, but also constant mean curvature sur-
faces. In fact, this can also be generalized to Kéhler submanifolds in symmetric
spaces using a more general type of associated families, cf. [ET4]. A similar
characterization of the isotropic submanifolds of this type (those with trivial
associated families) has still to be given. Another open question is if other
special surface classes have interesting generalizations to higher dimension and
codimensions.

Siu [S] and Carlson and Toledo [CT] have given bounds for the rank of
pluriharmonic maps into a symmetric space S. In the case § = G5(C"), this
upper bound could be realized by isotropic pluriharmonic maps (cf. [ET3]). We
do not know if the same is true for other Wolf spaces and more generally for

other symmetric spaces.
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