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together with PhD students and young mathematicians. Thus the course
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the representations of the symmetric and general linear groups. The
title probably is somewhat misleading since the main topics discussed
were the combinatorial methods in PI theory. The introduction is not
exhausting, especially its historical parts; this certainly is not a shortage.
Some important results were not included but it is impossible to include
everything. The bibliography also is not complete but it must be helpful
for those who become interested in the topic. Some of the proofs in this
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1. Introduction

The algebras that satisfy polynomial identities (so-called Pl algebras) form
an important class of algebras, and therefore they have been attracting for
the last 50 years the attention of the algebraists. Let K be a field, and let
X = {x1,22,...} be a set of non-commuting variables. The free (associative)
algebra K (X) freely generated by X over K is the K—space with a basis the
monomials {z; ...x; | r = 0,1,2,...}. The multiplication in K(X) is de-
fined as (@i, ...2 )(2), ... 25,) = @iy ... 2,5 ... xj,; the elements of K (X) are
called polynomials. If A is any K-algebra and if a1, ay... € A then there
exists a unique homomorphism K(X) — A such that z; — a;. The polynomial
fla1,...,2,) € K(X) is a polynomial identity (PI) in A if f lies in the kernels
of all homomorphisms K(X) — A i.e., f(a1,...,a,) = 0 in A for all a4, ...,
a, € A.

The first research on PI algebras was initiated in 1922 by M. Dehn [6],
motivated by Geometry. In 1936, W. Wagner ([47]) found identities for matrix
and quaternion algebras. He showed that (ab— ba)?*c — c(ab — ba)* = 0 for any
matrices a, b, ¢ € My(K)—the algebra of the matrices 2 x 2 over K. That is,
the polynomial f(x1,xq,23) = (z122 — T2w1)%x3 — x3(7172 — 2921)? is a Pl in
My(K).

The results of M. Dehn and W. Wagner had been “forgotten” for more than
10 years. The development of PI theory in its proper sense began with the
research of N. Jacobson and I. Kaplansky in approximately 1947-48. We shall
discuss some of the most important steps in this development.

Historically, there exist three principal directions in PI theory. The first,
the classical one was inspired by an extremely important problem—describe all
algebras (rings, groups, and so on). This problem, however, could not (and still
cannot) be answered satisfactory. Therefore it turned out important to describe
all algebras that satisfy certain conditions arising naturally. (We describe the
life of the “ants” since it turned out complicated to describe life in general. . .)

To summarize, the first direction deals with the following question. Suppose A
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is an algebra that satisfies some polynomial identity, what can one say about
the structure of A?

The second direction is more concrete; it studies the identities satisfied by
a given algebra (for example simple), and the classes of algebras that satisfy
these identities. The third is related to the second—it studies the structure of
the ideals of identities. For more historical details see [20].

Our point of view will be related with the last two directions. On the other
hand we do mention some principal facts concerning the first direction. The
interested reader could find more facts and results in the first direction in [46];
let us mention that [46] is based on the notes for a mini-course with the same
title given at the 12th Escola em Algebra.

The survey is organized as follows. In this section we introduce the main
“stars” and the relations among them. In Section 2, we give an exposition of
results that lie at the borders of the directions mentioned above. Furthermore
they show some of the classical applications of Combinatorics in PI theory.
(Glance at the names!) In the third section we discuss a combinatorial method
that is extremely important in PI theory, namely the representations of the
symmetric and the general linear groups and the connection between them. In
addition we show some examples of the usage of this method. The last two
sections consist of applications: in the fourth we study the identities in M(K)
when K is a field of characteristic 0. Using Higman’s theorem about partially
well ordered sets we describe some important properties of the identities satis-
fied by well-known algebras. In the fifth chapter we deal with non-associative
algebras satisfying polynomial identities and we discuss some problems of PI
theory when the algebras are over a field of positive characteristic.

The exposition is self-contained with few exceptions. In Section 2 we con-
sider tensor products of algebras; in the third section we suppose familiarity
with the basics of the representations of finite groups over fields of character-
istic 0, and with group algebras of finite groups. In Section 4, Razmyslov’s
theorem about the identities in M,(K) is stated without proof because of space

restrictions. In Section 5, formally speaking, we do not require any knowledge
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of non-associative algebras (although it is desirable). It should be mentioned
explicitly that the survey is not a complete introduction to PI theory; its main
goal is to demonstrate to the reader and to convince her/him that PI theory
is worth studying. The readers interested in the topic could use the refer-
ences as a base of future research. Thus for example we do not consider at all
one of the most important achievements in the structure theory of PI algebras
namely the existence of central polynomials in matrix algebras. These are non-
zero non-commutative polynomials in several variables that do not vanish on a
given maftrix algebra of order n but all their values are central. The existence
of central polynomials was established independently by E. Formanek and by
Yu. Razmyslov, we shall only refer to [12] and [36].

All vector spaces, modules, and algebras will be over a fixed field K. The
algebras will be with 1. First we provide some examples of PI algebras. They
show that PI algebras appear naturally, and that important types of algebras

satisfy identities.

Example 1.1. 1. Let A be a commutative K-algebra. Then it is PI since it
satisfies z w9 —xo7;. Denote x1x9 —x9xy as [x1, x5], then the polynomial [z, x4]
isa Plin A.

2. The algebra M,(K) satisfies the identity [[z1, 2])%, z3]. (Why?)

3. Let A be nil of bounded index (i.e., a” = 0 for all @ € A where n is fixed).
Then A is PI since it satisfies 7. (Here, and in the next example we suppose
that the algebras are without 1.)

4. Let A be nilpotent i.e., a;...a, = 0 for all a; € A for fixed n. Then A
satisfies the PI z1...z,.

5. The algebra A = T, (K) of the upper triangular n x n matrices satisfies
[21, 22][®s, 24] . . . [T2n-1, T2n] (Why?) and therefore it is PI.

6. The exterior (or Grassman) algebra A satisfies the PI [[z1, x2], 23].

Definition 1.2. Let S,, be the symmetric group acting on the symbols {1, ... ,n},

and denote s,(x1,...,2n) = 3 0(=1)72s(1) . . . To(n) the standard polynomial
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where the summation is over all o € S, and (—1)7 stands for the sign of the

permutation o.

The degree deg f of the polynomial f(z1,...,2,) € K(X) and the degree
deg,. f of f with respect to x; are defined in the usual manner. The n—tuple
(deg,, f,...,deg, f) is the multidegree of f. The polynomial [ is homoge-
neous if all its monomials have the same multidegree. If f is homogeneous of

multidegree (1,...,1) then f is multilinear.

The polynomial s,(x1,...,2,) is multilinear and skew-symmetric. In other
words, if #; = z; for some ¢ # j then s,(1,...,25...,25...,2,) = 0. If
fler, . @, ..., 25) € K(X) is multilinear in a4, ..., , then f is n—Capelli if

x; = x; for some 7 and 7, 1 <7 < j < nimplies f = 0. Denote as Cap, the set
of all n—Capelli polynomials in K(X).

Example 1.3. Every finite dimensional algebra A, dim A = n, satisfies
Sn41(®1y .y Tpgr). I f € Cappyq then fis a PIin A.

|

The examples provided show that the PI algebras can be thought of as
certain generalization of the commutative algebras, and this generalization is
rather natural. The PI algebras enjoy a lot of the properties of commutative
algebras. On the other hand, the class of the PI algebras is much larger than
that of the commutative algebras. In fact, the class of the commutative algebras
can be defined as satisfying the identity [z1, 2] = s2(21,22). Of course, it is
exaggeration to say that it is worth studying the commutative algebras using PI
methods; the proper methods of commutative algebra are well developed and

they function much better in this case.

Definition 1.4. Let A be a K—-algebra. The element a € A is called algebraic
of degree < n if a® = B1a" ' + ...+ Bo_1a + B,1 where 5; € K. The algebra A
is algebraic if every a € A is algebraic; A is algebraic of degree n if all elements

of A are algebraic of degrees < n, and n is the least possible.
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Example 1.5. If A is algebraic of degree n then A is PI; it satisfies the identities
.[.([:["7117 3;2]7 ['11:712_17 ‘752]1 o vie g [:1:17 I2]7 Tntlye-ey :L'k)7 f S Oa’pn-

If a1, ag € A, then [a7, ag] = 217 Builal, as]. Hence b; = [a},ay],i =1, ...,
n are linearly dependent and thus f(by,...,b,,...) = 0 in A. One verifies that
the statements above hold for algebras over any associative and commutative

ring with unity; in this case one substitutes the word “algebraic” for “integral”.

Remark 1.6. If A satisfies the identity s, then it also satisfies s, for all m > n;

the same holds for the sets of polynomials Cap,.

Definition 1.7. 1. The ideal I « K(X) ts called T-ideal if o(I) C I for every
endomorphism ¢ of the algebra K(X). Denote it as I ap K(X).

2. Let A be an algebra. The set T(A) of all PI in A is called the T-ideal
of A; we denote it as T(A) oy K(X). If I C K(X) then denote as var I the
class of all algebras that satisfy all Pl in I. The class var I is called the variely
of algebras defined by 1. If I = T(A) we write var I = var A. The quotient
K(X)/T(A) = F(A) is called the relatively free algebra in var A.

Obviously T(A) «r K(X) is an ideal in K(X); if A =0 then T'(A4) = K(X);
if A= K(X) then T(A)=0.

Now we recall the main properties and relations among the objects de-
fined above. These are the contents of the next propositions. Their proofs

are straightforward; they can be found, for example, in [33], Chapter 20, [34],
[40].

Proposition 1.8. a) Let [ C K(X). The variely var [ is closed under taking
subalgebras, homomorphic images, and direct products.

b) Let V be a class of algebras, and let I = (V) ={f € K(X)| fisaPlin
all A € V}. Then Iap K(X) i.e., o(I) C I for every endomorphism ¢ of K(X).



ALGEBRAS WITH POLYNOMIAL IDENTITIES 143

Let V' be a class of algebras closed under taking subalgebras, homomorphic
images, and direct products. Denote as F(V') the quotient K(X)/I(V') and as
m: K(X) — F(V) the canonical projection.

Proposition 1.9. a) The algebra F(V) belongs to V.

b) If I(V) # K(X) then the map m is injective on X, and the image 7(X)
generates F(V).

¢) If A€V and if p:m(X) — A is a map then there exists an algebra ho-
momorphism ®: F(V) — A such that ®|,(x) = ¢.

Corollary 1.10 a) Let V' be a class of algebras closed under taking subalgebras,
homomorphic images, and direct products. Then V is a variety, and V =
var (F(V)).

b) The algebra F(V') is relatively free in V.

¢) If A is an algebra then A € V' if and only if all finitely generated subal-
gebras of A belong to V.

Corollary 1.11. Let J C K(X) and suppose V' is a class of algebras. Then
the maps J — var J and V — I(V) invert the inclusions and furthermore:

a) I(var J) 2 J; the equality holds if and only if J <y K(X).

b) var (I(V)) DV with equality if and only if V' is a variety.

¢) If J oy K(X) then J =T(K(X)/J).

Note that this Corollary is known as Birkhoff’s theorem.

2. Classical combinatorial theorems

Here we consider fundamental results in the theory of PI algebras as well as
applications. We begin with the identities satisfied by the algebras M, (K') of
the matrices of order n. We follow the exposition in [33], Chapter 6, pp. 402—

406. First we state some elementary properties of the standard polynomials.
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Lemma 2.1. If s,(z1,...,2,) is the standard polynomial then:

8 8 Bot1fps == Betmy) = L Sul By se g By T E 50

b) Assume ay,...,a, € A and a; = aj, for some i and j, © # j, then

snlar,...,a,) = 0.
C}) sn(xl,...,xn) =3 ?:1(—1)i+1$2'5n_1(171,...,JA?Z',...,;En) = ?:1(_1)n+z'
Sp—1(1, .oy &4y .y x,)Ty, here &; means that x; is missing from the correspond-

g eTPression.

Lemma 2.2. Let A be an algebra and suppose P C A is a subset of A that
spans A as a vector space over K. If f(xy,...,x,) is a multilinear polynomial

and if f =0 on the set P then [ is a Pl in A.

Thus in order to verify whether some multilinear polynomial is a PI for an
algebra A it is sufficient to check if it vanishes on some basis or even on some

spanning set of A.

Lemma 2.3 (Staircase Lemma) The algebra M,(K) satisfies no polynomial

identily of degree < 2n.

Proof: We shall prove that M,(K') satisfies no multilinear identities of de-

grees < 2n and later we shall see that this is neither a restriction nor loss

of generality. Let f(x1,...,2m) = Yses,, Oolo(1)- - Lo(m) Where m < 2n and
a; # 0. Then, if mm = 2r one obtains f(e1y, €12, €22, .., €rr41) = Q161,41 7 0;
if m =2r —1 then f(e1,e€12,€2,...,6-) = arer, # 0. Here ¢;; stands for the

elementary matrix with 1 as (7, j)-th entry, and 0 as all other entries.

Since dim M, (K) = n? it is immediate that M,(K) satisfies the identity
Sp24+1. Which is the minimal degree m of s, satisfied by M,(K)? The answer

is in the next theorem.

Theorem 2.4 (Amitsur and Levitzki) The algebra M,(K) salisfies the iden-

tity son(@1, ..., T2n).
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Remark 2.5. The proof of this theorem in [33] was proposed by S. Rosset
([39]). It employs some elementary properties of Grassman algebras, and it is
a pleasure to read it. We advise the reader to do so. There exist other proofs

that use different methods and techniques.

Corollary 2.6. IfV, = var M,(K) then Vi C V5 C ... where all inclusions

are proper.

Another important application of combinatorics in PI theory is the following
result due to Nagata [32] and Higman [17]. It might be interesting to mention
that the same result was obtained independently (and much earlier) in [11];
probably due to the WW2 it had remained unnoticed for more than 10 years.
Here we give the proof of this theorem following [48], Chapter 6.1. Let A be an
algebra and denote I,,(A) = {X; oa? | o € K,a; € A}. Evidently I,(A) is a
subspace of A.

Lemma 2.7. If J,(A) ={a € A| (’IL!)k(I, € I,(A) for some k} then J,(A) < A,
and the quotient A/J,(A) has no elements of torsion < n.

Proof: First we prove that the subspace I,(A) is a two-sided ideal in A.
For ay, ..., a, € A denote sym (aq,...,a,) = Y,es, Ag(1) - - - Gg(n)- Then it
can be checked that sym(ay,...,a,) € I,(A). Thus if a¢, b € A we have
a.sym(b,a,...,a) =sym(ab,a,...,a) € I,(A)and (n—1)! X", a;sym (b, aq,. ..,
i, ...an) € I,(A). When a; = a and a3 = ... = a, = b this yields that

(n — Dla.sym(b,....b) + (n — 1)(n — 1)lb.sym(a,b,b,...,b) € I,(A)

and (n!)?ab™ € I,(A). Analogously (r!)*b"a € I,(A).
Now evidently J,(A) is a subspace of A. If @ € J,(A) and b € A then
(nfa € I,(A). Hence (n!)%((n!)fa)b = (n))*+2ab € I,(A) and ab € J,(A).

Analogously ba € J,(A). The assertion about the torsions is obvious.

Theorem 2.8 (Nagata, Higman, Dubnov, Ivanov) If A is an associative
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algebra then A?"~' C J,(A) for all n.

Proof: See, for example, [19], p. 274, or [48], Chapter 6.1, pp. 123-126.

The next corollary justifies the importance of this theorem.

Corollary 2.9. If A is an associative algebra with no elements of torsion

<mn, and if 2" is a Pl in A then A is nilpotent of class < 2" — 1.

Remark 2.10. It is known that A% C J3(A) for all algebras A. This means
that the bound 2" — 1 is not the best possible. Its exact value k(n) satisfies
n(n +1)/2 < k(n) < n?. See, for example, [4], pp. 123-126 for additional

information and generalizations of the result just obtained.

Our next step is to show that the tensor product (over K') of two PI algebras
is again PI algebra, a result due to A. Regev [37]. Here we consider a proof
proposed by V. Latyshev [30].

First we recall some facts about multilinear identities. It is easy to verify
that if A is a PI algebra and if f is an identity for A of degree deg f = d then
A satisfies a multilinear identity of degree < d. (We shall discuss this in the
next section.)

Now let A; and A; be two PI algebras with respective T-ideals I = T'(A,)
and [ = T(A;). In order to prove that A = A; @ A, is a PI algebra itself it is
sufficient to show that the tensor product of the corresponding relatively free

algebras K(X)/I' @ K(X)/I" satisfies an identity.

Definition 2.11. Denote as P, the set of all multilinear polynomials in the
variables x1,...,z, in K(X) te, P, = {f(21,...,2,) € K(X) | f is multilinear}.
If I ap K(X) we denote I, = 1N P, and we call ¢,(I) = dimg (P,/1,) the n—th

codimension of I.

Remark 2.12. Clearly P, is a vector space over K, and [, is a subspace of

P,. The set {z,1)...%om) | @ € Sp} is a basis of P, hence dim P, = n!, and
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¢n(I) < nl. Note that the vector space [, is too “large”; that is why we consider
the quotient, and the codimensions. In fact this observation is the main point

in the proof of the next proposition.

Proposition 2.13 (Regev). Let I’ and I” be two T-ideals in the free as-
sociative algebra K(X) such that c¢,(I')e,(I") < nl. Then the algebra A =
K(X)/I'® K(X)/I" satisfies a multilinear identity of degree n.

Proof: See for example [40], p. 240.

Remark 2.14. Consider the following assertion. “If 7 ar K(X) and if K(X)/I
satisfies an identity of degree d then there exists m(d) such that ¢,(I) < m(d)”

”

for all n.” This assertion yields Regev’s theorem since n! grows “faster” than

m(d)" for any real number m(d).

Definition 2.15. If o € S, we define (o) as the length of the mazimal “an-
tichain” in o i.e., r(o) stands for the largest k such that there exist 1 < iy <

s <ty <nowith o(iy) > -0 > o(ig).

[

For example, if ¢ =

o(2) > o(3) > o(5).

23456
39 4 1 G)ESgthenr(U):4: o(l) >

If o € S, we define the Amitsur diagrams 7}(c) and T3(o) as follows. Con-
struct T1(o) = (t;;) and Ty(o) = (ui;) by induction: 13 = 1 and uyy; = o(t11).
Suppose that t; j_y has been defined, then set ¢; as the minimal £ such that
l1j-1 < k <nand o(k) > uy j_1; then uy; = o(ly;). If there does not exist such

k we start filling the second row of 7(o), see the example below.

Thus ty; will be the least & < n that does not belong to the first row of
Ti(o), and ug; = o(tz1). Then continue with ¢5; etc. as on the first row (but
disregarding the elements that have already appeared on the first row of T} (o)),
then with the third row, and so on. Eventually Ti(c) and T3(o) will have n

elements each.



148 P. KOSHLUKOV

1367
> € Sz then Ty (o) = 24 ,
5

e~ =
— DN
v W
[SER.
SR
[=> BN e
-~ 3

Example 2.16. Ifo = (

4567
Tz(a)( 13 )
2

Theorem 2.17. If o € S, then r(c) equals the number of the rows in Ty(c).
Proof: Not so difficult combinatorial argument; see, e.g., [40], p. 241.
Lemma 2.18. [fd <n then [{c € S, | r(c) < d}| < (d—1)*".

Proof: See [40], Remark 6.1.11 on p. 242.

Theorem 2.19. Suppose [ <y K(X) and let K(X)/I satisfy a multilinear
identity g of degree d. Then c,(I) < (d —1)*".

Proof: Denote as V the subspace of P, € K(X) spanned by the monomials
Ty .. Tr(ny Where 7 € S, and r(7) < d; we will be done if V 4+ I,, = P, for
I, =1nP, (Why?).

Choose o € S, and h = x,(1)...2s(n) such that h is the least monomial
outside V' + I, (the least with respect to the lexicographical order in P,). Then
r(c) > d and we can find ¢y < ... < iy with (1) > ... > o(iy); then represent
h as h = hixs(i)hao(iy) - - - To(ig)hap1 Where h; stand for some monomials.

Consider the difference ' = h — h]g(xg(il)hg, To(in)la, -y To(inhar). The
monomials of &’ precede h. Then by induction we conclude that ' € V + I,,.
On the other hand g € I hence h € V + [,,, a contradiction.

This theorem together with the assertions above proves the following theo-

rem.

Theorem 2.20 (Regev). If Ay and Ay are PI algebras over K then their
tensor product Ay @k A, is also a PI algebra.
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Note that this theorem states that the codimensions of a (non-zero) T-
ideal cannot grow too “fast” i.e., its codimension growth cannot exceed the
exponential. (This is not the case for Lie algebras, for example.) This means
that in the case of T-ideals of associative algebras, the identities are “more”

than the non-identities, at least asymptotically.

At the end of this section we consider one of the most interesting applications
of Combinatorics to PI theory. This is a method introduced and developed by
A. 1. Shirshov. The method as well as the results obtained hold in a much
more general setting than the one considered here. The reader could find the
complete story in [48]. Although in a particular case, we shall demonstrate how
this method works and what its major applications are. We use ideas from the
exposition in [40], §4.2, and in [48], Chapter 5. The reader could find all missing

details there as well.

Denote (X) the set of all monomials in X together with the element 1 (the
empty monomial, it is of length 0), equipped with the usual multiplication in
(X). The elements of (X) are called words in the alphabet X. If w = a;, ...z,
then k is the degree of the word w, and max (iy, ..., %) is the height of w. If w is
a word of degree k and of height < ¢ then w is called (k,t)-word. It is clear that
the set of all words of heights < ¢ is closed with respect to the multiplication.
The word w; is called a subword of w if w = w'w,w"” for some words v’ and w”.

For example, z1x329 is a subword of x4x1x32923 and of xx32024.

Definition 2.21. For the words wy = a;, ...z, # 1 and wy = x5, ...z, #1
we define wy < wy if there exists r < min(k,n) such that iy = j1, 19 = Ja, ...,

ir—l = jr—l but ir < jr~

Remark 2.22. The order < is partial; it is different from the lexicographical
order: for example x1xy and x;z9x3 are incomparable with respect to the order

< while the lexicographical order is linear.

Lemma 2.23. [fw; < wy then wiws < wawy for all words ws and wy.
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Definition 2.24. The word w is called 1-initial if w = z{w’ where u > 0 and
w’ does not contain xy. The partition w = wy ...w,, is called factorization of
w if every w; s 1-initial. The factorization above is called minimal if m is the

least possible.

Lemma 2.25. [f w is a word then there exists a factorization of w. The

minimal factorization of w is unique.

Example 2.26. Let w = 325111413251 where we wrote 7 for x;. Then w =
3.2.5.12.14.1325.1 is a factorization of w; the minimal is 325.1%4.1325.1.

Definition 2.27.  The word w is called d—decomposable and w = w; ...wy
is called a d-decomposition of w if wy(1y ... wo@) < w for every permutation

1#0€S;.

Lemma 2.28. [fw = wjw' and v’ = w, ... wy is (d — 1)~decomposable with

w; <wy, J=2,...,d then w = ww;...wy is a d—decomposilion of w.

Theorem 2.29. (Shirshov). There exists a function B(t,u,d) such that for
every k > B(t,u,d), any (k,t)-word has either (1) a subword of type w, or (2)

a d—decomposable subword.

Proof: Simultaneous induction on d and ¢. Obviously 3(t,u,1) = 1 since every
word is 1-decomposable; also 3(1, u, d) = u since 1* is a subword of every (k,1)-
word with k& > u. Suppose there exist 8(t — 1,u,d), and 3(t',u,d — 1) for every
t' € N. Define t' = wt?t=1%D; 3(¢t u,d) = (B(t — 1,u,d) + u — 1)B(t",u,d — 1).
If w is a (k,t)-word that satisfies neither (1) nor (2) from the theorem we have
to show that k < 3(t,u,d).

The word w admits a minimal factorization w = wy...w,,, w; = 1%,
where @; do not contain 1. This yields that @; are words in {2,...,¢}. If
degw; > B(t — 1,u,d) for some 7 the proof would be complete. On the other

hand, if u; > u for some ¢ then (1) holds. In other words we can assume that
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w; are of degrees < B(t —1,u,d), and that u; < u for all 7.

The word w; = 1%, is called admissible if deg @; < S(t—1,u,d) and u; < wu.

Now clearly deg w; < 8(t — 1,u,d) + v — 1 implies that k& < (3(t — 1,u,d) +
« — 1)m. The number of the admissible words is less than ¢'. These words are
ordered (linearly) with respect to the lexicographical order; hence there exists
an order-preserving 1-1 map « from the set of all admissible words into the set
{1,2,...,t'}, a:v — a(v). (The order in {1,...,¢'} is the standard one.) We
shall use v and a(v) as identical notations.

The word w' = (a(wy),...,a(w,)) is a (m — 1,t')-word. Suppose m >
B(t',u,d — 1), then if (1) holds, the proof is completed. Hence without loss of
generality we suppose that w' contains a subword a(w;)...a(w;), 2 <1 < j,
that is (d — 1)-decomposable. Therefore the word w;...w; admits decompo-
sition wy ... wj where every w! is product of words in {ws,...,w,}. But the
last words start with 1. Hence w;_; > w;-’ for all 7 since w,;_; cannot start with
1. Therefore w;_jw} ... w} is a d-decomposable subword of w.

The last possibility to be considered is m < 3(t',u,d — 1). This inequality
leads to

k< (B(t—1,u,d) +u—1)3({u,d—1) = B(t,u,d),

and hence the proof of the theorem is completed.

Proposition 2.30.  Suppose that degw > d and that w is not of the type

2d

w = (w')! for some w' and some j > 1. Then w*® contains a d—decomposable

subword.

Proof: If w = iy ...15w" we define w; = w, and wy, = (iyipq1 ... 10)w (41 ... 1p_1),
2 < p < d. Obviously w, # w for every p and hence wy, ..., w, are pairwise
distinct. Hence there exists o € Sy such that wy(1) > -+ > wy(g). On the other

hand every w,, is a subword of w?, and w?® = w/w,w]. Thus

'lUZd = w;(l).wg(l)wg(l)u);(z). R .w,,(d_l)wg(d_l)w;(d).w,,(d)w;/(d).

The words vi = Wo(s) Wy Wh(ip1), ¢ = 1, ..., d — 1, and vg = w,(g)wyy) satisly
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vy > -+ > vg; therefore vy ... vq is d-decomposable.

Corollary 2.31. (Shirshov’s Theorem). There exists a function 3(t,u,d)
such that for each u > 2d and each k > (3(t,u,d), every (k,t)-word contains
either: (1) a subword wy, degwy < d, or (2) a d—decomposable subword.

Theorem 2.32. Let A be a finitely generated PI algebra, A = alg(ay,...,a:).
Suppose every monomial in ay,...,a; of degree < d is algebraic over the field

K. Then A is finite dimensional over K.

Proof: Denote as B the set of all monomials of degrees < (¢, u, d) where u =
max(2d, g), and g is an upper bound of the algebraic degrees of the monomials
of degrees < d; the set of these monomials is finite. We shall prove that B
spans A as a K—vector space.

Let all monomials of degree < k belong to ¢(B), the span of the set B, and
suppose r = a;, ...d;,. Assume further that the monomials of degree k that
precede r as (k,t)-words, also belong to ¢(B). (Why this assumption does not
lead to a loss of generality?)

The inequality k& < (¢, u, d) would yield the theorem. If & > 3(¢, u, d) then
r must satisfy either (1) or (2) from the last Corollary.

a) If (1) holds then r has as a subword r§ = (aj, ...a;,)"*, r = r'r§r”. Thus
ré =" ard, and we continue by induction on the degree.

b) If (2) holds then r = r'ri... rqgr” is a decomposition. Consider the
identity fl#ay ...y 8g) = @10 B+ Foss GeBipfr) - -~ o) 0 A, and writery ... ry
as a sum of monomials that are less than ry...ry, and the same for r; the

monomials for r are less than r as (k,¢)-words.

Remark 2.33. The last theorem provides an answer to the famous problem
due to Kurosh in the case of PI algebras. This problem asks whether the alge-
braic algebras that are finitely generated are of finite dimension; the answer in
general is negative. One can find this negative solution to Kurosh’s problem due

to E. Golod and I. Shafarevich in various books; we recommend [15], Chapter
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We would like to mention that Shirshov’s theorem can also be used in the

case of non-associative algebras, see [48] for such applications.

3. Polynomial identities and Young diagrams

In this section we introduce the principal “machinery” in the combinatorial

approach to the study of polynomial identities satisfied by a given algebra.

Definition 3.1. The polynomial f € K(X) is called uniform if all monomials

of [ contain the same variables, possibly with different degrees.

Obviously every polynomial f € K(X) can be represented as f = fi+---+ f;
where fi,..., f; are uniform polynomials and such that for every j # k there
exists x; participating in all monomials of f; but in none of the monomials of
fx (or vice versa). The polynomials fi,..., f; are the uniform components of f.

The next assertions (and their proofs) can be found in any text on PI alge-

bras, see, for example, [33], Chapter 20.

Lemma 3.2. If I oy K(X) and 0 # [ € I then the uniform components of
[ also belong to I. In other words, if f is an identily in an algebra A then its

uniform components are, too.

Theorem 3.3. Suppose that [ «r K(X), 0#£ f € K(X), and deg f = n. Then
there exists a multilinear polynomial g # 0, degg < n with g € 1.

Proof: (Hint) Let f = f(z1,...,2,) and suppose k = max(deg, f | 1 <i < m).
Denote as [ the number of variables x; such that deg; f = k. Here we write deg;
for the degree of f in ;. In order to complete the proof induct on the pairs

(k,1) ordered lexicographically. If deg,, / = k consider

h=f(z1,. . s Tme1 Tt Tmg1)— f(T15 - o Tty @)= S (21, oy Tty Ting1) € 1,
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and repeat the above procedure until the polynomial g obtained becomes mul-

tilinear.

Corollary 3.4. If A satisfies a PI of degree n then it also satisfies multilinear

one of degree < n.

Remark 3.5. In fact, the last theorem proves more than “promised”. Namely
it shows that the polynomial g belongs to the T-ideal generated by f, and the

same in the corollary.

Lemma 3.6. Suppose that |K| = oo and that [<x K(X). If f= fi+...+fr €1
where fi,..., [y are multihomogeneos and of pairwise distinct multidegrees then

fi, ..., [y all belong to I.

Proof: (Hint) Observe that f(z1,...,a¢x,...,2,) = j i f](ll, sl
., %), and choose pairwise distinct scalars a1,...,a; in K. Then show that
the system with variables f;(z1,...,2i,...,2,) just obtained has at least one

solution since its determinant is the Vandermonde determinant.

Theorem 3.7. a) If |K| = oo then every T—ideal I <7 K(X) is generated by
multihomogeneous polynomials.
b) If char K = 0 then every T—-ideal I <y K(X) is generated by multilinear

polynomials.

Proof: b) Consider the multihomogeneous generators of I, and then repeat
the procedure explained in the previous theorem, in order to obtain a multi-
linear polynomial starting from some multihomogeneous polynomial. Then it
is easy to show that the multihomogeneous polynomial can be obtained by the

multilinear one, too.

Definition 3.8. The first procedure of the proof above is called linearization.

The last theorem shows that when char K' = 0, without loss of generality
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one can restrict the consideration of the identities to the multilinear ones only.

Now consider the vector space P, of all multilinear polynomialsin xy, ..., z,.
This space has the natural structure of S,-module defined by o(z;, ... x;,) =
To(i) - Tolin)s O € Spy Ty -2, € Py All modules we consider will be left
modules. In other words, the elements of .S, act as non-singular linear transfor-
mations on P,. The reader that is not familiar with the theory of representations
of groups could find the necessary information in any book concerning it. We
suggest [5] as one of the most complete on this subject. If the reader decides
that this book is quite encyclopaedic (it is indeed) we suggest [15] for the basics

of this theory.

The group algebra K'G' of the group G has a basis consisting of the elements
of (5 the multiplication between the elements of the basis is defined as in G. A
routine check shows that K'G is an associative algebra. Every G-module (i.e.,
vector space where the elements of GG act as non-singular linear operators) is a
K G-module (i.e., vector space where the elements of K'G act as operators), and
vice versa. The G-module V is irreducible if it has only two submodules—0 and
V; V is semisimple if it is a direct sum of irreducible submodules; equivalently, if
every submodule has a direct sum complement. Maschke’s theorem states that
if G is a finite group and if K is a field such that char K does not divide |G|
then the G-module K is semisimple. Obviously, submodules and quotients of
semisimple modules are semisimple, too. Furthermore it is well-known that in
this case every irreducible G-module V of finite dimension over K is isomorphic

to a submodule of KG (that is, V' is isomorphic to some minimal left ideal of

K@, see [5].)
Lemma 3.9. The S,-modules KS, and P, are isomorphic.

Proof: The map ¢: KS, — P, defined by ¢(0) = 2,1 . .. Zs(n), is the isomor-
phism we are looking for.
From now on, till the end of Section 4, we fix the field K of characteristic

0. In this case the description of the irreducible S,—modules can be based on
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partitions and Young diagrams.

Definition 3.10. Let n € N. A partition A of n, A b n, is the sequence A =
(A1, Ak) of non-negative integers with Ay > ... > Mg and Ay + -+ + M\, = n.

The set [A] = {(z,7) | t,7 € N,i < k,j < AN} is called the Young diagram
corresponding to A. The elements (1, j) are the squares (or the cells) of [N]. The
graphic presentation of [A] in case X\ = (6,4,2,2,2,1) = (6,4,2%,1) b 17 is the
Jollowing (figure denoted by A):

[ ] 3[15]17]11]14] 10]
12] 6 13|16
= D=511
509
T2
L 1]
(1) |7(ri+1)
7(2) |m(r+2)| ... | 7(n)
D(A),=
T(ri+rs)
(1)
The diagram [)] filled in some way with the numbers 1, ..., n, is called a

A=Young tableau D; see above, the figure denoted by D.

Let us recall that the algebra A is semisimple if it is semisimple considered
as a left A—-module. This means that for every left ideal L in A there exists
another left ideal C such that I & C = A. Since K5, is semisimple we obtain
that P, is semisimple as S,—module.

Now let A F n be a partition of n, and denote D = [A] the corresponding
Young tableau. We define an action of S, on the set of the A-tableaux D
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as follows. If the entries of D = [A] are d;; (i.e., di; is in the (7, 7)-th cell
of D), and o € S, then o(D) is the A-tableau having entries o(d;;) in its
(7,7)-th cells. Further, denote as R(D) = {o € S, | o(dij) = dijs} and as
C(D) = {o € S5, | o(dij) = dir;} the subgroups of S, that preserve the sets of
the elements on the rows, respectively on the columns of D. In other words the
permutations of R(D) preserve the first index of d;;, and those of C'(D) preserve

the second index of d;;.

Theorem 3.11. Let A F n and let Dy be a Young tableau corresponding to
AX. Define ¢(D)) = Y(—1) o1 € KS, where the sum is over all ¢ € R(D,)
and 7 € C(D),). Then ¢(D)) is a scalar mulliple of an idempotent in KS,,
e(D))? = ae(D,), a € K. Furthermore:

a) KS,.e(Dy) = M(D,) is a minimal left ideal in KS,. That is, ¢(D))
generates an irreducible S,—submodule M (D)) of KS,.

b) The modules M(Dy) and M(D),) are isomorphic if and only if X = p.

¢) If X = p the isomorphisms p: M(D)) — M (D)) are defined by p(e(D))) =
ko~le(D}) where 0 # k € K, and o(dij) = d’; for all i and j.

d) If M is an irreducible submodule of KS, then M can be generated by an
element of the form ey = S k(D\)op'e(Dy), k(D) € K, ap € S,, and the sum

runs over all A\—tableauz D).

This theorem is one of the basic facts in the theory of representations of \S,.
The reader could find a proof of the theorem in [5], § 28. Using the isomorphism

p: KS, — P, we obtain the next corollary.

Corollary 3.12. Every irreducible S, —submodule in P, is generated by a
polynomial of the form f = k(Dy\)p(op'e(Dy)).

Remark Let [ = f(z1,...,2,) € K(X) be homogeneous, deg; f/ = m;. Then,
by means of linearizations we can obtain, starting from f, a multilinear poly-

nomial denoted by lin f. It is easy to verify (Verify!) that the polynomials
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J/ and lin f generate the same T-ideal in K(X). Such polynomials are called
equivalent (as identities). Hence every T—ideal I ar K(X) is generated by its
multilinear polynomials. In other words, [ is generated as T—ideal by the union
Unso(I N P,). We denote P,(I) =1, =1N P,.

This remark justifies our attention to the multilinear identities.

Denote as K,,(X) the free K-algebra freely generated by the finite set
X, = {x1,...,2n}, and denote as AL’LL) the subspace of K,,(X) spanned by
all homogeneous polynomials of degree n. The general linear group G'L,, of
order m acts in a natural way on A{() (note that this vector space has a basis
T1,...,%y). Therefore A" is a left G'L,,~module with respect to the action of
GL,, defined as g(3; kiwiy, ... 2:,) = S kig(xs,)...g(xi,), ki € K, g € GLy,.
Using the decomposition K, (X) = ©,50A one defines an action of G'L,, over
K (X). If N is some G'L,—submodule of K, (X) then N = @p5o(N N Afg)).

Let A = (M1,...,A\) I n be a partition of n, and suppose that the diagram
[A] has ¢t = Ay columns of respective lengths rq,...,r;. If 7 € S, is a permutation
we fill the columns of [A] with the numbers 7(1), ..., 7(n) starting with the
first column, from top to bottom, after that we fill the second column, etc. See,
for example D()),, the Young tableau obtained, at the last figure in Definition
3.10.

We define the polynomial f(x1,..., %) as

Z(—l)al was (L)% oo B (i) s Bog()e s Bos(a) oo olas(@) s o
where z,, (1) is at the 7(1)-st position, x,,(z) is at the 7(2)-nd position, ...,
Tgy(ry) at the 7(ry)~th position, ..., z,,q) at the 7(r1+...4r;_y +1)-st position,
...y and Z,,(;,y stands at the 7(ry 4 ... + r;)-th position. Here ; € Sy, i =1,
ot = A0

For example, when 7 = 1 (the identical permutation) one obtains that

fr =50 (@1, @) Se (21, ooy @y ) o S (T, -y @)

It is known that the finite dimensional G'L,,~submodules in K, (X) are semisim-
ple. The irreducible submodules in K, (X) can be described by Young tableaux

having at most m rows.
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Theorem 3.14. (Weyl). [13] If X = (M,...,\) b n is a partition of n,
r < m, then the polynomial [, generates an irreducible GL,,—submodule N in
AW denoted by Ny, (N). Furthermore:

a) Given a permutation p € S,, the mapping f; — af, where 0 # a € K,
defines an isomorphism (K.G'Ly,) f; = (K.GLy)f,. The submodules in A that
are isomorphic to N, (X) are generated by polynomials of the form f =3 a, f;,
TES,.

b) If n < m then the irreducible GL,,-submodules in A can be generated

by their mullilinear elements.

Corollary 3.15. Suppose that N = N,,,(\) C A Then the G L,,~module N
is generated by a polynomial

t
f:(HS’,«i(:cl,...Jn))Zada, c €S, a,€K,
=1
where r1,...,r: are the lengths of the columns of [A], and the (right) action

of the group S, on AW is defined via the rule (z;, ...x;,)o™" = z;,

.5

() " a(n)?

The irreducible representations of S, and of GL,, can be described by means
of partitions and Young diagrams. Hence there should exist some connection
between these representations; and the same in the case of T—ideals. Let I be
a T-ideal in K(X). If X = {&1,2,,...} is the set of the free generators of
K(X) then K, (X) C K(X). We have already observed that [, = I N P, is
a (semisimple) S,—submodule of P,. Analogously the GL,,—module I N Agg) is
semisimple.

Let A F n be a partition of n and let 7 € S,,. Then D()); is the respective A-
tableau; M, () is the S,~module that corresponds to D()),; it is generated by
the polynomial e, = e,(z1,...,2,) € P,. We construct a polynomial f € A
starting from e, by means of “symmetrization” (this is the opposite process
to the linearization). In other words, we substitute the variables in e, whose

indices belong to the i—th row of [A], by =; for all 7. The polynomial obtained



160 P. KOSHLUKOV

in this way is a scalar multiple of the polynomial f, that generates the G'L,,—
module N,,(1) in A®. On the other hand, since N,,()) is irreducible, every
non-zero element of N,,()) generates the module.

Hence M,(A) € N, (A). If m < n then the multilinear polynomials in
N, (A) form an S,—submodule of P, which is irreducible. Now let us gather
these observations (cf. [2], [7]).

Theorem 3.16. If m < n then the S,—module I N P, and the GL,,—-module
INAY have the same module structure: if INP, = Y axM,(\) then [N A =
Y axNn(X) where ay stand for the multiplicities of the corresponding irreducible

modules.
23]
Example 3.17. IfA=1(21)F3and D =[] = i then 7 =
)1 ) — (12), R(D) = {1,(23)} and (D) = {1,(12)}. Thus ¢(D) =

1 —(12) 4 (23) — (132) and the generator of M3(D) is f(x1, z, x3) = 12923 —
TyT1 T3 + 212379 — T3z, The polynomial g(z,y) = ya? — zyx + ya? — zyx =
2(yx? — zyz) generates the module Ny(D). Obviously the polynomial g is much
simpler than f. It is often convenient to work with the generators of the GL,,—

modules instead of the respective multilinear polynomials.

Remark 3.18. Let A be an algebra, dim A =t and let I be the T-ideal of
A. Then I N P, contains all modules M,(X), A = (A1,...,A;) such that k& > ¢.

In particular A satisfies the identity siy1(@1,. .., T441).

Example 3.19. 1If A is a PI algebra and if |K| = oo then A satisfies some
homogeneous polynomial identity f(z1,...,2p), deg; [ = n;, i = 1, ..., m.
We denote ¢ = f(z11 4+ ...+ Tingse oy Tm1 + «.. + Tmn,,) hence g is also an
identity in A. The component h = lin f of g that is linear in zyq,..., 214, ...

b

Tmly« -y Tmny, 1s an identity in A, too. It is called the complete linearization of
f.

On the other hand, the polynomial obtained by ~A by means of the consec-
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utive substitutions z1; = ... = T4, = T1, oo, Tp = o0 = Tip,, = T, 18
a scalar multiple of f. More precisely, it equals nq!...ny!f(z1,...,2,). For
example, if [ = 2" then g = (z1 + ...+ 2,)" and lin f = sym(zq,...,2,) =
Yoves, To(1) - - - To(n)- Lhe symmetrization of lin f is nla™. But a warning: When
char K = p > 0 and p < n we have n! = 0 in K. This points out one of the
difficulties in the case when char K > 0.

4. T-ideals related to matrix algebras

In this section we shall consider some of the most important applications of the
theory introduced in the previous section. Till the end of the section we fix the
field K of characteristic 0.

Let A = (A1,...,Ax) F n be a partition, and let D = [A] be a Young tableau

filled with the permutation {n;;} of {1,...,n}, the number n;; being situated
at the (7, 7)-th cell of D.

Definition 4.1. The tableauw D is called standard if ni; < n,, for all 1 < p and
7 < q. In other words, the entries of D increase along the rows from left to

right, and along the columns from top to bottom.

Example 4.2. If A = (3,1,1) F 5, the number of the standard tableaux is 6,
as an easy calculation shows.

Consider the partition A = (Aq,...,A;) F n; the number h;; of the cells
below the (i, 7)-th (and on the same j-th column) and on the right of (z, j)-th
(and on the same i—th row), including (%, j) is called the hook number of (z, 7).

In the example above hyy = 5, his =2, bz = 1, hyy = 2 and hz; = 1.

Theorem 4.3 (Hook formula). [23] Let A = n be a partition and let M, ()\)
be an irreducible S,-submodule in P,. Then the dimension of M,()) equals
dim M,,(A) = n!/(IL; ; hij) and it is equal to the number of the standard tableauzx
[A] filled with the numbers {1,...,n}.
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Lemma 4.4. Let [ a7 K(X) be a T-ideal, and let X = (Ay,..., ;) F n be a
fized partition of n. If for all tableaux D corresponding to the partition X, the
irreducible modules M, (D) lie in the intersection INP, = I, then the polynomial
Se (@1, oy @) S (@, .o xy,) belongs to I where t = Xy and rq,...,r¢ are

the lengths of the respective columns of A.

Proof: Use the procedure of symmetrization.

And now it comes the turn of an important and interesting result due to
A. Regev ([38]). Again we follow the exposition of this result given in [40], pp.
246-248.

Corollary 4.5. Let [ ar K(X) be a T—ideal and let ¢,(I) = dim(P,/I N P,)
be the n—th codimension of I. If X = (M,...,A\¢) b n is a partition such that
dim M,,(X) > ¢, (I) then the intersection I N P, = I,, contains all S,-modules
that are isomorphic to M,()).

Proof: If D = [A\] and M,(D) € I N P, then M,(D)N (I N P,) = 0 since
M, (D) is irreducible. Therefore dim P, = n! > dim M, (D) + dim({ N P,) and
en(I) + dim(I N P,) = n! that is, ¢,(1) > dim M, (D) which contradicts to the

inequality of the corollary.

Proposition 4.6. Suppose that n = mk and that A = (m,...,m) F n is the
“rectangular” partition k xm. Let [ ap K(X) be a T—ideal such that ¢,(I) < o™
where mk > 2e.a(m+k)/2, e & 2,7172. .. is the base of the natural logarithms.
Then dim M, (X) > ¢, (1).

Proof: Denote as h;; the hook numbers of A\. Then, using the AM—GM
inequality one obtains that
1/n dL . .
(Hhij) £ (Zhij)/n:ZZ(z—l—]—l)/n:(k+m)/2.
0] 0j

=1 j3=1

Since n(logn—1)+1= [*logz dr < 37_, log p = log(n!) we have the inequality
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(mk)™ < nle™. On the other hand, o < (mk/e)(2/(m + k)) < (n'/ L hij)l/n,
and therefore dim M,,(X) > o™ > ¢,(1).

Theorem 4.7 (Regev). (sce [38]) Let A be a PI algebra and let d stand for
the degree of some multilinear identily satisfied by A. If m and k are positive
integers such that mk/(m + k) > (d — 1)%.e/2 then the algebra A satisfies the
identity (Sk(zy,...,25))"™.

Proof: The polynomial (Sg(z1,...,25))™ generates the G'Ly—module Ng(\)
where A = (m,...,m) F mk. We have already proved (Regev’s theorem about
the tensor product in Section 2) that ¢,(/) < (d —1)**. Then a = (d —1)* in

the last proposition implies the theorem.

Remark 4.8. The fact that every PI algebra A satisfies a power of the standard
identity was first established by S. Amitsur, see for example [40], Theorem
1.6.46.

Definition 4.9. Suppose that [ and g € K(X). The polynomial g is called
a consequence of f (or the identily f implies the identity g, or the identity g
Jollows from the identity f) if g € (f)T where (f)T is the T-ideal generated by
f. In other words, g is a consequence of f if in every algebra A where [ is
identity, g also is.

The polynomials f and g are equivalent as identities if [ € {g)T and g €
ks

Example 4.10. 1. If f is homogeneous and if |K| = oo then lin f € (f)T; f
and lin f are equivalent when char K" = 0.

2. If m > n then s, € (s,)T.

Definition 4.11. The T-ideal I ar K(X) is called finitely based (abbreviated
as f.b.) if I is generated as a T-ideal by some finite collection of polynomials
Fiseoos i I = {f1,..., Ja)T. This means that the elements of I are conse-
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quences of a finite set of polynomials in I.

One of the most interesting and most difficult problems in the theory of
algebras with polynomial identities is the famous Specht problem: whether
every T-ideal is finitely based when char K = 0. The problem was resolved
positively by A. Kemer [24].

The solution to the Specht problem is very complicated; it depends heavily
on a classification of the prime T—ideals as ideals of identities satisfied by certain
known algebras (these are related to the matrix algebras and the Grassman

algebra).

Definition 4.12.  The T-ideal I ar K(X) is called spechtian if it is finitely
based and every T-ideal J, I C J, is finitely based, too. The algebra A is called
spechtian if T(A) is spechtian, and the variety var A is spechtian if the T-ideal
T(A) of A is.

Exercise. If  ap K(X) is £.b. prove that [ is spechtian if and only if every
strictly ascending chain of T—ideals I = I} C I, C ... is finite.

We cannot offer some general methods for establishing whether certain set
of polynomials generates a fixed T—ideal, or whether some T-ideal is spechtian.
One of the frequently used tools is that of the partially well ordered (in short,
PWO) sets.

Definition 4.13. The set Q equipped with the partial order < is called partially
well ordered if for every subset R C Q) there exists a finite subset Ry C R such
that for each r € R, ro < r holds for some ro € Ry.

Lemma 4.14. The following conditions are equivalent:
(1) (@, <) is a PWO set.
(2) Every infinite sequence {q1,qa,...} C @ has an infinite increasing sub-

Sequence.
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(3) Every infinite sequence {q1,qa, ...} C @ conlains two elements q; and g;
such that i < j and ¢; < q;.
(4) There exist neither infinite strictly descending sequences of elements of

Q@ nor infinite subsets of Q) consisting of patrwise incomparable elements.

Proof: It is similar to the elementary but important fact known from the
courses in Calculus that every infinite sequence of real numbers contains an
infinite and monotone subsequence. The reader can look at [16], Theorem 2.1,

for the proof and further facts.

Lemma 4.15. a) If (Q, <) is PWO then every subset R C Q of Q also is
PWO (with respect to the same order as in Q).

b) Let (Q1,<1) and (Q2,<3) be two PWO sels. Define a partial order in the
direct product Q@ = Q1 X Qo of Q1 and Q4 as follows. Set (q1,¢2) < (¢}, ¢) if
@ <1 g and g <5 G5, @1, G, € Q1, @2, @5 € Qa. Then (Q,<) is PWO.

Definition 4.16. If (Q,<) is a partially ordered set we define a partial
order in the set V(Q) of all finite sequences of elements of Q as (¢1,...,qx) <
(t1,--oytm), @, t; € Q, if k < m and if there exists a map p: N — N that is
strictly increasing, and g¢; <typ, 1=1, ..., k.

In other words (qi, ..., q;) < (t1,...,ty) if the sequence (qu, - .., qx) is bounded

(term by term) by some subsequence of (t1,...,tm).
Theorem 4.17 (Higman). [16] If the set Q) is PWO then V(Q) also is.

Proof: The proof is quite elementary i.e., it does not involve complicated and
sophisticated facts but it is rather difficult and tricky as it sometimes happens

with assertion that seem evident. ..

Corollary 4.18. Let Y = {y1,...,ym} be a finite alphabet considered with
the trivial order on it i.e., y; and y; are incomparable when i # j. Then the sel

V(Y) of all words in'Y is PWO considered with respect to the order defined on
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V(Y) as in Higman’s theorem. This means that if py, ps, ..., is a sequence of
words then there must exist © < j such that p; is obtained by p; after removing

some of the letters in p;.

Proof: Note that since the set Y is finite it is PWO with respect to the trivial
order. The assertion follows easily from Higman’s theorem. It should be noted
that there exist direct proofs of this corollary (i.e., proofs that do not depend

on Higman’s theorem). We suggest that the reader try and find one.

Definition 4.19. The sequence t = (i1,...,1x) is of lype L if one can cul it in
t consecutive parts, each of them ascending, and t is the least possible positive

integer with this property.

For example, (173452698) = (17)(345)(269)(8) is of type 4.

Now let us consider the sequences s of type ¢ with entries from the set
{1,...,k}. The matrix presentation of s is the following. Suppose s = s() ... s()
where 5() are the consecutive increasing subsequences. We define the matrix

A(s) = (a;;) that corresponds to s as the ¢ x k matrix with entries 0 and 1:

')

Definition 4.21. Denote by R,; the set of permutations o € S, such that the

a;; =1 if j belongs to @ and a;; = 0 otherwise.

Example 4.20. If s = (152346) = (15)(2346) then A(s) = ((1) o

sequence (o(1),...,0(n)) is of type t, and by Ry the union Ry = Upsi Ry

Lemma 4.22. Suppose that o, 7 € Ry:. If 0 # 7 then the matrices A(o) and

A(1) corresponding to o and T respectively, are different.

Definition 4.23. If S = Up>15, then we define a partial order < on S
as follows. Suppose that o; € Sy, 0; € S,,. Then o; < o; if there ex-
ists an increasing 1-1 function @:{1,...,n;} — {1,...,n;} such that the se-

quence (p(oi(1)),...,¢(0i(n;))) is a subsequence of (o;(1),...,0i(n;)). This
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means that 0;(1)...0;(n;) = pre(oi(1))pa(0i(2)) . . . pryp(0i(n:))prit1 for suit-

able words py,...,pp;+1-

Theorem 4.24. The set R, C S is PWO with respect to the order on S defined

above.

Proof: We apply Higman’s theorem for the matrix presentations of the ele-
ments of R;. The columns of the corresponding matrices are vectors of the type
(e1,...,¢1) where &, = 0 or 1. The set E of all such vectors is finite and it
has 2! elements. Hence E with the trivial order is PWO. Then the corollary of
Higman’s theorem yields that the set V(E) with respect to the order induced
by the trivial order on E is PWO. The preceding lemma completes the proof
since o < 7 if and only if A(o) < A(7). (Verify the last statement!)

The first non-trivial example of a spechtian T—ideal that we are going to con-
sider, is the T-ideal L generated by the polynomial [, = [x1, x2][23, 4] . . . [T20-1,
Ta,] where [z,y] = xy — yx is the usual commutator of x and y. The proofs
of the statements that follow depend on the combinatorics on PWO sets, and

especially on the fact that R; is PWO.

Lemma 4.25. The algebra T, (K) of the upper triangular matrices of order n

satisfies the identity [,.

Definition 4.26. Let [ be a multilinear polynomial and let J = ()T be the
T-ideal generated by f. If I is a T-ideal such that J C [ and if g € I N Py
is multilinear of degree k we denote by L,(g,1,k) the set of all polynomials
h € IN Py such that m(h) < m(g) and m(h) is of type < n. Here we denote
as m(h) the monomial of h having the largest order with respect to the usual
lexicographical order. We also identify the type of the monomial T,y ... %ok

with the type of the permutation (o(1),...,0(k)).

Then the polynomial f is called an n-polynomial if for every T-ideal I, J C I,
every k and g € I N I}, the inclusion g € J N Py + L,(g,1,k) holds.
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Lemma 4.27. The polynomial l,, is a 2n-polynomial.

Proof: See [31], or [40], pp. 250-252.

Theorem 4.28. (Latyshev). ([31]) If the T—ideal I < K(X) contains some
2n-polynomial then [ is finitely based.

Corollary 4.29. The T-ideal {[x1,x5)[T3,74] ... [Ton_1,22.])T is spechtian.
Proof: The generator of this T—ideal is the 2n—polynomial /,,.

Remark 4.30. The last assertion is some rather particular case of Kemer’s
theorem already mentioned. On the other hand it is worth mentioning that
Kemer’s theorem does not find bases of the identities in some fixed algebra. For
example, the identities satisfied by the matrix algebras M, (K') over a field K of
characteristic 0, are f.b. A basis of these identities is known only in the “second

simplest” case n = 2 (n = 1 being trivial).

In 1973 Yu. P. Razmyslov obtained that the T-ideal T'(M5(K)) can be gen-
erated by nine identities when char K = 0, and in 1974 he established the
validity of the Specht property for this T—ideal. The proofs of these statements

are rather complicated. The reader could look for the complete version in [36].

In 1981 V. Drensky proved that the polynomials which we have already net
in Sections 1 and 2, [[zy, 22)?, x3] and s4(z1, 72,3, 24) form a basis of the T-
ideal T'(M3(K)) when char K" = 0, and that these polynomials are independent
as identities. This means that neither the first follows from the second nor the

second is a consequence of the first, see [8].
Exercise. Prove that the last two polynomials are identities in My(K').

Definition 4.31. If gi,...,9, € K(X) we define the (long) commutators by
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induction:
(91, 92] = 9192 — 9291, (91,92, 93] = [[91, 92], 93],

[gla w3 E 7gn—1agn] = [[glv o 7gn—1]agn]7 n 2 3.
Denote as B(X) the subalgebra of K(X) generated by all commutators in the

set X. The elements of B(X) are called commutator (or proper) polynomials.

Example 4.32. The polynomial [z, z1, 1] is proper; the polynomial [x123, 23]

is not.
Remark 4.33. Let A be an algebra and let ay, ..., a, € A. If for some ¢
the element a; is central (i.e., belongs to the centre of A) then [ay,...,a,] = 0.

This observation leads to the following criterion. Let f(y,...,x,) € K(X) be
a polynomial, then f € B(X) if and only if f/dz; = 0 for every i =1, ...,
n. Here 0/0x; stands for the usual partial derivation; in the non-commutative
case it is defined as Ox;/0x; = 0if i # j and 1 if 7 = 7, if w is a monomial,
w = wv then d(uv)/dz; = (Ju/0x;)v + u(dv/dz;), and then it is extended by
linearity to all polynomials. (Prove that the above definition is correct i.e., it
does not depend on the representation w = uv!)

The “only if” part is evident, we suggest that the reader try and prove the
“if” part of the criterion. Some hint for this can be found in the proof of the

next theorem.

Theorem 4.34. (W. Specht). Suppose that K is an infinite field and that
A is a K-algebra with unit element 1 € A. Then the T—ideal I = T(A) of A is

generated as a T-ideal by its proper polynomials. In other words, I is generated

by the set I N B(X).

Proof: The free Lie algebra L(X) freely generated by the set X over K, has

as its universal enveloping algebra the free associative algebra K(X). Then the

well-known Poincaré-Birkhoff-Witt theorem yields that there exists a basis of
31

the vector space K (X) that consists of the polynomials 27" ... 271! ... vl where

p, q, r; and ¢; are non-negative integers, and the polynomials {v;} together with
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T1, T, ... form a basis of L(X). Note that one can choose all v; as commutators
and that the products v{' v;q form a basis of B(X).

If f(x1,...,3,) € I is homogeneous then f = Y 27" ...20 fi(21,...,%0)
where the sum is over all n-tuples r = (ry,...,7,), [, € B(X), and all polyno-
mials are homogeneous. Suppose that o € K and that aq, ..., a, € A; we apply
the last remark, and thus obtain that f.(a; + a.1,a9,...,a,) = fr(ar,...,an).
Therefore f(a1 + a.l,az,...,a,) = >, (a1 + a.1) ay? ... al fr(a1,...,a,). Now
we choose the largest r; such that f.(ai,...,a,) # 0; using the properties of
Vandermonde determinant we obtain that - a3 ...a’" f.(a1,...,a,) = 0. Hence

we can complete the proof by induction.

Corollary 4.35. [fchar K = 0 then every T-ideal I «r K(X) is generated by

its proper multilinear polynomials.

Definition 4.36.  Denote as M the variely var My(K) where char K = 0;
as F(M) = K(X)/T(M) the relatively free algebra in this variety, and as
Q. = P,NB/(P,NBNT(M)) the S,-module consisting of all proper multilinear
polynomials of degree n in F(M).

Lemma 4.37. a) The S,-module @, is semisimple.

b) The irreducible submodules in Q,, correspond to Young diagrams with at

most 3 rows.

Proof: The first statement holds since P, is semisimple. Now we prove the
second. Let g(z1,...,2,) be a proper multilinear polynomial which generates
an irreducible S,-module isomorphic to M, (A), A = (Aq,...,Ap). If Ay # 0
then the symmetrization of g is f(x1,...,25) = Y es, Qo fo(21,. .., 1) where f,
generate irreducible G Lp—modules. The linearization lin f, of f, is a multilinear

polynomial that is skew-symmetric in some k variables, say in z;,, ..., z;,.

Now in order to verify whether g(z1,...,2,) is an identity in My(K) it

is sufficient to substitute the variables x,...,z, only for the matrices e;5 =
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0 1 00 1 0 ; ;
( 00 ), €9 = ( 10 ), €11 — €99 = ( 0 —1 ) since these matrices together

10
01
central, i.e., it makes g vanish. Hence, if & > 4 then g, = 0 on ey, €91, €11 — €39,

and g € T(M).

with e = e + €22 = form a basis of My(K), and the last matrix is

Corollary 4.38. [f0 # f € F(M) then f is equivalent as an identity to some

finite set of polynomials in < 3 variables.

Theorem 4.39. ([7]) The S,-module Q,, n > 1, is a direct sum of irreducible
submodules that are pairwise non-isomorphic, and that correspond to the par-
titions A = (p+q+r,p+qp)Fnwithp+q#0, and if ¢ =r = 0, with
p>1.

Proof: We shall need the following assertion. If f(zq,22,23) € K(X) is homo-
geneous of degree d; in z; and if d; =¢; (mod 2), ¢; =0 or 1 then
flen—ea, eratean, era—ea) = eler —eaz) ™ (e12+€21)? (€12 —€21), c € K.
This assertion can be proved by induction on d; 4+ dy + d3 starting with the
monomials in K(X).

Now it is sufficient to consider only the polynomials in 3 variables. Denote
as K'[&;j,mij, Cij] the ring of the commutative polynomials in &;, 05, CGij, %, J = 1,
2, and as {2 the algebraic closure of the field of fractions of this ring. The poly-
nomial k(21,22 23) € K3(X) is an identity in My(K) if and only if f(&,n,() =0

for some matrices &, n, ( € M,(Q) whose entries are algebraically independent,
ST ST
§n =€ )’
n = el 3 16 = G o . These matrices are non-singular (in-
21— G1 —Cnn

vertible) and diagonalizable.

and in addition, tr{ = trn = tr{ = 0. Let us choose £ = (

Claim 1. There exists A € M(Q) such that AN = a(ern — eg2), A™'nA =
Bii(err — e2) + Braera + Barea, AT = ~y1(e1n — €22) + y12€12 + Y2121 Where

a, B;; and ~;; are algebraically independent.
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Claim 2. There exists u € My(Q) such that g="(e;; — e22) = €11 — eg2 and
pH(Bizera + Barear)pp = Blerz + e21), and 3 is algebraically independent with

the elements of Claim 1.

Claim 3. If Ay = v then v v = afe1; — e2s), v v = Bi(enr — e2) + Blera +
€21), v v = y1(e1n — €29) + Ya(€12 + €a1) + (€12 — €91) where a, 3, 31, v, 71,

v are algebraically independent.

The proofs of these three claims are left to the reader as exercises in Linear
Algebra.

Now let f(x1,x2,23) = Y, es, ko fo(21, 22, 23) be a generator of N3z(X) C
(K3(X) N B(X)). Then clearly

v (Em, Qv = fo(alen — ex), B(era + €21), y(e12 — €21))

= oY1 flydag(ey; — €22) (€12 + €21) (€12 — €91)%.

This shows that if f, and f, are two polynomials in the decomposition of the
polynomial f above then ¢, f, — ¢, f; is an identity in My(K). This means that
the irreducible and isomorphic modules in P, N B are “glued” together in @,,
and that @, is a direct sum of non-isomorphic irreducible 5,—submodules.

Let f € K3(X) be a polynomial that is not an identity in M,(K). If f
generates the irreducible G'Ls—submodule corresponding to the partition (p +

q+r,p+q,p)tnthendeg, f=p+q+r, deg, f=p+q,deg, f=p.

Claim 4. The polynomials fu (21,22, 23) € B(X) generate irreducible G Lz
modules that correspond to the partitions (p + ¢+ r,p + ¢, p) and these poly-
nomials are not identities in M,(K) where:
a)If¢g=0and r=1 (mod 2),

Joor = 2 (=1)7 2,1y % 02y (ad 21)" (ad x0(3))5§_1 (ad 1, ad 29, ad x3).
b)Ifg>0and r=1 (mod 2),

Jpgr = s2(x1,22)(ad z1)"(ad s3(1, 22))?7 85 (ad 21, ad 22, ad x3).
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c)Ifr=0 (mod?2)and g=1 (mod 2),

Foor =2 (=1)7s9(x1, x2)(ad 21)" (ad :L'G(l))(ad sa(y, 2))?73(ad [s9( 21, T2),

To(2)])sh(ad 21, ad 29, ad 23)

d)Ifg=r=0,p>1 (and n > 3),

Jpoo = 2(—1)72,(1)(s3(ad 21, ad 22, ad 23) )77 20(2)T0(3).
e)Ifr=0 (mod?2),r>0,¢=0,

Joor = X(=1)72,0)(ad 21)" (s3(ad 21, ad 24, ad x3))p_1x0(2)3:0(3).
NHIfg=r=0 (mod?2),q>0,

qur = fp,q—l,r(xla T2, $3)32(3317 xz)-

Here ad y is the linear operator in the vector space K(X) defined as z(ad y) =
[, y].

In order to verify that the polynomials (a), ..., (f), are not identities in
M,(K) one can choose the matrices a = —\/—_1(611 —€22)/2, b = \/—_1(612 +
€21)/2, ¢ = (e12 — €31)/2 € My(K). Using the relations ab = —ba = ¢/2,
be = —cb=a/2, ca = —ac = b/2 it is easy to obtain [a,b,b] = —a, [¢,b,b] = —c,
ass(ada,adb,adc) = —2a. The reader could verify these relations. Hence
Sogr(a,b,¢) £ 0 in My(K), in all cases (a), ..., (f).

Now, in order to complete the proof of the theorem it is sufficient to ob-
serve that only the polynomial s3(2q,22,23) corresponds to (1,1,1) but this

polynomial is not proper (Why?).

Remark 4.40. Using Razmyslov’s theorem as well as the description of the
structure of @), as an S,-module one can easily show that the T-ideal T'(My(K))
is spechtian in case char K = 0. The reader could find the proof in [7], or in

the last section where we provide a hint.

5. Non-associative algebras. Other applications

In this last section we consider Lie and Jordan algebras with identities. It must
be obvious to the reader that it is an impossible task to develop this theory

in one section. Hence we are going to offer a short exposition; we hope that
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nevertheless the interested reader could continue the study, using the references,

too.

Let X = {x1,22,...} be a set and denote as V(X) the set of all non-
associative words in the alphabet X i.e., V(X) consists of all words in X with
all possible dispositions of the brackets. Define a multiplication in the K-
space I'(X) having as a basis the elements (the monomials) of V(X)) as follows:
(X aiws)(3; Bijv;) = Xoi; 0iBi(uiv;). Here o, B; € K, wi;, v; € V(X) and
(wiv;) = (u;)(v;) is the concatenation of the words u; and v; preserving the
dispositions of the brackets in u; and in v;. Then the multiplication in F'(X) is

distributive and a(uv) = (au)v = u(awv), l.u = v where u, v € V(X), a € K.

Definition 5.1. The K-space A equipped with an operation called multiplica-
tion that obeys the laws above is called an algebra (linear, or non-associalive)
over K. The algebra F(X) is called the absolutely free algebra. The elements
of V(X)) are called monomials; those of F'(X) are called polynomials.

Clearly “non-associative” in the last definition should read “not necessarily

associative”—every associative algebra is an algebra according to this definition.

The notions of subalgebra, ideal, homomorphism, etc., are defined naturally,
as in the case of associative algebras. The algebra F(X) is free in the sense
that every K-algebra A can be obtained as a homomorphic image of F(X) for
a suitable set X.

Exercise. If p: X — A is a map prove that there exists a unique homomor-

phism ®: F(X) — A such that ®|y = ¢.

Definition 5.2. [If A is an algebra, the polynomial [ is called a polynomial
identily (as in the associative case, we shall abbreviate it PI) in A if [ € kerg
Jor every homomorphism p: K(X) — A. This means that f(ay,...,a,) =0 for
every a; € A.
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Clearly the set T(A) of all identities in A is an ideal in F(X) that is closed
with respect to the endomorphisms of F(X). It is called the T-ideal of A. As
in the associative case we define the variety var A generated by A, the relatively
free algebra in var A, consequences of an identity, etc.

In the same manner as for associative algebras it can be proved that if
|K| = oo then every polynomial f € F(X) is equivalent as an identity to the
collection of its homogeneous components and if char X' = 0, that f and lin f
are equivalent.

We shall consider two of the most important classes of non-associative alge-
bras, namely Lie and Jordan algebras. These two classes form varieties, as we

shall prove soon.

Definition 5.3. Suppose K is a field of characteristic not 2.

a) Let L be a non-associative algebra with multiplication denoted as [a,b] €
L,a,be L. The algebra L is called Lie algebra if [a,b] = —[b,a] and [[a,b], c] +
[[b,¢c],a]+ [[¢,a],b] = 0 for all a, b, c € L.

b) Let J be a non-associative algebra with multiplication aob € J, a, b € J.
Then J is a Jordan algebra if aob=boa and (¢*ob)oa = a’o (boa) for all
a, beJ.

Remark 5.4. 1. The classes of Lie and Jordan algebras are defined by means
of identities. Hence they are varieties. The free algebras in these varieties are
the free Lie algebra L(X) and the free Jordan algebra J(X).

2. If char K = 2 one substitutes in the definition of Lie algebras, the first
identity for [a,a] = 0. In this case the definition of a Jordan algebra has to be

modified, too. But this is much more complicated, see [22].

Example 5.5. 1. The real vector space R? of dimension 3, with the usual
vector product, is a Lie algebra.
2. The space M, (K) of the matrices n x n is a Lie algebra with respect to

the multiplication [a, b] = ab—ba. The subspace sl,(K) of the traceless matrices
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is a Lie subalgebra of M, (K).

Exercise. If A is an associative algebra prove that the space A~ = A equipped
with the multiplication [a,b] = ab — ba becomes a Lie algebra. It is called the

adjoint Lie algebra of A.

Remark 5.6. It is a consequence of the well-known theorem due to Poincaré,
Birkhoff and Witt that every Lie algebra over a field is a subalgebra of the Lie

algebra A~ for some suitable associative algebra A.

Example 5.7. The space M,(K) with the multiplication aob = (1/2)(ab+ ba)
(we suppose that char K’ # 2) is a Jordan algebra. Its subspace H,(K) of the

symmetric matrices is a Jordan subalgebra of M, (K).

Exercise. Let A be an associative algebra (char K" # 2). Prove that the space
At = A equipped with the multiplication a 0 b = (1/2)(ab + ba) becomes a

Jordan algebra.

Remark 5.8.  The connection between associative and Jordan algebras is
not that close as in the Lie algebra case. The Jordan algebras of type AT
and their subalgebras are called special; otherwise they are exceptional. An
example due to P. Cohn ([3]) shows that there exist special Jordan algebras
having exceptional homomorphic images. That is, the special Jordan algebras

do not form a variety.

Example 5.9. Let char K # 2 and let V be a K-space equipped with a
bilinear and symmetric form ( , ). The multiplication (a + u) o (8 + v) =
(af+ (u,v))+ (av+Pu), o, f € K, u, v €V, defineson G = KV a structure
of Jordan algebra. It is the algebra of the form (, ). The algebra G is special
and if the form is non-degenerate it is simple. If C' is the Clifford algebra of
the space V then G C C*. See for example, [21], or [22], or [48] for the precise
definitions and the basic properties of G and C.
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Remark 5.10. Consider the Lie algebra K(X)~; the subalgebra generated by
X is isomorphic to the free Lie algebra L(X)~. The same construction applied

to K(X)* yields the free special Jordan algebra S.J(X).

Every special Jordan algebra is homomorphic image of SJ(X). If | X| > 3
then there exist homomorphic images of SJ(X) that are exceptional ([3]).

The theory of Lie and Jordan algebras with identities has been developed to
an adequate level. The reader could find information about the “state of art”
in the monographs [1], [22], [36], [48].

We shall restrict our attention to the identities in sly(K) and in G (as in Ex-
ample 5.9) and, for a while, only to the case char K = 0. In 1974, Yu. Razmyslov
(see, for example, [36]) obtained that the identities in sly(K) admit a finite basis

if char K = 0. Furthermore he established the Specht property for them.

Definition 5.11. Denote N' = var sly(K), and let F(N') = L(X)/T(N) be
the free algebra in N .

As in the case of the identities in My(K') we describe the structure of F(N)
(see the previous section). We have already shown that L(X) C K(X). Denote
as L, the intersection L(X) N P,. Clearly L, is an S,-submodule of P,; it is

generated by the multilinear Lie polynomials.

Exercise. Prove that dim L,, = (n—1)! (Hint: First prove that every “compos-
ite” commutator [uy,us,...] where u; are commutators in X can be presented
as a linear combination of commutators [z;,, T4y, ...]. Then {[xy, s, ..., 24,] |
{i2,...,in} ={2,...,n}} form a basis of L,.)

Lemma5.12. [fQ; = L,/(L,NT(N)) then the S,-module Q; is semisimple.
The irreducible submodules in Q% correspond to Young diagrams having 2 or 3

rows.

Proof: The proof is the same as in the case @),, see the previous section. The
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polynomial 2™ does not belong to B(X), and hence A = (n) can participate

neither in the decomposition of @, nor of Q7.

Corollary 5.13. If0 # f € F(N) then f is equivalent to a finite set of

polynomials in < 3 variables.

Theorem 5.14. ([7]) If n > 1 then the S,-module QF can be decomposed as
a direct sum of irreducible non-isomorphic submodules that correspond to the
partitions A\ = (p+q+r,p+q,p)Fn withp+q>0, andg=1 (mod 2), or

r=1 (mod 2).

Proof: The proof is a “subset” of that in the case M,(K) and @,. The only
fact that has to be mentioned is that when ¢ =1 (mod 2) orr =1 (mod 2)

the polynomial f,, belongs to L,.

Remark 5.15. The theorems describing the structure of @), and of @)} show
that there cannot exist infinite strictly descending chains of subvarieties of M

and in N, see the next exercise.

Exercise. Let 0 # fy,.(x1,72,23) € F(N) be a standard generator of the
irreducible G L;—module corresponding to A = (p+q+r,p+ q,p) F n.

a) Prove that I/(x1,22,23) = [pgr(w1, T2, x3)(s3(ad 1, ad x5, ad :133))2 # 0 in
F(N), and that /' is equivalent as an identity to fy42,,. In other words, the
identity fpqr implies fp42,4,- in F(N).

b) Prove that A" (x1, 22, 23) = [per(®1, T2, 23) Y2(—1)7(=1)"(ad 2,(1))(ad 2,(1))
(ad 25(2))(ad 27(2)) # 0 in F(N) and it is equivalent to f, 442,

c) Let hq, hy, hs be the linear in uy, uy, uz components of the polynomials
Jpar (@1 4+ w22, 23), fogr(@1, T2 4 vg, 23), [per(21, 22, T3 + u3), respectively, and
set h(xy, T2, T3, U1, Uz, uz) = hy + hy + hs.

Prove that A"(zy, 29, s3) = h(zy, 2, w3, —[21, 21, T1], —[22, T1, 1],
—[x3,21,21]) # 0 in F(N) and it is equivalent to f, ;1.

d) If g1, g2y--- € F(N), g ¢ (T(N),g1,---,9i-1)T, 1 =1, 2, ... generate
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irreducible GLs-modules use Higman’s theorem and a), b), c), of this exercise

in order to obtain a contradiction to the existence of such a chain.

It is worth mentioning that in [18] it was proved that when L is a Lie algebra
of finite dimension over K, char K = 0, then the T—ideal of L is spechtian. The
methods used in this paper are similar to those of [24] in the case of associative
algebras.

The structure of the identities satisfied by the Jordan algebra G is similar
to that of the identities in My(K). We are going to discuss only the most
important points in its description without proofs (these are technically rather
complicated, and they require theories outside the scope of the course). The
reader could look at the papers cited in the references.

In [44] it was obtained that the T-ideal of G is generated by one identity,
and when dimV = k < oo we have to add one more identity. In [9] a description
of the relatively free algebra F(var G) in var G as a G'L,,—module was provided.
As we already mentioned the algebra GG is special. Using this it can be proved
that F(var @) is special, too. (In fact this variety consists of special algebras,
see [41].)

Denote SJ,, = K, (X)NSJ(X) and PJ, = P, N SJ(X); therefore S.J,
and P.J, are GL,,— and S,—modules, resp. In [9] it was proved that BJ,(G) =
(B, NSI(X)/(T(G)N(B,NSJ(X))) = &\Ny(A) where X = (A, ..., \p) F n,
k < m, Ay # 0, and at most one of A; is odd. In [26] it was proved that there
do not exist infinite and strictly decreasing chains of subvarieties of var G. The
complete description of the subvarieties in var G can be found in [10]. The proof
of the latter fact uses such a criterion. If fy and f, generate irreducible GL,,
submodules of BJ,,(G) then f, is a consequence of fy if and only if [A] C [u].

This criterion reduces the problem to Higman’s theorem on PWO sets.

Remark 5.16. In [42] it was obtained that every finitely generated Jordan
algebra over a field of characteristic 0 is spechtian. Let us mention that the

algebra (@ is not finitely generated if dim V' = oo.
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Finally we consider aspects of the PI theory when the characteristic of the
field is positive, char K = p > 0. This theory is being developed accompanied
by difficulties of various type. It seems to us that the principal of them are
due to the fact that the multilinear identities in general cannot determine the
T—ideals. Another “stumbling block” is that it is not possible, in general, to
decompose the GL,,— and the S,-modules (i.e., Maschke’s theorem does not
hold); some of the modules that are irreducible in characteristic 0 could turn
out reducible (but not semisimple) in positive characteristic.

Therefore the representations of GL,, and of S, are to be substituted for
other methods. Some of them include the theory of invariants and the weak
identities.

The weak identities were introduced by Yu. P. Razmyslov (see [36]) in his
study of the identities in M3(K) and in sl3(K'). Let A be an associative algebra
and let V' be a subspace of A such that alg(V) = A i.e., V generates A as an
algebra.

Definition 5.17. The polynomial 0 # f(z1,...,2,) € K(X) is a weak (poly-
nomial) identity, abbreviated WPI in the pair (A, V) if f(v1,...,v,) =0 for all
v, €V.

Depending on the properties of A and V' one can define various rules for
consequences of a WPIL. Clearly the set T'(A, V) of all WPl in (A, V) is an ideal

in K(X) that is closed with respect to linear substitutions of the variables.

Definition 5.18. Let § # Q C K(X). The polynomial g € K(X) is called Q-
consequence of [ € K(X) if g € (f)* where () is the ideal in K(X) generated
by {f(wi,...,w,) |wi € Q}.

Example 5.19. a) When @ = K(X), and A =V, one obtains the polynomial

identities in A together with the usual rules for consequences.
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b) If @ = L(X), and if V is a Lie subalgebra of A7, A = alg(V) then the
weak Lie identities are obtained.

c) Let & = SJ(X), V be a Jordan subalgebra of AT and let A = alg(V).
Then we obtain the weak Jordan identities.

d) When Q = /(X) is the vector space spanned by X, and A = alg(V), we

obtain the “weakest” identities, the so-called G'L-identities.

Remark 5.20. In the examples b) and c), the consequences of the poly-
nomial f € K(X) are obtained by means of substitutions f(w:,...,w,) where

wi € L(X), resp. w; € SJ(X). In case d) we have that w; = 3°; aujz;j, ai; € K.

The description of the WPI in (M(K), sly(K)), and in (C, @) and (C,V)
was one of the important steps in obtaining the Specht property for var sly(K)
and var G when char K = 0. In [43] and [44], using weak identities, finite bases
of the identities in sl3(K') and in G were found when |K| = oo and char K # 2.
The WPT in (My(K), slo(K)) are finitely based, too [27], and the same holds
for (C,V) [28].

Concerning the invariants of the classical groups we would like to mention
the articles [4] where this theory was developed without depending on the char-
acteristic of the field, and [27], [28], [43], [44] where one could find applications.
Using invariants of the symplectic group as well as Higman’s theorem it was
proved in [29] that the multilinear identities for (My(K), sl3(K')) are Spechtian
when char K = 2, and that the Specht property fails for all weak identities in
(My(K), slo(K)).

Identities in other classes of algebras also have been objects of profound
studies, see, e.g. [48]. Of course the main interest is attracted by the identities
in associative algebras. But nevertheless we would like to mention some of the
most important results about non-associative algebras satisfying identities.

In 1970, M. R. Vaughan-Lee ([45]) showed that the Lie algebra M;(K)~
where |K| = oo and char K = 2, is not spechtian. It is still an open problem

whether the identities in M,(K) under the same restrictions are finitely based.
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On the other hand there are descriptions of the identities of minimal degrees
satisfied by some important classes of non-associative algebras, see, for example,
[14], [35]. Such descriptions are very important due to their applications, see
[44].

Considering identities in associative algebras, we only mention a result due
to A. Kemer ([25]). It states that every associative algebra A over a field of char-
acteristic p > 0 satisfies the identity sym , (z1,...,2,) = Yses, To(1) - - - To(n) for
some n, and the identity s,,(21, ..., z,) for some m. Recently it was announced
by A. Grishin that there exists non-spechtian variety of associative algebras over

a field of characteristic 2.

At this point we would like to put the final stop. We hope that the notes
will be useful and that they can serve as a base (only) for future and more

profound studies on algebras satisfying polynomial identities.
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