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RATIONAL REPRESENTATION OF MODULAR
NUMBERS

Peter Hintenaus Vilmar Trevisan*®

Abstract

We find conditions, restricting the size of the fractions, and present
algorithms to obtain a rational number from a set of residues modulo
relatively prime integers. We also discuss the nature and the number of
solutions for the rational representation, introducing conditions for the
existence and for the uniqueness.

Resumo

Restringindo o tamanho das fracoes, condigoes sdo estabelecidas e al-
goritmos sdo apresentados para que um ndmero racional seja obtido a
partir de um conjunto de residuos médulo inteiros que sdo primos entre
si. Também sdo discutidos a natureza e o nimero de solugbes para a
representacao racional, estabelecendo condigbes para a existéncia e uni-
cidade.

1. Introduction

In Symbolic and Algebraic Computation, a wide range of problems have been
solved very efficiently via a modular approach. Many problems over the integers
are mapped onto a prime field and once the image of the solution is known,
it is recovered to a true solution for the original problem, by means of the
chinese remainder or Hensel p-adic lifting algorithm. Representative examples
of this approach include polynomial factorization algorithms (see, for example,
[3]), polynomial GCD computations (see, for instance, [3]) and Grébner basis
computation algorithms [8].

Some of these problems would be more efficiently solved over the rationals,

and other problems arise more naturally in this field. Can we design an efficient
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modular method for the rationals? Given a rational number r = w/v and a
positive integer a relatively prime to v, it is easy to find an integer —a/2 <
k < a/2, such that r = k (mod «a). If we want to develop modular approaches
for the rational field, we need to go in the other direction, that is, given a
residue £ (mod a), can we compute a rational number r = u/v such that r =
k (mod a) ?

In 1981, P. Wang [9] introduced an algorithm for reconstructing a rational
number from a modular image. Given integers a,b > 0, Wang’s algorithm finds,

if it exists, a pair of integers «, 3, satisfying
a = b (mod a) (1)

and
0<lal,8 <\a/2, B#0. (2)

The algorithm is a modification of the extended Euclidean algorithm (for
the greatest commom divisor). Wang also observed, in his original paper, that
if such a rational representation exists and if, additionally, ged(e, 3) = 1, then
the representation is unique.

Such a representation, however, may not exist. As an example, modulo 15,
we have representations 0=0/1, 1=1/1, 2=2/1, 7=-1/2. It’s worth noticing that
3, 4, 5 and 6 are not rational images (modulo 15) of fractions with numerator
and denominator between -2 and 2.

If the bound y/a/2 is relaxed, then more rational numbers can be repre-
sented. For instance, if we allow rational fractions with denominator bigger
than 2 (but smaller than 5) then, modulo 15, we have 3=3/1, 6=-3/2. Unique-
ness, however, may not be assured. For instance, 4 =4/1 = 1/4 (mod 15).

We study a more general situation in this paper, fixing an arbitrary bound ¢
for the denominator 3 and, as a consequence, adjusting the size of the numerator
a in such a way that the product af is as large as the modulo a. The problem is
also generalized for a rational reconstruction that simultaneously satisfy several

modular relations.
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In section 2, we discuss the existence of the rational representation in this
new set of conditions. We discuss the nature of the solutions and make a
conjecture about the number of solutions that are relatively prime.

In section 3, we restrict the problem so that we obtain unique representation
of a modular number as a rational number. We point out, however, that we
may not assure existence of solutions.

Algorithms for recovering the rational numbers are introduced in section 4.
We discuss Wang’s algorithm, modifying it to obtain the rational representation
in this new situation. We finally point out several applications appearing in the

literature that make use of rational reconstruction.

2. The Existence

The material of this section is inspired by the statement of lemma 3 given in
[4]. We rectify here some mistakes that appear in the result, and generalize its
content, adding an extra parameter.

Let a;, b; be positive integers for 1 <1 < n, where a; and a; are relatively
prime for ¢ # j. Let A = [[;_, a;. Given positive integers ¢ and m, with

1 <m < ¢, consider the following

Problem 1: Find integers a, [, such that

1<B<e (3)
Am
< < | —
0<lal < [5o]. (4)
Bbi = a (mod a;) for 1 < i <n. (5)

The following result holds.
Theorem 1. If m > 2, then there exists a pair (a, 3) solving problem 1.

Proof. First we prove theorem 1 for n = 1. Let a = a1, b = b;. Without loss of
generality we assume m = 2. Consider all pairs (7,d) where —[25] < v < [55],

1 < § < ¢. There are 2[2%]0 > 25-¢ = a such pairs. Let us assume there is
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no pair (7,4) such that a|(y — 6b). Then by the pigeon hole principle there are
two different pairs (y1,41) and (72, d2) such that y1 — 616 = v — 826 (mod a),
01 > g, l.e

al(71 —72) — (&1 — 82)b.

What remains to be shown is that 0 <[y, —7q| < [2].

Without loss of generality we assume 1 > 0, 72 < 0. We know 1 < [%] <
5+ 1. Furthermore, || < [55] —1 < 5. Both 4y and v, are integers, so
Ivi =72l < Iyl + bl < T2

For n > 1, we can compute a nonnegative integer B < A such that B = b,

(mod ;) for 1 < ¢ < n, using the Chinese Remainder Algorithm. Let (e, 3)
be a solution to @ = BB (mod A). Then a;|(a — 8b;) for 1 < ¢ < n. So,
theorem 1 is proved.

[m]

Note: A special case of this result appears in Sorensen [7] (lemma 2.2) for
n=1m=2and c=/a.

We observe that the existence of solutions for problem 1 is not granted for
m = 1. As a counter example, take a« = 27,b = 4 and ¢ = 5. There are no
solutions 0 < 8 < ¢, |a|] <3 to the congruence 43 = a (mod a).

In some applications, obtaining any solution to problem 1 is enough to ben-
efit from the rational reconstruction technique. New integer GCD algorithms,
for example, use the following reduction to improve efficiency. Given integers
u > v, relatively prime to «, find integers «, 3 satisfying au + fv = 0 (mod a),
with |al,|3] < v/a and replace u by ' = |au + Bv|/a, whose size is smaller
than w (actually the size of u is reduced by roughly log,(a)/2 bits). Notice
now that ged(u,v) can be recovered from ged(u', v) (see [7, 11]). The operation
au + v = 0 (mod a) is equivalent to reconstructing a rational number from
the residue r = u/v (mod a). In this case, the existence of multiple solutions
are of no importance, as long as the bound +/a is observed, guaranteeing the
size reduction.

When dealing with other applications, however, certain properties of the
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solutions are some times required, beyond its simple existence. For example,
ifm =2 a =12, b =4 and ¢ = 3, then the only solutions to 44 =
a (mod 12) with the constraints 1 < 8 < 3 and —4 < a < 4 are the pairs
(o, 8)=(4,1),(-4,2),(0,3). As rational numbers, the second and third pairs do
not represent solutions, for we can not say that 0/3 = 4 (mod 12) or that
—4/2 = 4 (mod 12) since 3 and 2 are not invertible modulo 12. Also, 0/3 =
0 # 4 (mod 12) and —4/2 = —2 # 4 (mod 12). The problem is that these two
pairs are not relatively prime.

A relatively prime solution pair, that is, a solution (e, 3) to problem 1 with
m = 2 and gecd(a, 3) = 1 does not always exist. As an example, notice that the
only solutions to 73 = a (mod 24) with the constraints 1 < g <5 and |a| <5
are (-3,3) and (4,4).

Another issue is the uniqueness of solutions. For m > 2, the above examples
show that problem 1 has no chance of having a unique solution. If only the
relatively prime pairs are sought, neither existence is attained (as example above
shows), nor uniqueness. To see the this, observe that, modulo 24, b =5 =5/1 =
—4/4 = 1/5. That is, there are two relatively prime solutions to problem 1, for
a=24,b=5c¢c=5and m = 2.

We believe to be true the following conjecture regarding the number of

solutions (a, 3) with ged(a, 3) = 1.

Conjecture: Problem 1 has at most m relatively prime solution pairs.
This result is proven for m = 1 in the next section. In other words, to

guarantee uniqueness of relatively prime solutions, we need to restrict the size

of numerator (as function of the denominator). The existence of solutions,

however, is no longer assured.

3. The Uniqueness

Let a;, b; be positive integers for 1 < ¢ < n, where a; and a; are relatively prime

for i # j. Let A =[[;_; a;. Given a positive integer ¢, consider the following
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Problem 2: Find integers a, (3, such that

1<B<e, (6)

A A
Bb; = a (mod ;) for 1 <7< n. (8)
ged(a, B) =1, (9)

The following result holds.
Theorem 2. If there is a pair (o, 3) satisfying problem 2, then it is unique.

Proof. Let (ai,51) and (a9, 32) be two solutions of problem 2. Then, the
relation

a1fs = agfh (mod @;))  i=1,...,n
holds, which implies that
182 = azfl (mod A),
that is, there exists an integer k
a2 — agfBy = kA.

On the other hand,

o B — 23| < |anfBa| + ] < A.

The only possibility for equality above is when 3y = 35 = c and a3 = —ay =
+A/2¢ and this is impossible for either ay or ay is out of the range given by
equation (7).

It follows that

|1y — asfh| = kA < A,
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implying that & = 0 and because the pairs are relatively prime, a; = ay and
(1 = (32, which proves the result.

O

We now turn to the problem of recovering rational numbers by presenting

algorithms for Problems 1 and 2.

4. Recovering Rational Numbers

Wang’s original problem may be viewed as a restriction of problem 2 with
¢ = \/T/Q’ n = 1. As observed by Wang, a modification on the Euclidean
extended algorithm can be used to compute such pair (o, ). The difference
between his algorithm and the Euclidean is that it has a distinct stop condition.

Collins & Encarnacién [2], using multiple-precision techniques for integer
ged computations, presented a more efficient version of Wang’s algorithm for
rational reconstruction.

Consider now finding an integer solution (a,3) to problem 1. Because of
the Chinese Remainder Theorem and observation at the end of theorem 1, it
is sufficient to consider n = 1. The algorithm RATCON of figure 1, a slight
modification of Wang’s [9], may be used to find (a, 3), satisfying conditions (3),
(4) and (5).

The algorithm differs from Wang’s in the stopping condition (step 3.1), since
it considers an adjustable bound for the denominator and numerator, depending
on two parameters (¢ and m).

The correctness of the algorithm has been proved in [10] and in [6] for the
special case ¢ = 1/a/2 and m = 1 in the sense that the solution (if there is

any) to o = b (mod a), with constraints a < £,

0 < B < ¢ is generated
by the algorithm. Both proofs can be extended for the general case presented
here. Since we are using m > 2, theorem 1 assures the existence of solutions,

so RATCON will return a pair (o, 3) satisfying conditions (3), (4) and (5).
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RATCON (a,b,c,m)
INPUT : Integers, a,b,c and m, with 2 <m <c¢ < a.
OUTPUT: A solution (e, 3) for problem 1.

0. Let check:=[%2], ¢ :=1

2xc

1. Let (ag, o) := (a,b)

2. Let (03, 61) :=(0,1)

3. While 3; < ¢ do
3.1 if |a;| <= check then return (sign(3;) ey, |6i]);
3.2 ¢ = |1/ ];
3.3 aip1 1= i — qioy;

3.4 /Bi+1 = @'—1 - C]zﬂz‘
3bhi1:=1+1

Figure 1: Algorithm for computing a solution to Problem 1

Let us now examine the output («,3) of algorithm RATCON. As the ex-
amples of the previous section show, we can say neither that it is the unique

solution to problem 1 nor that ged(a, 3) = 1.

Theorem 3. Let (o, 3) be the outputl of algorithm RATCON. Then the follow-

ing properties are satisfied.
1. If an integer k divides gcd(a, 8) then k divides a.

2. ged(a, B8) = ged(a, B).

Proof.
Property 2 is given in [2]. Clearly, property 1 may be seen as a consequence
of of property 2. However, it is also a consequence of the following loop invariant

[11], that is interesting by itself.

iBiy1 — @ip1 i = (—1)'a, for i=0,1,... (10)

This can be easily proven by induction on i. Now, since (o, 8) = (@it1,8i+1)
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for some 7 and k divides both a;;1 and 41, it follows from (10) that & divides
a.
O

It is worth noticing that algorithm RATCON would not be able to gener-
ate all solutions to problem 1, even if we let stop condition (step 3.1) go to
zero. For example, consider the congruence 83 = 8 (mod 27). The only pos-
sible outputs returned by the algorithm (depending on the stop condition) are
(8,1),(—3,3),(2,7) and (—1,10). The pair (5,4), a solution to problem 1 with
parameters « = 27,b = 8,¢ = 4 and m = 2, is not returned, and may be con-
sidered “better” then the non-relatively prime pair (—3,3), the output of the
algorithm ran with these parameters.

Consider now finding a solution to problem 2. The obvious use of algorithm
RATCON with m = 1 is not enough, since there could be no solutions. An
additional problem is that there is at most one satisfying ged(a, 3) = 1 (theo-
rem 2), but there may exist solutions that are non-relatively prime and if the
algorithm RATCON above is used with m = 1, it could return such a solution.

The first difficulty is easily fixed, adding an extra stopping condition. The
following modification, introduced in [2], corrects the second problem. As above,
we consider n = 1. The algorithm of figure 2 finds, when it exists, the solution
to problem 2.

The extra condition ged(er,3) = 1 at step 3.2 guarantees the co-primeness
of a and [ and is equivalent to saying that 3 is invertible in the ring of integers

modulo a; in other words, that the rational 7 is well defined or that

«

3= b (mod a).

5. Applications

The problems usually dealt in computer algebra that use rational reconstruc-
tion are polynomial factorization, partial fraction decomposition and Grébner
basis determination. It is feasible to use rational reconstruction for isolating

polynomial roots. Actually, in [5], there is a modular version of the Sturm the-
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RATCONUN (a,b, c)
INPUT : Integers, a,b and ¢, ¢ < a.
OUTPUT: A solution (e, ) for problem 2, if it exists, NIL otherwise.
1. Let (ag, 1) := (a,b);
2. Let (8o, 1) := (0,1);
3. Fori=1,2,... ,do
3.1 if |3:] > ¢ then return NIL;
3.2 if || < a/2¢ then
if ged(ev, B;) = 1 then return (sign(3;)ey, |3i]);
3.3 ¢ == |oica/ail;
3.4 g1 = aim1 — qioy;

3.5 Biy1 = Bicr — qifBs

Figure 2: Algorithm for computing the solution to Problem 2

orem that counts the number of zeros of a real polynomial in an interval with

rational endpoints.

As explained in section 2, rational reconstruction has also been used for
reducing the input size in the computation of integer ged. It should be noted
that, in this case, the inputs for the rational reconstruction are small, since it

is itself a gcd computation.

In other applications where large inputs are needed, the multi precision
arithmetic algorithm given in [2] is recommended. Special care should be given
to the extra condition ged(a, 3) = 1, since the numbers o and 3 can also be
large. Most applications require working modulo a product of prime numbers
(or prime powers), therefore the modulo ¢ has a known form and, because of
theorem 3, it is possible to efficiently undertake the step. Collins & Encarnacién
[2] discuss ways to avoid or at least improve the efficiency for computing this

condition.
Most applications look for the unique solution in the rational reconstruction
problem. Some problems, like polynomial factorization, have a trial step at the

end so it may be possible to use the algorithm RATCON, that is to say to find a
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solution to our problem 1, which would be more efficient, requiring fewer lifting
steps or chinese remaindering recoveries.

Even if the unique solution is sought, the generalization presented here im-
proves Wang’s original problem, in the sense that more rational numbers may
be reconstructed from the same residues modulo a. For example, if solutions
to 5 = 10 mod 24 are to be found, Wang’s algorithm returns nil, since for
a,f < L\/EJ = 3 there are no solutions. If, however, solutions to problem 2
with ¢ = 5 are sought, the pair (o, ) = (2,5) is returned by algorithm RATCO-

NUN. The improvement is more significant when a bound ¢ for the denominator

is known in advance.
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