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A BRIEF HISTORY OF LOOP RINGS

Edgar G. Goodaire*

Abstract

Given a loop L and a commutative associative ring R with 1, one
forms the loop ring RL just as one would form a group ring if L were
a group. The theory of group rings has a long and rich history. In this
paper, we sketch the history of loop rings which are not associative from
early results of R. H. Bruck and L. J. Paige through the more recent
discovery of alternative and right alternative rings and the work of O.
Chein, D. A. Robinson and the author.

1. Origins

Definition 1.1. A loop is an algebraic structure (L,-) with a two-sided identily
element such that
Rz):a—a-z right translation

L(z):a—2z-a left translation

are permutations of L, equivalently, such that the equations a-x = b andy-a =b
have unique solutions x and y for any a,b € L.

Thus a group is just an associative loop. Two sources of information about
loops in general are [Bru58] and [Pfl90]. We shall have reason to refer to the
commutator of two elements a and b in a loop L and to the associator of three
elements a, b, ¢, these being the elements (a, b) and (a, b, ¢) defined, respectively,
by

ab = ba(a,b) and (ab)c = [a(bc)](a,b,c).

*This paper is an expanded form of a talk given at the XVth Escola de Algebra, Canela,
Brazil, July 27, 1998
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Given a commutative and associative ring R with 1, we form the loop ring
RL just as we would form the group ring if L were a group. Thus RL is the
free R-module with the elements of L as basis and, for a = 35 cf ayg and

B =734er B9 in RL, a+ 3 and af are defined by

a+f = Z(O‘g + B34)9,

geL

aff = Z(Z ahﬂk)g.

9€L hk=g
The history of group rings (the case that L is a group) is well-documented.
In particular, we draw the reader’s attention to the accounts of C. Polcino
Milies [Mil81] and R. Sandling [San81, San85]. To my knowledge, the concept

of a nonassociative loop ring first made its appearance in a paper by R. H.

Bruck in 1944 [Bru44].

Theorem 1.2 (Bruck; 1944). If L is any finite loop and F' is a field of char-
acteristic 0 or of positive characteristic relatively prime to the order of the

multiplication group of L, then FL is the direct sum of simple algebras.

(The multiplication group Mult(L) of a loop L is the subgroup of the sym-
metric group on L generated by the translation maps.)

This version of the theorem of H. Maschke about group algebras [Pas77] is
remarkable in its generality, although it raises an interesting question. Recall
that Maschke’s Theorem asserts that a group algebra F'G' is semisimple if G is
finite and the field F' has characteristic 0 or p > 0 relatively prime to |G| (not
to |Mult(G@)]).

Question 1.3. If L is a finite loop and F a field of positive characteristic

relatively prime to |L|, is F'L the direct sum of simple algebras?

For any group G, a class sum is the sum of the elements in a finite conjugacy
class. Such sums are known to span the centre of RG, for any coefficient ring

R [Pas77] . The notion of conjugacy has an extension to loops [GjM96] and
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R. H. Bruck revealed that the group ring result about the centre has a natural

extension [Bru46].

Theorem 1.4 (Bruck; 1946). The centre of a loop algebra is spanned by con-

Jugacy class sums.

Now it is “clear” that a loop RL is associative (commutative) if and only
if L is associative (commutative). The argument in the case of associativity
proceeds as follows.

Let [z,y,2] = (zy)z — 2(yz) denote the (ring) associator of z, y, and z. If
a =Y a4, =3 03,9 and v = 37,9 are elements of RL,

[o,8,7]= Y. auBunly, b, k],
g,h,kEL
so [a, 3,7] = 0 for all a, 3,7 € RL if and only if [g, h, k] = 0 for all g,k k € L.

The associative and commutative identities are very special, however. In
general, an identity in L does not lift to RL and an identity on RL imposes
much more than simply the same identity on L. Lowell Paige gave a striking

example of this phenomenon in 1955 [Pai55].

Theorem 1.5 (Paige; 1955). If R is a ring of characteristic relatively prime to
30 and L is a loop such that RL is commulative and power associative, then L

S a group.

Marshall Osborn was the first to notice that there were some minor diffi-
culties with Paige’s proof, which assumes characteristic different from only 2

[Osb84]. We refer the reader to [GIJMI6] for a proof of the theorem as stated.

2. The right Moufang identity

Definition 2.1. The right Moufang identity is ((zy)z)y = =z(y(zy)). A
Moufang loop is a loop which satisfies this identity.
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As the name suggests, the Moufang identity is named for Ruth Moufang
who discovered it in some geometrical investigations in the first half of this
century [Mou33]. There is an excellent account of this work in Marshall Hall’s
text [Hal59, Chapter 20]. Any group is a Moufang loop, but here is a family of

Moufang loops which are not associative, discovered by Orin Chein [Che74].

Example 2.2. Let G be a nonabelian group and let v be an indeterminate.

Let L = G U Gu and extend the multiplication in G to L by means of the rules

glhu) = (hg)y,
(gu)h = (gh™u,
(gu)(hu) = h7'g.

We denote this loop M(G) and observe, in passing, that the smallest Moufang
loop (which is not a group) is M(S3), of order 12 [CPT71].
If L is Moufang, it is highly unlikely that RL also satisfies the Moufang
identity. The problem is the repeated variable in the Moufang identity.
Suppose A is a ring satisfying ((zy)z)y = 2(y(zy)). Then, replacing y by

y + w,! we see that A must also satisfy

{lz(y + )]z} y + w) = 2{[y + w][z(y + w)]},
which is
((zy)2)y + ((zy)2)w + ((zw)2)y + ((2w)2)w = z(y(zy)) + z(y(zw))

After cancelling two pairs of equal terms, we get
((zy)2)w + ((2w)2)y = 2(y(2w)) + (z(w(zy)). (2.1)

If A= RL is aloop ring and z,y, z, w are in L, then recalling that the elements
of L are linearly independent over R and noting that each side of (2.1) is the
sum of loop elements, we see that the element ((zy)z)w must equal (at least)
one of the other three elements in this equation, and there is no reason for this

to be the case.

lin nonassociative algebra, this process is known as linearization
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Suppose A is any ring with 1 satisfying the Moufang identity ((zy)z)y =
z(y(zy)). Setting z = 1 gives (zy)y = zy?® or, equivalently, [z,y,y] = 0. This is
known as the right alternative identity. Setting = 1 in the Moufang identity
gives (yz)y = y(zy). Thus A satisfies the flezible identity [y, z,y] = 0.

Linearizing [z, y,z] = 0 gives [z,y, z] + [z,y, 2] = 0, and then setting z = y
gives [z,y,y] + [y,y,2] = 0. Since [z,y,y] = 0, so also [y,y,z] = 0. Thus
A also satisfies the left alternative identity. As a ring satisfying both alterna-
tive identities, A is an alternative ring, the name deriving from the fact that
in an alternative ring, the associator [z,y, z] is an alternating function of its
arguments.

Any associative ring is alternative. An example which is not associative is
the real division algebra of Cayley numbers, C, which are defined as follows.

Let H denote the real quaternion algebra and let ¢ be an indeterminate.

Then C = H 4+ H{ with multiplication defined by
(a+ bl)(c+ dl) = (ac — db) + (da + be)l,

a,b,c,d € H. (Here, ¢ — g denotes the standard conjugation in H.) We would
be remiss at this point in continuing without drawing the reader’s attention to
the beautiful exposition on the Cayley numbers by Erwin Kleinfeld [Kle63].
We have now seen that if the Moufang identity on L extends to a loop ring
RL, then RL must be an alternative ring. We have already seen that this is
unlikely. The first theorem making this statement precise appeared in an article

by the author in 1983 [Goo83].

Theorem 2.3 (Goodaire; 1983). If R is a ring of characteristic different from
2, then RL is alternative if and only if

i. if x,y,z € L associate in some order, they associate in all orders, and
ii. if x,y,z € L do not associale, then (zy)z = x(zy) = y(zz).

Subsequent collaboration with Orin Chein yielded more satisfying informa-
tion about RA loops (as those loops which are described by Theorem 2.3 but

are not groups soon came to be known) [CG86].
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Theorem 2.4 (Chein, Goodaire; 1986). Let R be a commulalive and associa-
tive ring with 1 and of characteristic different from 2 and let L be a loop. Then
the loop ring RL is alternative but not associalive (that is, L is RA) if and only
if |L'| =2 and L has the property that gh = hg for g,h € L if and only if g, h

or gh is central.

(Here L' denotes the subloop of a loop L generated by all commutators and
associators.)

The paper [CG86] implicitly contained more information about the structure
of an RA loop, and this was made explicit in the introduction to a paper with

M. M. Parmenter [GP87].

Theorem 2.5 (Chein, Goodaire). An RA loop L has the following structure:
o L. =G U Gu where G is a nonabelian group and u ¢ G;

o ( has an involution g — ¢* (that is, an antiautomorphism of period 2)

such that gg* is in the cenlre of G for each g € G;

o multiplication in L is given by the rules

g(hu) = (hg)u
(gu)h = (gh*)u
(gu)(hu) = goh*g

for g,h € G, where u* = go is central in G and g = go.

Conversely, if G is a nonabelian group with |G'| = 2 and the property that
g,h € G commute if and only if g, h or gh is central, then G has an involution
* with gg* central for all g € G and the loop constructed as above has an alter-

native loop ring.

The loop described by this theorem is labelled M (G, *, go). Note how strik-
ingly similar these loops are to those described in Example 2.2. In fact, M(G)

is just the special case (M, —1,1), where “—1” refers to the involution g — g~'.



A BRIEF HISTORY OF LOOP RINGS 99

There is an interesting side issue raised by Theorems 2.3, 2.4 and 2.5. We
have noted that the loop ring of a given Moufang loop is unlikely to be alterna-
tive. We can still ask, however, whether a given Moufang loop is a subloop of
the loop of units of some alternative ring. The answer to this question is trivial
for groups, but apparently not otherwise. Very little attention seems to have
been given to this problem. There is a mildly negative result implicit in [GM89].
If « is a unit of augmentation one in an integral alternative loop ring ZL, there
are units 71,7z in the rational loop algebra QL such that 73" (77" av1)72 is in
L. (Thus, a variation of a conjecture of H. Zassenhaus for group rings holds for
alternative loop rings which are not associative [RS83].) Since elements of odd

order in an RA loop are central, the following theorem is immediate.

Theorem 2.6 (Goodaire, Polcino Milies). The integral alternative loop ring ZL

of a finite loop L (which is nol associative) does not contain noncentral elements

of finite odd order.

Thus, for example, M(S3) is not contained in any integral alternative loop
ring. It is, however, contained in Zorn’s Vector Matriz Algebra 3(Q) over the
rationals and this suggests an investigation of the subloops of 3(Q) reminiscent
of Behnam Baniegbal’s classification of the finite subgroups of M,(Q) [Ban88].

Zorn’s vector matrix algebra, 3(R), over a ring R is the set of matrices of

o]

where a,b € R and x,y € R®. One adds such matrices entry by entry in the

the form

obvious way, but multiplies according to the following variation of the usual

rule:

a; Xp ay Xp | _ aras + X1 -y a1xy + byxy —y1 X yo
yi b y2 by agy1 + biys + X1 X X b1by +y1 - %2

where x-y and x Xy denote, respectively, the dot and cross products of x,y € R>.

Under these operations, 3(R) is an alternative ring and one which often occurs
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as the simple component in a rational alternative loop algebra [GJM96, Section

VIL2).
3. RA2 Loops

Another way to determine which Moufang loops are subloops of the unit loop
of an alternative ring is to consider loop rings in characteristic 2. In fact,
in characteristic 2 “many” Moufang loops have alternative loop rings. For
instance, of the 158 Moufang loops of order less than 64 (which are not groups)
[CheT8], just 10 are RA while 64 are RA2, in the sense that they have alternative
loop rings which are not associative in characteristic 2. Unfortunately, there is
as yet no characterization of RA2 loops in the spirit of Theorems 2.4 or 2.5.

The analogue of Theorem 2.3 is this [CGI0D].

Theorem 3.1 (Chein, Goodaire). Assume R has characteristic 2. Then RL is
right alternative if and only if L is right alternative and, for every three elements
x,y,z € L, one of the following three conditions holds:

Alz,y,2): (zy)z = z(yz) and (zz)y = z(zy)

B(z,y,2): (vy)z = x(zy) and z(yz) = (v2)y
Clz,y,2): (zy)z = (zz)y and z(yz) = z(zy).

Also, RL is left alternative if and only if L is left alternative and, for every
three elements x,y,z € L, one of the D(x,y,z), E(z,y,z), F(z,y,z) holds:
D(z,y,2):

E(z,y,2): (zy)?
F(z,y,2): (ay)?

z(yz) and (yz)z = y(zz)
y(zz) and z(yz (yx)z
(yz)z and z(yz y(xz).

A
8
=
<
w
I

) =
) =

For Moufang loops, there is a substantial improvement. If a Moufang loop
has a right alternative loop ring, then this ring is necessarily alternative [CG88]
and so a Moufang loop L has an alternative loop ring (in characteristic 2) if
and only if for every three elements z,y,z € L which do not associate, either
B(z,y,z) or C(z,y,z).

While there is no “nice” characterization of RA2 loops, much is known about

their structure. An RA2 loop, for instance, contains a normal subloop which
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is an abelian group with quotient an elementary abelian 2-group. This was
key to proving that the augmentation ideal of certain alternative loop rings in
characteristic 2 is nilpotent [Goo95].

It is easy to produce families of RA2 loops:

e any Moufang loop with a unique commutator/associator [CG90c];
e more generally, any Moufang loop with precisely two squares [CG90a];

e certain loops of the form M(G, *, go).

In fact, there is a very satisfying characterization of RA2 loops of the form
M(G, *, go) which we proceed to describe. Suppose then that L = M (G, *, go)
is RA2. The first thing to notice is that elements of the loop ring RL can be
written in the form x + yu, where z and y are in the group ring RG. Then,
after extending the involution from G to RG' in the obvious way, multiplication

in RL strongly resembles multiplication in the Cayley numbers:
(z + yu)(z + wu) = (zz + gow'y) + (wz + yz*)u.

It involves only a straightforward calculation to show that RL is alternative

if and only if g + ¢* is central for all ¢ € G that is, if and only if
g+g =h"g+g)h=h""gh+h" g"h.

for every h € G.

In characteristic 2, this leads to an entirely group-theoretical question. What
nonabelian groups G have the property that they possess an involution such that
for every g € G, either g* = g or else h='gh € {g,g"} for every h € G?

First notice that in such a group G, g and ¢* commute for every g € G.
This is certainly true if ¢ = ¢g*. On the other hand, if g # ¢*, then g7'g*g €
{9%,(g")*} = {9,9"} and g7'g*g = g cannot be the case since g # ¢g*. Thus
9 'gg=y"

Now look at the complement of the set of fixed points of the involution, that

is, the set
T={9€G|g # g}
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Let A = (T) be the subgroup of G generated by T. Fix ¢ € T and let = be
an element not in A. Then tx ¢ T, so tz = ({z)* = 2*t* = zt* and t* = 27 {x.
Similarly, z71¢*z = ¢. Tt follows that if y is another element not in A, then zy

must belong to A because
(zy) H(ay) =y e ey =y Ty = 1.

Thus A has index at most 2 in G and so, if T is a commutative set, then A has
index two (because A is abelian and G is not).

Suppose now that 7' is not commutative. Fix s,¢ € T with st # ts. Then
stsT! #£ 1, s0 stsT! = 1%, that is, st = ¢*s. Similarly, since t7'st # s, we have

st =1ts". Sot*s =ts*, 171" = s*s7! = s7's* (s and s* commute). Hence
(s,8) = s M st = s7ls* =7 = 17157 s = (U, 5), (3.1)

(a,b) denoting the group commutator a='b~"ab.

Let f = (s,t) and note that f=' = f. Let z be any element of T'. If z fails
to commute with s, say, as before we can deduce that z7'z* = s71s* giving
z7l2* = f. Thus, if z7'2* # f, then x must commute with both s and t.

Suppose (sz)* # sx. Then
t {sz)t = sz or (32)*(= z*5* = 5*z*)

while
a2l = [t )t nd) = '

contradicting the fact that s*z ¢ {sz,s*z*}. Thus (sz)* = sz, which implies

r*s* = s = zs and
g =g e Ty s A

All this shows that f = x~'2* is independent of x € T. We claim that f is the
only nonidentity commutator in G.

For this, let z,y € G with zy # yx. If € T, then, as above, 27 'y lay =
a7 ta*=f. MMz ¢ Tand yeT,then

! il

ey Tley = (yTeTlya) = (yTy) T = T =,
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while if y ¢ T, then zy € T'; otherwise, (zy)* = zy, so yxr = y*z* = (zy)* = xy,
contradicting the fact that « and y do not commute. So zy € T and (zy)z #
z(zy). We have already considered this possibility and found (zy,z) = f. Since
(zy,2) = (y,2), we get (y,2) = f, s0 (2,y) = f~' = .

Theorem 3.2. Let L = M(G,*,g0) be an RA2 loop. Then either G has an
abelian subgroup of index 2 or |G'| = 2.

Conversely, given any group with an abelian subgroup of index 2 or |G'| = 2,
there exists an involution * on G such that M(G,*,go) is RA2. We refer the

reader to [Goo91] for more details.

4. The right Bol identity

Definition 4.1. The right Bol identity is ((zy)z)y = x((y2)y). A (right) Bol
loop is a loop which satisfies this identily.

Note the subtle distinction between the right Bol and the right Moufang
identity which, recall, is ((zy)z)y = z(y(zy)). The Moufang identity implies
flexibility—(yz)y = y(zy)—which the Bol identity does not.

Many loop identities arose or have been studied in a geometrical setting.
The Bol identity was first investigated by Gerrit Bol [Bol37] who showed that
it corresponds to a certain configuration in 3-webs [Pf190, Section II.3]. Michael
Kallaher and Ted Ostrom studied quasifields whose multiplicative loop satisfies
the right Bol identity [KOT1].

Any Moufang loop is a Bol loop. The smallest order of a Bol loop (which
is not Moufang) is eight. There are six such loops [Bur78], one of which is

Zy X 2y X Zy with multiplication defined by
(4,5, k)(p,q,r) = (i +p, 7 + ¢,k +r+3p(g+1)).

The multiplication table for this loop
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|1 2 3 45 6 7 8
11 23 45 6 7 8
212 1 6 78 3 45
3136 1 8 4 2 57
404 75138 26
5(5 8 4 6 1 7 3 2
6/6 3 25 7 18 4
717 4 8 26 5 1 3
818 5 7 3 2 4 6 1

shows clearly that loops of exponent two need not be commutative! As defined
here, this loop was discovered by D. A. Robinson whose pioneering work [Rob66]
is still the standard reference for Bol loops.

Here is a class of Bol loops which are not Moufang.

Example 4.2. Let S be any associative ring which contains an element k of
additive order 2. Assume there exist b,¢ € S such that k(bcb + bQC) # 0. Let
L =5 x S and define multiplication by

(a,a)(b,B)=(a+b,a+ F+ kab?).

Then L is (right) Bol, but not Moufang.

The right Bol identity implies the right alternative identity: putting z = 1
in ((zy)2)y = z((y2)y) gives (zy)y = zy*. Are there loop rings which are right
alternative but not alternative? Interestingly, we are immediately restricted to

characteristic 2 because of a recent result of Kenneth Kunen [Kun98].

Theorem 4.3. Suppose RL satisfies the right alternative identity and 1+1 # 0
in R. Then RL satisfies the left alternative tdentity; hence RL is an alternative

ring.

Unfortunately, this causes additional complications. In characteristic differ-
ent from 2, a ring is right alternative if and only if it satisfies the right Bol
identity. This is not true, however, in characteristic 2, however. Indeed, Kunen
has an example of a loop ring which is right alternative but does not even sat-

2

isfy 2%z = zz% So, if we want RL to satisfy the right Bol identity, then we
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need a stronger version of Theorem 3.1. This was given by the author and
D. A. Robinson who suggested the acronym SRAR—strongly right alternative
ring—to describe a loop whose loop rings (in characteristic 2) satisfy the right

Bol identity but are not alternative [GR95].

Theorem 4.4 (Goodaire, Robinson; 1996). A loop L is SRAR if and only if,
for every x, y, z and w in L, one of the following three conditions is satisfied:
((zw)2)y = z((w2)y)
Qz,y,z,w) : ((zy)z)w = z((wz)y) and ((zw)z)y = z((yz)w)
R(z,y,z,w) : ((zy)z)w = ((zw)z)y and  z((yz)w) = z((w2)y).

P(z,y,z,w) : ((zy)z)w = z((yz)w) and ((zw
Tw

This theorem would appear to make the possibility of classification rather
remote. It would be lovely if we had a positive answer to the next question, for

then we could use the first part of Theorem 3.1 rather than the more complicated

Theorem 4.4 in our search for SRAR loops and a potential classification.

Question 4.5. If L is a Bol loop satisfying A(z,y,z), B(z,y,z) or C(z,y,z2)
for each z,y,z € L, does RL satisfy the right Bol identity?
At the moment, only one class of SRAR loops has been identified [GR96].

Theorem 4.6. Let R be a commutalive, associative ring with 1 and of char-
acteristic 2. If L is a Bol loop with |L'| = 2, then RL salisfies the right Bol

identity and it is not alternative.

In particular, all six Bol loops of order eight have this property. Another

example can be obtained by means of the construction in Example 4.2.

Example 4.7. Let

_ ZZn Z2n " _ nO
S—{O Z%] and k_[()n}'

Then S satisfies the conditions of Example 2.2 with

11 10
b:[oo] and c:[00:|.
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So the Bol loop L described there is not Moufang. It is easy to check that
L' ={(0,0),(0,k)} and so RL satisfies the right Bol identity.
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