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Abstract

The Feit-Thompson Theorem states that

Every finite group of odd order is solvable.

It was proved in 1963 after being conjectured more than 50 years
earlier. It has many applications to classifying simple groups and to
studying solvable groups.

In recent years, the entire proof has been revised and partially simpli-
fied by several authors in published and unpublished work. In particular,
Feit and Thompson contributed an improvement in 1991. In this article,
we discuss the background of the theorem, some ideas in the proof, re-
cent revisions and simplifications, and a recent extension announced by
Michio Suzuki.

1. Introduction

This article is devoted to an elementary discussion of the following

Theorem (Walter Feit - John G. Thompson, 1963 [FT]). Euvery finite
group of odd order is solvable.

This result had been conjectured more than 50 years earlier. Its proof oc-
cupied an entire issue of the Pacific Journal of Mathematics, 255 pages long.
For this work, the authors received the Cole Prize in Algebra of the Ameri-
can Mathematical Society in 1965. Both the theorem and its proof have many
applications to general finite group theory and to classifying simple groups.

In recent years, the entire proof has been revised and partially simplified

by several authors in published and unpublished work. In particular, Feit and
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Thompson discovered an improvement in 1991. Thus, the theorem is attracting
attention anew.

Although the proof is very long and complicated, we will discuss some as-
pects of the theorem that can be described in an elementary way. These aspects
concern the historical background of the theorem, some ideas of the proof, and
recent simplifications and revisions.

Our description of the proof is partially drawn from an account by Thomp-
son [T1] and two accounts by Gorenstein ([Gorl], pp.450-461; [Gor2], pp.13-39).
Since this article is based on talks to a wide audience, including graduate stu-
dents, technical details are largely omitted. The reader familiar with finite
group theory is encouraged to see these three accounts.

We would like to thank very warmly Said Sidki, Miguel Ferrero, the Fundagao
Universidade de Brasilia, and the Escola de Algebra for inviting us to Brazil and
making the lectures and a very pleasant visit possible. We also thank Ronald
Solomon for several improvements to this article.

Much in this article concerns the research of Michio Suzuki. Sadly, Professor
Suzuki died about two months before the lectures were given. Over the years, he
had given me much help and encouragement. Therefore, this article is dedicated
to his memory, with deep gratitude and respect.

In this first part, we discuss the historical background of the theorem and
some crucial properties of groups of odd order.

For convenience, all groups discussed in this article will be finite. We ab-

breviate the Feit-Thompson Theorem by FT.

1.1. Historical Background

A number of special cases of FT were proved about 1901 ([Bu2], p.503). For
example, Burnside proved ([Bul]) the case in which |G| (the order of G) is less
than 40000. In 1911, in the second edition of his book, he raised the question
of whether FT is true ([Bu2], p.503). For this reason, it became known as
“Burnside’s Conjecture”, although it may have been conjectured earlier.

The period from about 1890 to 1915 was one of intense activity in finite
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group theory relative to the total amount of activity in mathematics. This
was followed by a comparatively less intense (but quite fruitful) period, which
lasted until about 1955, and then a more intense period that has continued up
to the present time. Paradoxically, one article in 1955 that may have stimulated
interest in proving F'T concerned groups of even order [BF]. In it, Richard Brauer
and Kenneth Fowler used short, elementary proofs to obtain some remarkably
strong results.

At this point, to understand the theorem, it may help to imagine temporarily
that we are living in 1955 and that we are trying to prove FT. We use induction
on |G|. Clearly, we may assume that G is not abelian. If G has a proper non-
identity normal subgroup N, then, by induction, N, G/N, and hence G are

solvable. Thus, we may assume that

(G is a non-abelian simple group

Now we would like to study the proper subgroups of G. However, we know
nothing about them except that they are solvable of odd order. (In fact, we
really know that they do not exist.) Let us turn for guidance to a family of
groups that really exist, namely, the non-abelian simple groups of even order.
The analogue to G is the smallest of these groups, the alternating group As
of degree 5 and order 60. Let us denote by H# the set of all non-identity
elements of a group H. It is easy to see that, for every 2 € As¥. the centralizer
Ca,(z) = {y € As|lyx = zy} is an abelian subgroup of As.

This condition says that As is a (CA)-group. Thus, we might hope that our
group G is a (CA)-group.

The (CA)-groups were being extensively studied about this time. An article
by Brauer,Suzuki,and G.E.Wall [BSW] in 1958 classified the non-abelian simple
(CA)-groups of even order. In fact, I have been told that the result was obtained
independently by some or all of the three authors as early as 1953 or 1954.
However, our hope that G might be a (CA)-group was dashed by Suzuki in the

following result:
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Theorem (Suzuki, 1957 [Sz1)]). Every (CA)-group of odd order is solvable.

Thus, As is not a suitable model for our group GG. Let us turn instead to
the second smallest nonabelian simple group of even order. This is the simple
group of order 168, which is unique up to isomorphism. In fact, it is easy to see
that it is not a (CA)-group, but satisfies a similar, weaker condition, namely,
that the centralizer of any of its non-identity elements is nilpotent, i.e., is the
direct product of its Sylow subgroups. Such a group is called a (CN)-group.

The non-abelian simple (CN)-groups of even order were classified by Suzuki
([Sz2]) in 1961. However, the hope that our odd order group G might be a

(CN)-group was frustrated one year earlier:

Theorem (Feit - Marshall Hall - Thompson, 1960 [FHT]). Every (CN)-
group of odd order is solvable.

At this point, we notice a paradox. A group of even order contains subgroups
of odd order, but a group of odd order cannot contain a subgroup of even order.
Thus, in general, groups of odd order should be less complicated than groups
of even order. However, for (CA)-groups, the Brauer-Suzuki-Wall Theorem was
proved a few years earlier than Suzuki’s Theorem. Similarly, the two theorems
on (CN)-groups were proved at about the same time. The reason was that,
although groups of even order are more complicated, one has the advantage of
the Brauer-Fowler techniques when one studies them. It is my conjecture that
this stimulated the desire for a similar “advantage” for groups of odd order and
increased interest in Burnside’s Conjecture.

FT was proved in 1963. It led to two types of consequences:

1) There were several articles that classified families of “small” simple groups
by quoting FT and using its proof as a model.

2) There were several new results in FT about arbitrary finite groups that

were developed into further results.

1.2. Special Properties of Odd Order Groups
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What accounts for the vast difference between groups of odd order and groups
of even order? The former must be solvable, while the latter can be extremely
complicated, e.g., they can be nonabelian simple groups properly containing
other nonabelian simple groups. We cannot really explain this, but we can

describe some small, but significant, special properties of groups of odd order.

Proposition 1. Suppose G is a group and |G| = p*q for odd primes p < q.
Then G has a normal Sylow q-subgroup.

Counterexample for even order: G = Ay, of order 12.

Proof: By Sylow’s Theorem, the number of Sylow ¢-subgroups of GG has the
form 1 + kq for some integer k, and is a divisor of |G]. Since |G| = p%q, and

1 + kg is relatively prime to ¢, 1 + kq divides p?. Hence, 1 + kg = 1,p, or p*.

If 1 + kg = 1, then G has a normal Sylow g-subgroup, as desired. An easy
exercise eliminates the possibility that 1 + kg = p or p*.

Henceforth, for every positive integer n, let us write G,, to denote a cyclic
group of order n, such as the roots of ™ = 1 in the complex field C let us

denote by C* the group of all nonzero complex numbers under multiplication.

Proposition 2. Let n be a posilive inleger. Consider the homomorphisms [ of

G, into C*. Then n is odd iff the only real-valued f is the trivial homomorphism

(f(Gn) = {1}).

Proof: Exercise.

At the International Congress of Mathematicians in 1962, John Thompson
gave the talk [T1], in which he described some important tools used in the
proof of FT. Two, which we give below, are theorems whose proofs are beyond
the scope of these lectures. (The second is about group characters: readers

unfamiliar with group characters may ignore it and later references to them, as
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they are not essential to this article.)

Theorem 1([BG], Theorem 4.20, p.44) Suppose G is a group of odd order
and, for every prime p, G has no subgroup isomorphic to the direct product

Gp x Gy x G,. Then the derived group (commutator subgroup) of G is nilpotent.
Counterexamples for even order: Sy, As, Ss.

Theorem 2(Burnside; [Gor], p.133) Suppose G is a finite group. Then |G|
is odd if and only if the only real-valued irreducible complex character of G is

the principal character (given by f(G) = {1} ).

The proof of Theorem 1 uses the ideas in the proof of Proposition 1. Theorem
2 generalizes Proposition 2.

A third tool mentioned by Thompson was numerical calculation regarding
p-subgroups of the minimal counterexample GG, where p is a prime. In prov-
ing various properties by contradiction, the authors were able to obtain the

inequality p < 3. Since |G| is odd, this is impossible.

2. Outline of the proof

The proofs of the (CA)-Theorem and, especially, of the (CN)-Theorem give a
miniature version of the proof of FT. Fortunately, part of the proof of the (CA)-
Theorem is fairly elementary. Here we give some of the elementary part of the
(CA)-theorem, as well as the general outline of the (CA)-Theorem. This leads

to the outline of the proof of FT and to revisions and simplifications of FT.

2.1. (CA)-groups

We first introduce or recall some notation for an arbitrary group G. A ma-
zimal subgroup of G is a maximal proper subgroup of G.. An abelian subgroup
A of G is a mazimal abelian subgroup of G if A = B for every abelian subgroup
B of G that contains A.
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Henceforth in this section, assume that G is a (CA)-group. Let A be the

set of all maximal abelian subgroups of . Define a relation ~ on G# by

x~y if xy=yx

Proposition 1. (a) The relation ~ is an equivalence relalion on G¥#.

(b) For every equivalence class C' under ~, the set C'U {1} is a mazimal
abelian subgroup of G. Moreover, every mazimal abelian subgroup of G arises
in this way.

(¢) Suppose A€ A, x € A* and 1 < B < A. Then
Cg($) = C(;(B) = A.

(d) For Ay, Ay distinel elements of A, Ay N Ay = 1.
(e¢) Each element A of A is a Hall subgroup of G, i.e., the order |A| is
relatively prime lo the index |G : Al.

Proof: Parts (a) through (d) are easy exercises.

For part (e), let p be a prime divisor of |A|. Take z in A of order p, and let
S be a Sylow p-subgroup of GG that contains x. Recall that the center of S is
defined by

Z(8) = Cs(S)

and, by an elementary property of finite p-groups, Z(S) > 1. By (c),

Z(S)<Cglz)=A and S<Cq(Z(5)=A
Therefore, p does not divide |G : Al.
We now define an important concept for the proof of FT. Our definition is

different from the usual one, but they are equivalent because of an important

theorem of Frobenius.
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Definition. A finite group H is a Frobenius group if il possesses a normal
subgroup K such that

()1 < K < H, and

(ii) Cu(z) < K for every x € K¥.

Proposition 2. Let A € A and H = Ng(A). Then
either (i) H = A
or (it) H is a Frobenius group (with K = A).

Proof: Exercise.

Proposition 3. Suppose G is a non-abelian simple (CA)-group. Then
(a) for each A € A, Ng(A) is a Frobenius group, and

(0) |G¥#| = TaealA#|.

Proof: This, too, is an exercise. (For (a), one must use a theorem of Burnside
to say that no non-identity Sylow subgroup S can be contained in the center of

its normalizer, Ng(5). Part (b) does not require that G be simple.)

2.2. Outline of Proof of special cases

Let us recall the (CA)-theorem:

Theorem (Suzuki). Every (CA)-group G of odd order is solvable.

As we have mentioned, the proof of this theorem (and, even more, of the
(CN)-theorem) are helpful in understanding the proof of FT. For this theorem,
one uses induction on |G| and easily reduces to the case in which G is a non-
abelian simple group. Then the proof is divided into two parts:

(1) Local analysis. (This includes the study of centralizers of elements and
normalizers of subgroups of prime power order). In this part, Suzuki proves

Propositions 1-3 and further results. It follows easily that each maximal sub-
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group of G has the form Ng(A) for some A in A (although this is not mentioned).
The results of this section do not use essentially the fact that |G| is odd; for
example, they are valid for As.

(2) Character theory. (This refers to the study of the complex characters
of G.) Here, Suzuki shows how the results of Part (1) lead to very strong
information about the characters of . In particular, he obtains “exceptional
characters” arising from Frobenius groups as in the work of Brauer and Suzuki
described in Section 4.5 of [Gorl]. Here, he needs to invoke the assumption
that |G| is odd to apply Burnside’s result (Theorem 2 above). He obtains
some inequalities from character theory that could be regarded as analogues of
Proposition 3(b), and uses them to force a contradiction.

The (CN)-Theorem asserts

Theorem (Feit-M.Hall-Thompson). Every (CN)-group of odd order is solv-
able.

The proof is similar in outline to Suzuki’s proof, but the much greater gen-
erality causes significant complications that the authors overcome. The first
part uses local analysis. As in Suzuki’s proof, they show that every maximal
subgroup of the minimal counterexample is a Frobenius group. In the next
part, they find a somewhat simpler character theory argument than Suzuki’s
and use it to obtain inequalities showing that |G| < 70, which easily yields a

contradiction.

2.3. Outline of Proof of FT

The proof of FT was immensely more difficult than the proof of the previous
special cases. A comparison of the lengths of the articles, although dramatic,
only hints as to the difficulty: 10 pages for the (CA)-Theorem, 17 for the
(CN)-Theorem, and 255 pages for F'T. The most striking difference is that, in
the previous cases, each maximal subgroup M of the minimal counterexample

G is a solvable (CN)-group, while here M is merely a solvable group of odd
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order. Thus, the whole group G is like a featureless block or cube delivered to
a sculptor. Therefore, it is surprising that the general outline of the proof of
FT, like that of the (CN)-Theorem, follows the outline of Suzuki’s proof ([T1],
p.296).

In the previous cases, it is fairly easy to see that M is “close to” a Frobenius
group; here, there are virtually no restrictions on M, which could have derived
length one million, for example. On the other hand, very little was known about
determining the characters of a group from subgroups other than Frobenius
groups. Thus, the work had two main aspects:

To reduce the structure of a maximal subgroup M by local analysis, from a
random shape to some restricted shape.

To enlarge the scope of the character theory framework from the case where

M is a Frobenius group to a much more general case.

Amazingly, Feit and Thompson succeeded in this program. The local analy-
sis was done mainly by Thompson and the character theory by Feit. Most of the
proof of FT was worked out at a conference at the California Institute of Tech-
nology in Summer, 1960, and at an academic year program at the University of
Chicago in 1960-61.

The published proof of FT is divided into six chapters. Chapters I-I11 con-
sist mainly of preliminary results in local analysis and character theory, includ-

ing many innovations. In Chapter IV, they begin the attack on the minimal
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counterexample (G. They show, mainly by local analysis, that every maximal
subgroup of G is “close to” being a Frobenius group. In Chapter V, they use
character theory to sharpen the results of Chapter IV and to obtain the exact
structure of two maximal subgroups of GG. Here, they draw heavily on Chapter
11, in which they had extended the previously known character theory to cover
subgroups like those in the conclusion of Chapter IV. Finally, in Chapter VI,
they obtain a contradiction by using generators and relations, a technique not
used in the (CA)- and (CN)-Theorems (although used in many previous and
subsequent proofs classifying simple groups).

For convenience, we refer to the local analysis (Chapter IV and its necessary
preliminaries) as Part (1); the character theory (Chapter V and its necessary

preliminaries) as Part (2); and Chapter VI as Part (3).

2.4. Revision of the proof

In 1962, Thompson wrote ([T1], p.299) about FT “It is certain that these
techniques can be refined to give a neater proof...[of FT| than the present one.”
This expectation has been borne out, partially by recent work, including work
by Feit and Thompson themselves.

The first dramatic improvement in the proof of FT was achieved by Helmut
Bender in 1970 [Be]. It concerned an important result in Part (1) of the proof:
a subgroup H of G is contained in a wnique maximal subgroup of G if H
contains the direct product G, x G, x G}, of three copies of some cyclic group
of prime order p. This result is called the Uniqueness Theorem. Its original
proof occupies roughly the first half of the attack on G in Chapter IV of [FT],
about 50 pages. By a new technique, now called “the Bender method”, Bender
reduced the proof to 10 pages.

In 1991, Feit and Thompson obtained a further improvement in Part (1) that
eliminated a difficult point in the proof ([BG], pp.121,122,133,157-166). This
and Bender’s improvement were included in a revision of Part (1) by Bender
and myself (with the assistance of Walter Carlip) published in 1994 [BG].

In 1976, David Sibley obtained [Sibl] a major advance in character theory
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that was applicable to FT. In 1988, Sibley used this advance (and an earlier
simplification by Everett Dade [D]) to revise most of Part (2) of FT in unpub-
lished work [Sib2]. Now Thomas Peterfalvi has revised all of Part (2) in work
that is likely to be published in 1999 [P2]. His revision partially draws upon
Sibley’s work.

In 1984, Peterfalvi published [P1] a revision of Part (3) of FT that halved
its length. His proof is included in [BG] (Appendix C).

These revisions relied partly on advances concerning solvable groups or
groups of odd order that were developed from innovations in [FT]. Most of
the techniques that they replaced did not become obsolete, but were needed in
proofs of later theorems classifying families of simple groups.

In my opinion, these revisions have greatly reduced the technical difficulty of
the proof of FT. Bender’s and Sibley’s work make unnecessary many arguments
for special cases in the original proof. However, the revisions have not substan-
tially reduced the length of the proof, partly because they were not written for
journals, and include more details than the original.

I would estimate that Part (1) takes up about 120 pages in the original
and about 155 in the main body of [BG]. (This is partly because we include
the proofs of some results that are quoted without proof in [FT].) Similarly,
I estimate that Peterfalvi has reduced Part (2) from 110 to 90 pages. For
Peterfalvi’s proof as in [BG], Part (3) is reduced from 17 to 8 pages. In my
mind, this suggests the following:

Open problem: Find a key idea in the original proof or a radical new idea to

shorten the proof of F'T.

For example, Bender’s proof of the Uniqueness Theorem reduces it from
about 50 pages to 15 in [BG]. A similar reduction of the entire proof would
reduce it from 255 pages to about 75. I would like to think of the current
revisions as a middle stage in the understanding of FT that may inspire some

reader to find a better way.
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During the lectures, Dr. A. Solecki asked how much background is needed
for reading these revisions. More generally, one can ask about the earlier special
cases of FT as well. In brief, the answers are:

small for the (CA)-Theorem
medium for the (CN)-Theorem
very large for FT.

One can read Suzuki’s 10 page proof of the (CA)-Theorem with only a
standard first-year graduate course in algebra and an elementary introduction
to character theory. The same background, together with parts of [F1], is
sufficient to read the proof of the (CN)-Theorem in [F1], Section 27.

For FT, the background is much more extensive. The prerequisites for [BG]
are described in detail in Appendix A of the book. The main text of [BG]
has been presented in several seminars and classes ([BG]. p. xi). In [P2], the
author suggests some additional reading in character theory. However, Part (3)
requires no more background than Suzuki’s (CA)-Theorem.

The (CN)-Theorem includes the (CA)-Theorem. For someone who plans
to read FT, it is not strictly necessary to read the (CN)-Theorem. The local
analysis part of the (CN)-Theorem is subsumed in Part 1 of FT, while the
final contradiction is obtained as part of [P2]. Nevertheless, I would strongly
recommend reading the (CN)-Theorem first, because it is an important special
case of FT and because its proof gives an excellent preview of the outline and

some main themes of FT.

3. The final contradiction and Suzuki’s new result

3.1. Introduction

In Section 2, we gave an outline of the proof of FT, roughly as follows:
(1)(Local analysis) Show that all the maximal subgroups of the minimal

counterexample G are “close to” Frobenius groups.
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(2)(Character theory) Sharpen the results of (1).

(3)(Generators and relations) Obtain a contradiction.

We also described Part (1) for Suzuki’s (CA)-Theorem. Here, we describe
some aspects of Part (2) for the (CA)-Theorem, Parts (2) and (3) for FT, and
a new, unpublished result of Suzuki.

Thompson describes Suzuki’s (CA)-theorem as “a marvel of cunning”([T2],
pp.10-11) that “removed one of the major stumbling blocks” in the proof of
FT ([T1], p.296). He is referring mainly to Part (2) of the proof. Here, one is
dealing with Frobenius groups of the form Ng(A), where A is a maximal abelian
subgroup of GG. Suzuki shows that

(a) for each irreducible character y of Ng(A) not containing A in its kernel,
x corresponds to an “exceptional” character x’ of GG, and

(b) each non-principal irreducible character of G has the form y/, for some
A unique up to conjugacy in G, and some unique Y.

He uses these facts to obtain a series of inequalities that could be regarded
as far-reaching generalizations of Proposition 3(b) in Section 2.1 above. These
inequalities yield a contradiction.

Part (2) of FT is inspired by Part (2) of the (CA)-Theorem and vastly
generalizes it.

Thompson writes ([T2], pp.10-11),

In order to have a genuinely satisfying proof of the odd order theorem, it
is necessary, it seems to me, not to assume this [Suzuki’s] theorem. Once one
accepts this theorem as a step in a general proof, one seems irresistibly drawn
along the path which was followed. To my colleagues who have grumbled about
the tortuous proofs in the classification of simple groups, I have a ready answer:

1mn anotner proolt o uzu iS Lheorem.
find another proof of Suzuki’s th

3.2. Intermediate Results in Parts (2) and (3) of FT

In Part (2) of FT, Feit and Thompson sharpen the results of Part (1) to

obtain very precise information about the minimal counterexample G. In par-
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ticular, they obtain distinct odd primes p and ¢ and maximal subgroups S and

T for which they prove the following:
(A) Let F be the finite field of order p? and v = (p? — 1)/(p — 1). Then

g and u are relatively prime to p — 1 and S is isomorphic to the group of all

permutations of F of the form

z—ax’ +b (z € F),

where a,b € F and ¢* = 1, and o lies in the Galois group of F over the prime

field F, = GF(p).

It is easy to describe the structure of S. It has normal subgroups F and EU

as follows:

E corresponds to the group of all translations x — x + b (thus, F is isomor-

phic to the additive group of F);

U corresponds to the group of all field multiplications of the form = — ax,

where a* =1 (thus, U is a cyclic group of order u);
S/EU is a cyclic group of order q.

In addition, Ng(U) contains a cyclic subgroup W of order pg such that
Ne(W)=W and WnNCgU)=1.

(B) T has the same structure as S, with p and ¢ interchanged, and SN 7T is
cyclic of order pg (and thus isomorphic to W).

C) For every maximal subgroup M of G,

(

(1) M is conjugate to S in G, or
(ii) M is conjugate to T in G, or
(

iii) M is a Frobenius group.

We may describe the structure of S by a diagram:
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Cyclic of order ¢

U Cyclic of order u

Elementary abelian
E y q
of order p

In Part (3) of FT, the authors obtain a contradiction. By the symmetry
between p and ¢ above, they can assume that p > ¢g. They take the subgroup
E, of E corresponding to the translations x — x + b for b ranging over F,, and

they consider the set

D ={a€Fla*=(2—a) =1}

Using elementary character theory, they show that D contains at least 2
elements. (Note that 1 € D.) This is a property of finite fields, independent of
the proof of FT. They also show that FU = UFE,U. Then, by arguments with
generators and relations, they eventually obtain that p < ¢, a contradiction.

Part (3) is the shortest and easiest part of FT to read (only 8 pages in
Appendix C of [BG]). It does not require familiarity with the results and meth-
ods of Parts (1) and (2), except elementary character theory for one lemma.
It was the first part of FT that I read completely (after reading Gorenstein’s
enthusiastic description in [Gorl], pp.459-461). I strongly recommend reading
Gorenstein’s description and then Part (3) itself.

3.3. Suzuki’s New Result

In [Sz3], Suzuki announced some unpublished work in which he obtains much
of the main results of Part (1) and (2) of FT under a more general hypothesis
that is actually satisfied by many familiar simple groups. Thus, the beautiful
ideas of Feit and Thompson can be applied to groups that really exist, instead

of vanishing with the final contradiction.
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To state Suzuki’s main results, we define the prime graph I'(G) of an arbi-
trary finite group G. The vertices of the graph are the elements of 7((&), the set
of all prime divisors of |G|. Two primes p and ¢ form an edge {p, ¢} if p # ¢ and
if G contains an element of order p and an element of order ¢ that centralize
each other. A subset A of (@) is a clique if {p, ¢} is an edge for every distinct
p,q in A.

A non-identity proper subgroup H of G is isolated if Cg(x) < H for every
xin H#,

Now consider the following conditions:

Hypothesis C. (i) G is a finite group
(ii) A is a non-emply connecled component of I'(G)
(iit) A is a proper subset of m(G) and 2 ¢ A.

We have two results:

Theorem 1. (Suzuki [Sz3]; announced 1997, unpublished) Assume Hy-
pothesis C. Suppose G is simple. Then A is a clique. Moreover,
either (a) G conlains a nilpolent Hall A-subgroup thal is isolaled in G
or (b) for some distinel primes p and q, A = {p, q} and G possesses a
cyclic subgroup W of order pq such that Ng(W)=W.

As an example for Theorem 1, one may take any integer n greater than 1

and let
G=Lyq)=5L(2,q) for ¢g=2"

Then G has a cyclic subgroup 1 of order ¢+ 1, and one can take A = w(G1).

Theorem 2. Assume Hypothesis C and the classificalion of finile simple groups.
Then

(a) (Gruenberg, Kegel, J. S. Williams [Sz3]) A is a clique, and

(b) (J. S. Williams [W]) if G is simple, then G conlains a nilpolent Hall
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A-subgroup isolated in G.

Suzuki says that Theorem 2(a) has not been stated before [Sz3], but follows
easily from work of Gruenberg and Kegel [GK] and Williams. Note that it does
not require G' to be simple. Although Theorem 1 follows from Theorem 2, its
proof does not require assuming the classification of finite simple groups, but
only approximately the same background as FT. (For proving FT, one allows

A = 7(G) at first, but eventually eliminates this possibility.)
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