

WITT-GROTHENDIECK RINGS AND π -HENSELIANITY

Antonio José Engler*

Abstract

Consideramos neste artigo o subanel $\widehat{W}(\Sigma \dot{F}^2)$, do anel de Witt-Grothendieck de um corpo formalmente real F, gerado por elementos que são somas de quadrados. Nosso objetivo é demonstrar que se F contém um anel de valorização que tem a propriedade do levantamento para raízes quadradas de somas de quadrados, então $\widehat{W}(\Sigma \dot{F}^2)$ pode ser descrito como um quociente de um anel de grupo.

In this note we consider the subring $\widehat{W}(\Sigma \dot{F}^2)$, of the Witt-Grothendieck ring of a formally real field F, generated by sums of squares. Our goal is to show that if F admits a valuation ring which has the lift property relative to square roots of sums of squares, then $\widehat{W}(\Sigma \dot{F}^2)$ is a suitable quotient of a group ring.

1. Introduction

Let F be field of characteristic different from two. Following [L] we denote by $\widehat{W}(F)$ the Witt-Grothendieck ring of quadratic forms over F. Let $\Sigma \dot{F}^2$ be the subgroup of the multiplicative group $\dot{F} = F \setminus \{0\}$ consisting of all sums of squares. Set $\widehat{W}(\Sigma \dot{F}^2)$ for the subring of $\widehat{W}(F)$ generated by isometry classes of quadratic forms $\langle t_1, \ldots, t_n \rangle$ with $t_i \in \Sigma \dot{F}^2, i = 1, \ldots, n$. We shall also denote by F_{π} the pythagorean closure of F (F_{π} is the field which arises from F by iterating the process of adjoining the square roots of all sums of squares). A valuation ring F of F is called F-henselian if F extends uniquely to F-bulk Equivalently, Hensel's Lemma applies to polynomials splitting over F

The aim of this note is to establish a π -henselian analogue of a result of W. Scharlau concerning henselian fields of characteristic different from two ([Sch],

^{*}Supported by a grant from CNPq-Brasil.

Korollar 4.1.3). Scharlau's theorem extends an old result of T. A. Springer on local fields ([L], Chapter 6).

Main Theorem: Let F be a formally real field which admits a π -henselian valuation ring A such that the residue field k of A is not formally real and char $k \neq 2$. Then there exists a subgroup T of $\Sigma \dot{F}^2/\dot{F}^2$ such that $\widehat{W}(\Sigma \dot{F}^2) \cong \widehat{W}(k)[T]/\mathfrak{a}$, where \mathfrak{a} is the ideal generated by $\{t\mathbb{H} - \mathbb{H} \mid t \in T \text{ and } \mathbb{H} = \langle 1, -1 \rangle\}$.

In next section we prove the Main Theorem and we deduce from it that $\widehat{W}(\Sigma \dot{F}^2)$ is isomorphic to the Witt-Grothendieck ring of a generalized formal power series field.

In section 3 we recall from [En] and [En2] how π -henselian valuation rings arise from totally positive rigid elements (see Definition 3.1). We deduce from this a partial converse of the Main Theorem where the link between π -henselian valuation rings and the Witt-Grothendieck ring of a generalized formal power series field will be completed (Theorem 3.6). This result may as well be regarded as a relative version for $\widehat{W}(\Sigma \dot{F}^2)$ of a result of Berman ([Ber], Theorem 1.1) on power series fields.

Conventions: Throughout the paper, unless otherwise explicitly stated, all valuation rings considered have non-formally real residue field of characteristic not 2.

In what follows all fields will have characteristic $\neq 2$ and for any field F, \dot{F} , \dot{F}^2 , and $\Sigma \dot{F}^2$ will denote the multiplicative groups of nonzero elements, squares, and sums of squares, respectively. The quadratic closure of F and the pythagorean closure are denoted by F(2) and F_{π} respectively. Write $Gal(F(2); F) = G_2(F)$ and $Gal(F_{\pi}; F) = G_{\pi}(F)$ for the Galois groups.

For $a_1, a_2, \ldots, a_n \in \dot{F}$, $\langle a_1, a_2, \ldots, a_n \rangle$ denotes the diagonal quadratic form $a_1 X_1^2 + a_2 X_2^2 + \cdots + a_n X_n^2$ over F and $D\langle a_1, a_2, \ldots, a_n \rangle$ stands for its nonzero values. If q_1 and q_2 are quadratic forms over F, $q_1 \simeq q_2$ means that q_1 and q_2 are isometric. Let W(F) be the Witt ring of all isometry classes of anisotropic

quadratic forms over F.

Observe that if F is not formally real then $\Sigma \dot{F}^2 = F$ and $F_{\pi} = F(2)$. Hence π -henselian valuation rings are the well-known 2-henselian valuation rings, $\widehat{W}(\Sigma \dot{F}^2) = \widehat{W}(F)$, and so our Main Theorem coincides with Scharlau's result ([Sch], Korollar 4.1.3). On the other side, if F is formally real, the restriction of the natural map $\widehat{W}(F) \longrightarrow W(F)$ to $\widehat{W}(\Sigma \dot{F}^2)$ is injective. Therefore $\widehat{W}(\Sigma \dot{F}^2)$ may be seen as a subring of W(F).

Any unexplained property concerning quadratic forms can be found in [L], while any concerning valuation theory can be found in [E].

2. The subring $\widehat{W}(\Sigma \dot{F}^2)$

For every profinite group G let $H^i(G) = H^i(G, \mathbb{Z}/2\mathbb{Z})$ be the i-th cohomology group of G with coefficients in $\mathbb{Z}/2\mathbb{Z}$. Since G operates trivially on $\mathbb{Z}/2\mathbb{Z}$, $H^1(G)$ is precisely the group of all continuous group homomorphisms from G to $\mathbb{Z}/2\mathbb{Z}$.

If $G = G_2(F)$, for some field F, then $H^1(G)$ and $H^2(G)$ can be studied by arithmetic objects within F itself. The natural isomorphism $\mathbb{Z}/2\mathbb{Z} \cong \{\pm 1\}$ induces an isomorphism $\dot{F}/\dot{F}^2 \longrightarrow H^1(G_{\pi}(F))$ where each class $t\dot{F}^2$ corresponds to χ_t defined by $\chi_t(\sigma) = \sigma(\sqrt{t})/\sqrt{t}$. Clearly kernel $\chi_t = G_{\pi}(F(\sqrt{t}))$. Observe that this isomorphism restricts naturally to $\Sigma \dot{F}^2/\dot{F}^2 \cong H^1(G_{\pi}(F))$. Indeed, if $F(\sqrt{t}) \subset F_{\pi}$, each order of F extends to $F(\sqrt{t})$. Thus t has to be totally positive in F.

It is well-known that $H^2(G) \cong Br(F)(2) =$ the subgroup of the Brauer group consisting of elements of order ≤ 2 . Under this isomorphism $\chi_t \cup \chi_s$ corresponds to the Brauer class of the quaternion algebra (t,s), for every $t,r \in \dot{F}$ (see [Se], pp. 204-207). The isomorphism and Corollary 2.2 of [W2] imply that $H^2(G_{\pi}(F))$ may be seen as a subgroup of Br(F)(2).

For a profinite group G, Scharlau defined the Witt-Grothendieck ring of G as the quotient ring $\widehat{W}(G) = \mathbb{Z}[H^1(G)]/Ke(G)$, where Ke(G) is the ideal of the group-ring $\mathbb{Z}[H^1(G)]$ generated by the elements of the form $\chi_1 + \chi_2 - (\chi_3 + \chi_4)$ with $\chi_1, \chi_2, \chi_3, \chi_4 \in H^1(G)$ and $\chi_1\chi_2 = \chi_3\chi_4$ in $H^1(G)$ and $\chi_1 \cup$

 $\chi_2 = \chi_3 \cup \chi_4$ in $H^2(G)$ ([Sch], Definition 1.2.1). Delzant ([D], or [Sch], Satz 1.3.1) stated that if G is the Galois group of the separable closure of a field F, then $\widehat{W}(G)$ is canonically isomorphic to $\widehat{W}(F)$. Actually, by ([Sch], Korollar 1.2.4) $\widehat{W}(F) \cong \widehat{W}(G_2(F))$. Ware has shown that $\widehat{W}(G_{\pi}(F)) \cong \widehat{W}(\Sigma \dot{F}^2)$ (see the proof of Theorem 2.5 in [W2]). Let us point out that the isomorphism $\widehat{W}(F) \cong \widehat{W}(G_2(F))$ (resp. $\widehat{W}(\Sigma \dot{F}^2) \cong \widehat{W}(G_{\pi}(F))$) is induced by $\langle t \rangle \longmapsto \chi_t$ ([Sch], Satz 1.3.1).

Next we record a result which will be crucial in the proof of the Main Theorem. Recall first that if N is a normal subgroup of a profinite group G, G/N has a natural action on $H^1(G)$. Namely, for every $g, h \in G$ if \bar{h} is the class of h in G/N, $\chi^{\bar{h}}(g) = \chi(h^{-1}gh)$. As usual, Inf and Res denote respectively the maps inflation and restriction ([R], p. 131 and p. 134).

Proposition 2.1 ([Sch], Satz 4.1.1) Let $1 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 1$ be an exact sequence of profinite groups such that

- (a) N is abelian,
- (b) the action of G/N on $H^1(N)$ is trivial,
- (c) Inf: $H^2(G/N) \longrightarrow H^2(G)$ is injective,
- (d) there exists $\alpha \in H^1(G/N)$ such that $\chi \cup \chi = \chi \cup Inf(\alpha)$ for every $\chi \in H^1(G)$.

If T is a subgroup of $H^1(G)$ for which $Res|_T : T \longrightarrow H^1(N)$ is an isomorphism, then $\widehat{W}(G) \cong \widehat{W}(G/N)[T]/\mathfrak{a}$, where \mathfrak{a} is the ideal generated by $\{t\langle 1 \rangle + t\langle \alpha \rangle - \langle 1 \rangle - \langle \alpha \rangle \mid t \in T\}$.

The above ring isomorphism is induced by the natural homomorphism $G \longrightarrow G/N$.

The conditions (a) to (d) are the motivation for the next three propositions.

Proposition 2.2. Let F be a field such that $\Sigma \dot{F}^2 = D\langle 1, r \rangle$ for some $r \in \Sigma \dot{F}^2$. Then, $(t, t) \cong (t, r)$, for every $t \in \Sigma \dot{F}^2$. **Proof:** Since $t \in D\langle 1, r \rangle$, $-r \in D\langle 1, -t \rangle$. Thus, by ([L], Proposition 1.3, p. 276), $\langle 1, -t, -r, tr \rangle \simeq 2\langle 1, -t \rangle \simeq \langle 1, -t, -t, 1 \rangle$. Therefore Proposition 2.5, (p. 57), of [L] implies that $(t, t) \cong (t, r)$, as desired.

We now consider a formally real field F which admits a π -henselian valuation ring A with non-formally real residue field k, $char k \neq 2$. Let C be its unique extension to F_{π} and denote by $G^{T}(C; F)$ the inertia group of C over F. By ([En], Proposition 4.1) k_{C} is the quadratic closure of k. Therefore $G(k_{C}; k) = G_{2}(k)$. For the sake of completeness we shall record the description of $G_{\pi}(F)$ by means of $G^{T}(C; F)$ and $G_{2}(k)$.

Proposition 2.3. Keeping above notation,

- (1) $G^T(C; F)$ is an abelian pro-2 group (see the comments at the beginning of §3 of [En2]).
- (2) $G_{\pi}(F) \cong G^{T}(C; F) \rtimes G_{2}(k)$ ([En2], Proposition 3.2 (b)).

Proposition 2.4. With the same notation of the last proposition,

- (1) $G_2(k)$ operates trivially on $H^1(G^T(C;F))$.
- (2) Inf: $H^2(G_2(k)) \longrightarrow H^2(G_{\pi}(F))$ is injective.

Proof: We shall prove that Res: $H^1(G_{\pi}(F)) \longrightarrow H^1(G^T(C; F))$ is a surjective map. Therefore the result follows from the "5-term exact sequence" ([R], Corollary 5.4 p. 177).

Let us denote by K the fix field of $G^T(C:F)$ (K is the inertia field of C over F). By ([En2], Proposition 3.6) the inclusion $F \subset K$ induces an isomorphism $\Sigma \dot{F}^2/(A^*\dot{F}^2 \cap \Sigma \dot{F}^2) \cong \Sigma \dot{K}^2/\dot{K}^2$. Thus, as remarked in the beginning of the section, for every $\chi \in H^1(G^T(C;F))$ there is $t \in \Sigma \dot{F}^2$ such that $\operatorname{Res}(\chi_t) = \chi$.

Proof of the Main Theorem: We shall prove that the conditions of Proposition 2.1 apply to $G_{\pi}(F)$, $G^{T}(C; F)$ and $G_{2}(k)$.

By the propositions 2.3 and 2.4 conditions (a) to (b) are satisfied.

Let $\varphi: A \longrightarrow k$ be the natural map. Since k is not formally real, there is $u \in A^* \cap \Sigma \dot{F}^2$ such that $\varphi(u) = -1$. In order to use Proposition 2.2 to verify (d) we shall show that $\Sigma \dot{F}^2 = D\langle 1, u \rangle$.

Let $t \in \Sigma \dot{F}^2$ and write $t = x_1 + \dots + x_n$ where $x_1, \dots, x_n \in \dot{F}^2$. We may assume that $n \geq 2$. Take $1 \leq i \leq n$ such that $v(x_i) \leq v(x_j)$, for every $1 \leq j \leq n$, where v is a valuation corresponding to A. Without loss of generality we may assume i = 1. Then $tx_1^{-1} = 1 + x_1^{-1}(x_2 + \dots + x_n) \in A$ and also $x_1^{-1}(x_2 + \dots + x_n) \in A$. If $x_1^{-1}(x_2 + \dots + x_n) \in m$, the maximal ideal of A, then $tx^{-1} \in (1+m) \cap \Sigma \dot{F}^2$ and so $tx^{-1} \in \dot{F}^2$, by ([En], Proposition 2.1). Since this contradicts $n \geq 2$, it follows that $x_1^{-1}(x_2 + \dots + x_n) \in A^*$. We now consider two cases. If $tx_1^{-1} \in m$, then $\varphi(x_1^{-1}(x_2 + \dots + x_n)) = -1 = \varphi(u)$. Hence $x_1^{-1}(x_2 + \dots + x_n)u^{-1} \in (1+m) \cap \Sigma \dot{F}^2$. Therefore, arguing as above, $x_1^{-1}(x_2 + \dots + x_n)u^{-1} \in \dot{F}^2$ and $t \in D\langle 1, u \rangle$ as desired. If $tx_1^{-1} \in A^*$, for $a = \left((tx_1^{-1} + 1)/2\right)^2$ and $b = \left((tx_1^{-1} - 1)/2\right)^2$, $\varphi(tx_1^{-1}) = \varphi(a) - \varphi(b) = \varphi(a + ub)$. Once again $tx_1^{-1}(a + ub)^{-1} \in (1+m) \cap \Sigma \dot{F}^2$ will imply $t \in D\langle 1, u \rangle$, proving the claim.

Once this is established, then Proposition 2.2 implies that $(t,t) \cong (t,u)$, for every $t \in \Sigma \dot{F}^2$. Thus, as we have seen in the beginning of the section, $\chi_t \cup \chi_t = \chi_t \cup \chi_u$ for every $\chi_t \in H^1(G_\pi(F))$. To complete the verification that condition (d) holds it remains to be seen that $\chi_u \in \text{Inf}(H^1(G_2(k)))$. To this end, assume first that $-1 \notin \dot{k}^2$ and take $L = F(\sqrt{u})$. Let B be the unique extension of A to L. It is pretty clear that $k(\sqrt{-1})$ is the residue field of B. Then L is unramified over F. Since $char k \neq 2$, by ([E], Theorem 20.21, p. 70), A is defectless in any finite subextension $F \subset E \subset F_\pi$. So, by ([E], Theorem 22.7, p. 182) it follows that $G^T(C; F) \subset G_\pi(L)$. Hence $G_2(k(\sqrt{-1})) = G_\pi(L)/G^T(C; F)$ which means that $\text{Inf}(\chi_{-1}) = \chi_u$ and so (d) is true in this case. Consider now the case $-1 \in \dot{k}^2$. By ([En2], Lemma 5.6) we can choose u = 1. Since $\chi_1 = \chi_{-1}$ in $H^1(G_2(k))$, $\text{Inf}(\chi_{-1}) = \chi_u$ again. Therefore $\alpha = \chi_{-1} \in H^1(G_2(k))$ verifies the condition (d).

Finally, take a subgroup T of $\Sigma \dot{F}^2/\dot{F}^2$ such that $T \oplus (A^*\dot{F}^2 \cap \Sigma \dot{F}^2/\dot{F}^2) =$

 $\Sigma \dot{F}^2/\dot{F}^2$. Then, by ([En2], Proposition 3.6), Res: $T_0 = \{\chi_t \mid t \in T\} \longrightarrow H^1(G^T(C;F))$ is an isomorphism. Therefore, Scharlau's result implies that $\widehat{W}(G_{\pi}(F)) \cong \widehat{W}(G_2(k))[T_0]/\mathfrak{a}_{\mathbf{o}}$, where $\mathfrak{a}_{\mathbf{o}}$ is the ideal generated by $\{\chi_t\langle 1\rangle + \chi_t\langle \chi_{-1}\rangle - \langle 1\rangle - \langle \chi_{-1}\rangle \mid t \in T\}$. Then, the statement follows immediately from the isomorphisms $\widehat{W}(\Sigma \dot{F}^2) \cong \widehat{W}(G_{\pi}(F))$ and $\widehat{W}(k) \cong \widehat{W}(G_2)$ previously described when one bears in mind that $\langle 1\rangle + \langle -1\rangle = \mathbb{H}$.

Observe that $\langle 1 \rangle \in \widehat{W}(\Sigma \dot{F}^2)$ does not have finite additive order, while W(k) is a torsion group, since k is not formally real. Therefore $\widehat{W}(k)$ cannot be replaced by W(k) in the above result.

Corollary 2.5. For a field F verifying the condition of the last theorem there are a non-formally real field k, char $k \neq 2$, and a totally ordered group Δ such that if $K = k((X))^{\Delta}$ is the field of generalized formal power series over k with respect to Δ , then $\widehat{W}(\Sigma \dot{F}^2) \cong \widehat{W}(K)$.

Proof: As in the proof of the theorem let k be the residue field of A, Γ the value group, and v be the corresponding valuation. Let $\Delta = v(\Sigma \dot{F}^2)$ with the natural ordering. Observe that $\Sigma \dot{F}^2/(A^*\dot{F}^2 \cap \Sigma \dot{F}^2) \cong (\Sigma \dot{F}^2)(A^*\dot{F}^2)/A^*\dot{F}^2 \cong \Delta/2\Delta$ where the last isomorphism is induced by v.

It is well-known that the valuation ring \mathcal{O} of $K = k((X))^{\Delta}$ corresponding to the Krull valuation w defined by $w\left(\sum_{\delta \in \Delta} a_{\delta} X^{\delta}\right) = \min\{\delta \in \Delta \mid a_{\delta} \neq 0\}$ is henselian, has value group Δ , and residue field k. Therefore the result follows by the previous theorem and ([Sch], Korollar 4.1.3).

3. Totally real rigid elements and π -henselianity

We start this section reviewing the results developed in [En] and [En2] for detecting the existence of π -henselian valuation rings of fields. We first recall two essential ingredients in this process.

Definition 3.1. An element $t \in \Sigma \dot{F}^2$ is called rigid if $t \notin \dot{F}^2$ and $D\langle 1, t \rangle =$ $\dot{F}^2 \cup t\dot{F}^2$.

Let $B_{\pi}(F) = \{ t \in \Sigma \dot{F}^2 \mid t \text{ is not rigid } \}.$

Next we improve Corollary 2.13 (2) of [En].

Proposition 3.2. For every formally real field F, $B_{\pi}(F)$ is a subgroup of \dot{F} .

Proof: If $B_{\pi}(F) = \Sigma \dot{F}^2$, there is nothing to prove. Assume $B_{\pi}(F) \neq \Sigma \dot{F}^2$. By ([Bos], Proposition 1.7), there exists modulo \dot{F}^2 exactly one $r \in \Sigma \dot{F}^2$ such that $\Sigma \dot{F}^2 = D(1,r)$ and also dr is rigid, for every rigid $d \in \Sigma \dot{F}^2$. Consequently, if rs is rigid for some $s \in B_{\pi}(F)$, then $r^2s \in B_{\pi}(F)$ is also rigid, a contradiction. Hence $rB_{\pi}(F) \subset B_{\pi}(F)$. On the other side, since $\Sigma \dot{F}^2 = D\langle 1, r \rangle$, by ([En], Proposition 2.1), $B_{\pi}(F) = B_{\pi}(F) \cup rB_{\pi}(F)$ is a subgroup of \dot{F} .

If F is a non-formally real field $(F = \Sigma \dot{F}^2)$, every rigid element t is birigid (when -t is also rigid ([CR], Corollary)). In this case $B_{\pi}(F)$ is the so-called set of basic elements and it is well-known that it is a subgroup of \dot{F} ([W], Proposition 2.4). If F is formally real, a rigid element $t \in \Sigma \dot{F}^2$ is not birigid ([BCW], Proposition 1) and so $\Sigma \dot{F}^2$ is contained in the set of basic elements. Thus $B_{\pi}(F)$ is a proper subgroup of the group of basic elements.

The above proposition allows a more precise formulation of Theorem 2.8 of [En].

Proposition 3.3. Let F be a formally real field such that $(\Sigma \dot{F}^2 : B_{\pi}(F)) \geq 2$ and $(\Sigma \dot{F}^2 : \dot{F}^2) = 4$ if $(\Sigma \dot{F}^2 : B_{\pi}(F)) = 2$. Then there exists a π -henselian valuation ring \mathcal{O} of F such that its residue field k is a non-formally real field of characteristic not 2 verifying $(\dot{k}: B_{\pi}(k)) \leq 2$.

Moreover,

- (1) O can be chosen such that either $\dot{k} = \dot{k}^2$ or k does not admit any 2henselian valuation ring.
- (2) $\dot{k} = B_{\pi}(k)$ if and only if $B_{\pi}(F) = \mathcal{O}^* \dot{F}^2 \cap \Sigma \dot{F}^2$.

(3) If $\dot{k} \neq B_{\pi}(k)$, then $B_{\pi}(F) = \dot{F}^2$, $(\mathcal{O}^*\dot{F}^2 \cap \Sigma\dot{F}^2 : \dot{F}^2) = 2$, $\Sigma\dot{F}^2 = D\langle 1, 1 \rangle$, $-1 \in \dot{k}^2$ and $(\dot{k} : \dot{k}^2) = 2$.

Proof: In the case $(\Sigma \dot{F}^2 : B_{\pi}(F)) > 2$ the existence of \mathcal{O} follows from ([En], Theorem 3.8) by putting $S = B_{\pi}(F)$.

In the other case, by ([En2], Proposition 5.4), there is a quadratic extension E of F such that $B_{\pi}(E) = \dot{E}^2$. Thus, applying the previous case to E we get a π -henselian valuation ring \mathcal{O}' of E. By ([En2], Corollary 2.8) F also admits a π -henselian valuation ring.

- (1) Following the notation of Corollary 2.6 of [En2] we choose $\mathcal{O} = A_{(2)}$ if $\mathcal{H}_2 \neq \emptyset$ and $\mathcal{O} = A_{(1)}$ otherwise. Hence the statement follows either from the properties of $A_{(2)}$ or $\mathcal{H}_2 = \emptyset$ and $A_{(1)}$.
- (2) By ([En], Proposition 2.5) $B_{\pi}(F) \subset \mathcal{O}^*\dot{F}^2$. Hence $B_{\pi}(F) \subset \mathcal{O}^*\dot{F}^2 \cap \Sigma \dot{F}^2$ is always true $(B_{\pi}(F) \subset \Sigma \dot{F}^2)$. Let φ the canonical projection $\mathcal{O} \longrightarrow k$. Since k is not formally real, $\varphi : \mathcal{O}^*\dot{F}^2 \cap \Sigma \dot{F}^2 \longrightarrow \dot{k}$ is a surjective map. By ([En], Corollary 2.15) $\varphi(\mathcal{O}^* \cap B_{\pi}(F)) = B_{\pi}(k)$. Therefore, an easy computation ends the proof of the equivalence.
- (3) By the choice of \mathcal{O} , $\dot{k} \neq B_{\pi}(k)$ can only occur if $\dot{k} \neq \dot{k}^2$ and k does not admit any 2-henselian valuation ring. Hence, by ([AEJ], Theorem 2.16) \dot{k}^2 is exceptional ([AEJ], Definition 2.15). Since k is not formally real and $\dot{k} \neq \dot{k}^2$ (char $k \neq 2$), it follows that $B_{\pi}(k) = \dot{k}^2$ and $-1 \in \dot{k}^2$. Hence $(\dot{k} : \dot{k}^2) = 2$. On the other side, if m is the maximal ideal of \mathcal{O} , we know from ([En], Proposition 2.1) that $(1+m) \cap \Sigma \dot{F}^2 \subset \dot{F}^2$. Therefore φ induces an isomorphism from $(\mathcal{O}^* \cap \Sigma \dot{F}^2)/(\mathcal{O}^*)^2$ onto \dot{k}/\dot{k}^2 . Thus $(\mathcal{O}^* \cap \Sigma \dot{F}^2 : (\mathcal{O}^*)^2) = 2$. Hence $((\mathcal{O}^* \cap \Sigma \dot{F}^2) \dot{F}^2 : \dot{F}^2) = 2$, as desired.

Now, Proposition 2.5 of [En] implies that $B_{\pi}(F) = \dot{F}^2$ and by ([En2], Lemma 5.6) $\Sigma \dot{F}^2 = D\langle 1, 1 \rangle$.

Observe that $\dot{k} = \dot{k}^2$ also implies $B_{\pi}(F) = \dot{F}^2$ ([En2], Proposition 2.5).

Next, let us organize some easy facts concerning $\widehat{W}(K)$. Following Lam ([L], Chapter 2, p. 34) we denote by $\widehat{I}(K)$ the kernel of the ring homomorphism

"dimension" $\dim: \widehat{W}(K) \longrightarrow \mathbb{Z}$. Let us write $\widehat{I}(\Sigma \dot{K}^2) = \widehat{I}(K) \cap \widehat{W}(\Sigma \dot{K}^2)$ and also $\widehat{W}(K)_t$ to denote the torsion subgroup of the additive group $\widehat{W}(K)$. Recall that if K is not formally real, then $\widehat{W}(\Sigma \dot{K}^2) = \widehat{W}(K)$ and $\widehat{I}(\Sigma \dot{K}^2) = \widehat{I}(K)$.

The next simple lemma gives a characterization of $\widehat{W}(\Sigma \dot{K}^2) \cap \widehat{W}(K)_t$.

Lemma 3.4. For a field K of characteristic different from \hat{Z} , $\hat{I}(\Sigma \dot{K}^2) = \widehat{W}(\Sigma \dot{K}^2) \cap \widehat{W}(K)_t$.

Consequently $\widehat{I}(K) = \widehat{W}(K)_{t}$, for a non-formally real field K.

Proof: Let $z = q_1 - q_2 \in \widehat{W}(\Sigma \dot{K}^2)$ and assume that there is $N \geq 1$ such that Nz = 0. By the construction of $\widehat{W}(K)$ this means that $Nq_1 \simeq Nq_2$. Therefore $dimq_1 = dimq_2$ and so $z \in \widehat{I}(\Sigma \dot{K}^2)$.

Take now $z = \langle a_1, \ldots, a_n \rangle - \langle b_1, \ldots, b_n \rangle \in \widehat{I}(\Sigma \dot{K}^2)$. Assume first n = 1. Since $a_1, b_1 \in \Sigma \dot{K}^2$, there is $M \geq 1$ such that $a_1b_1^{-1} \in D(2^M\langle 1 \rangle)$. Thus $a_1b_1^{-1}(2^M\langle 1 \rangle) \simeq (2^M\langle 1 \rangle)$ and so $2^M\langle a_1 \rangle \simeq 2^M\langle b_1 \rangle$. Hence $z \in \widehat{W}(K)_t$ as desired. To complete the proof we proceed by induction on n.

We know from ([L], Proposition 1.2, p. 35) that $\widehat{I}(K)$ is additively generated by elements of the form $1-\langle a \rangle$, $a \in \dot{K}$. The same argument shows that $\widehat{I}(\Sigma \dot{K}^2)$ is additively generated by $1-\langle a \rangle$, $a \in \Sigma \dot{K}^2$. Hence the ideals $\widehat{I}^2(\Sigma \dot{K}^2)$, $\widehat{I}^3(\Sigma \dot{K}^2)$ are additively generated by the expressions $(1-\langle a \rangle)(1-\langle b \rangle)$ and $(1-\langle a \rangle)(1-\langle b \rangle)(1-\langle c \rangle)$, $a,b,c \in \Sigma \dot{K}^2$ respectively.

The next property is well-known and we produce it here to highlight that its restriction to $\Sigma \dot{K}^2$ holds.

Lemma 3.5. Let K be a field of characteristic $\neq 2$. The map $g(a\dot{K}^2) = (1 - \langle a \rangle) + \hat{I}^2(\Sigma \dot{K}^2)$ is an isomorphism from $\Sigma \dot{K}^2 / \dot{K}^2$ onto $\hat{I}(\Sigma \dot{K}^2) / \hat{I}^2(\Sigma \dot{K}^2)$.

Proof: The map g is clearly well-defined. It is a homomorphism since $(1-\langle a \rangle)+(1-\langle b \rangle)-(1-\langle ab \rangle)=(1-\langle a \rangle)(1-\langle b \rangle)\in \hat{I}^2(\Sigma \dot{K}^2)$. As $\hat{I}(\Sigma \dot{K}^2)$ is generated by $1-\langle a \rangle$, $a \in \Sigma \dot{K}^2$, g is surjective. To see the injectivity take $a \in \Sigma \dot{K}^2$ such that $1-\langle a \rangle \in \hat{I}^2(\Sigma \dot{K}^2)$. Let $z = \sum_{i=1}^n (1-\langle s_i \rangle)(1-\langle t_i \rangle) \in \hat{I}^2(\Sigma \dot{K}^2)$

verifying $1 - \langle a \rangle = z$ in $\widehat{W}(\Sigma \dot{K}^2)$. Then $1 - \langle a \rangle = \sum_{i=1}^n \langle 1, s_i t i \rangle - (\sum_{i=1}^n \langle s_i, t_i \rangle)$, in $\widehat{W}(\Sigma \dot{K}^2)$. Thus $\langle a \rangle + \sum_{i=1}^n \langle 1, s_i t i \rangle \simeq \langle 1 \rangle + \sum_{i=1}^n \langle s_i, t_i \rangle$. Taking determinant, we have $as_1t_1 \cdots s_nt_n\dot{K}^2 = s_1t_1 \cdots s_nt_n\dot{K}^2$. Therefore $a \in \dot{K}^2$.

The next result will provide the converse of the Main Theorem under the limitations imposed by Proposition 3.3.

Theorem 3.6. Let F be a formally real field such that $\widehat{W}(\Sigma \dot{F}^2) \cong \widehat{W}(k)[T]/\mathfrak{a}$, (ring isomorphism) where k is not formally real and char $k \neq 2$, T is an abelian group of exponent 2, and \mathfrak{a} is the ideal generated by $\{t\mathbb{H} - \mathbb{H} \mid t \in T \text{ and } \mathbb{H} = \langle 1, -1 \rangle \}$.

Furthermore, we assume that $(\dot{k}:\dot{k}^2) = |T|$ if $|T| \le 2$.

Then F admits a π -henselian valuation ring A verifying the conditions of the Main Theorem.

Proof: We first consider the case |T|=1 and $\dot{k}=\dot{k}^2$. Then $\widehat{W}(\Sigma \dot{F}^2)\cong \widehat{W}(k)\cong \mathbb{Z}$. Hence $\widehat{W}(\Sigma \dot{F}^2)$ is torsion free, and so $\widehat{I}(\Sigma \dot{F}^2)=\{0\}$. On the other hand, for $r\in \Sigma \dot{F}^2$, $\langle r\rangle - \langle 1\rangle \in \widehat{I}(\Sigma \dot{F}^2)$. Hence $\langle r\rangle \simeq \langle 1\rangle$, and so $r\in \dot{F}^2$. Thus F is pythagorean, which trivially implies that every valuation ring A of F is π -henselian.

We assume now $|T| \ge 2$. Let Δ be a totally ordered abelian group such that $\Delta/2\Delta \cong T$. Take now $K = k((X))^{\Delta}$. As in Corollary 2.5, $\widehat{W}(K) \cong \widehat{W}(k)[T]/\mathfrak{a}$ and so $\widehat{W}(K) \cong \widehat{W}(\Sigma \dot{F}^2)$. Recall that the valuation ring $\mathcal{O} = k[[X]]^{\Delta}$ is henselian with residue field k and value group Δ . Hence $\dot{K}/\dot{K}^2 \cong \dot{k}/\dot{k}^2 \times \Delta/2\Delta \cong \dot{k}/\dot{k}^2 \times T$. For further reference let us denote by w the valuation corresponding to \mathcal{O} .

Next, denote by θ the isomorphism $\widehat{W}(K) \longrightarrow \widehat{W}(\Sigma \dot{F}^2)$. By Lemma 3.4 $\theta(\widehat{I}(K)) = \widehat{I}(\Sigma \dot{F}^2)$ (observe that K is not formally real). So θ induces the following isomorphisms

$$\theta_1: \widehat{I}(K)/\widehat{I}^2(K) \longrightarrow \widehat{I}(\Sigma \dot{F}^2)/\widehat{I}^2(\Sigma \dot{F}^2)$$

$$\theta_2: \widehat{I}^2(K)/\widehat{I}^3(K) \longrightarrow \widehat{I}^2(\Sigma \dot{F}^2)/\widehat{I}^3(\Sigma \dot{F}^2)$$

From θ_1 and the previous lemma we get an isomorphism $\Theta: \dot{K}/\dot{K}^2 \longrightarrow \Sigma \dot{F}^2/\dot{F}^2$ where $\Theta(a\dot{K}^2) = s\dot{F}^2$ if $\theta_1((1 - \langle a \rangle) + \hat{I}^2(K)) = (1 - \langle s \rangle) + \hat{I}^2(\Sigma \dot{F}^2)$.

For every $x \in K$ such that $w(x) \notin 2\Delta$ take $s \in \Sigma \dot{F}^2$ verifying $\Theta(x\dot{K}^2) = s\dot{F}^2$.

We claim that s is rigid (Definition 3.1). Observe that $a \in D\langle 1, s \rangle$, if and only if $a\langle 1, s \rangle \simeq \langle 1, s \rangle$ ([L], Corollary 1.7, p. 279), if and only if $(1 - \langle a \rangle)(1 + \langle s \rangle) = 0$ in $\widehat{W}(\Sigma \dot{F}^2)$. As $(1 - \langle a \rangle)(1 + \langle s \rangle) = (1 - \langle a \rangle)^2 + (1 - \langle a \rangle)(1 - \langle s \rangle) \in \widehat{I}^2(\Sigma \dot{F}^2)$, if $y \in K$ verifies $\Theta(y \dot{K}^2) = a\dot{F}^2$, then $\theta_2\left((1 - \langle y \rangle)(1 + \langle x \rangle) + \widehat{I}^3(K)\right) = \left((1 - \langle a \rangle)(1 + \langle s \rangle) + \widehat{I}^3(\Sigma \dot{F}^2)\right) = 0$. Thus $(1 - \langle y \rangle)(1 + \langle x \rangle) \in \widehat{I}^3(K)$ which implies $(1 - \langle y \rangle)(1 + \langle x \rangle) \in I^3(K)$ in W(K). On the other side, since $(1 - \langle y \rangle)(1 + \langle x \rangle) = (1 - \langle y \rangle)(1 - \langle -x \rangle)$ in W(K) we have that $(1 - \langle y \rangle)(1 - \langle -x \rangle)$ is hyperbolic by ([L], Corollary 3.4, p. 290). Hence ([L], Theorem 2.7, p. 58) implies that $y \in D\langle 1, x \rangle$. Since \mathcal{O} is henselian and $w(x) \notin 2\Delta$, it follows from ([En], Proposition 2.5 (1)) that x is rigid. Therefore $y \in \dot{K}^2 \cup x \dot{K}^2$ and so $a \in \dot{F}^2 \cup s \dot{F}^2$. Hence s is rigid as claimed.

Observe now that Θ induces an isomorphism $\dot{k}/\dot{k}^2 \times \Delta/2\Delta \longrightarrow \Sigma \dot{F}^2/\dot{F}^2$. Therefore we may assume that $\Theta(\Delta/2\Delta)$ is a subgroup of $\Sigma \dot{F}^2/\dot{F}^2$. By the claim above $\Theta(\Delta/2\Delta) \cap B_{\pi}(F) = \{1\}$. Hence $|\Sigma \dot{F}^2/B_{\pi}(F)| \ge |\Delta/2\Delta|$ and so the conditions of Proposition 3.3 are verified and the result is proved.

Remark. (1) If F is pythagorean, by ([En], Proposition 4.1), k_A is quadratically closed for every valuation ring A such that k_A is not formally real of

ically closed for every valuation ring A such that k_A is not formally real of characteristic not 2. Hence $\widehat{W}(\Sigma \dot{F}^2) \cong \mathbb{Z} \cong \widehat{W}(k_A)$. Consequently, the condition $\widehat{W}(\Sigma \dot{F}^2) \cong \mathbb{Z} \cong \widehat{W}(k_A)$.

tion $\widehat{W}(\Sigma \dot{F}^2) \cong \mathbb{Z}$ characterizes pythagorean fields.

(2) Let k_A and Γ_A be the residue field and the value group of the valuation ring A of the last theorem. We may conclude that $\dot{k}_A/\dot{k}_A^2 \cong \dot{k}/\dot{k}^2$ and $\Gamma_A/2\Gamma_A \cong \Delta/2\Delta$, but we cannot state any further relationship between k_A and k, Γ_A and Δ .

(3) Disregarding one exceptional case, the valuation ring A of our Main Theorem can be chosen such that $B_{\pi}(F) = A^*\dot{F}^2 \cap \Sigma \dot{F}^2$, by Proposition 3.3. Hence $T \cong \Sigma \dot{F}^2/B_{\pi}(F)$ and $\dot{k}/\dot{k}^2 \cong B_{\pi}(F)/\dot{F}^2$. Actually, if $\widehat{W}(B_{\pi}(F))$ denotes the

- subring of $\widehat{W}(\Sigma \dot{F}^2)$ generated by $\langle b \rangle$, $b \in B_{\pi}(F)$ and φ is the canonical projection $A \longrightarrow k$, then φ induces an isomorphism $\widehat{W}(B_{\pi}(F)) \cong \widehat{W}(k)$, where $\langle b_1, \ldots, b_n \rangle \longmapsto \langle \varphi(b_1), \ldots, \varphi(b_n) \rangle$.
- (4) Let $u \in \Sigma \dot{F}^2$ be the element in the proof of the Main Theorem which corresponds to $-1 \in k$. Since $\Sigma \dot{F}^2 = D\langle 1, u \rangle$ it follows that $\langle a \rangle \langle 1, u \rangle \simeq \langle 1, u \rangle$, for every $a \in \Sigma \dot{F}^2$. Thus $\widehat{W}(\Sigma \dot{F}^2)\langle 1, u \rangle = \mathbb{Z}\langle 1, u \rangle$ and this ideal corresponds to the ideal \mathbb{ZH} by the isomorphism $\widehat{W}(\Sigma \dot{F}^2) \cong \widehat{W}(k)[T]/\mathfrak{a}$. Therefore $\widehat{W}(\Sigma \dot{F}^2)/\mathbb{Z}\langle 1, u \rangle \cong W(k)[T]$.

References

- [AEJ] Arason, J. K., Elman, R., and Jacob, B., Rigid elements, valuations, and realization of Witt rings. J. Algebra 110, (1987), 449-467.
- [Ber] Berman, L., Quadratic Forms and Power Series Fields, Pac. J. Math. 89, (1980), 257-267.
- [Bos] Bos, R., A structure theorem for abstract Witt rings containing rigid elements, Indag. Math. 92, (1989), 125-140.
- [BCW] Berman, L., Cordes, C., and Ware, R., Quadratic forms, rigid elements, and formal power series fields, J. Algebra 66, (1980), 123-133.
- [CR] Cordes, C. and Ramsey Jr., J. R., Quadratic forms over fields with $u = q/2 < +\infty$, Fund. Math. 99, (1978), 1-10.
- [D] Delzant, A., Définition des classes de Stiefel-Whitney d'un module quadratique sur un corps de caractéristique différente de 2, C.R. Acad. Sci. 255, (1962), 1366-1368.
- [E] Endler, O., Valuation Theory, Berlin, Heidelberg, New York: Springer-Verlag 1972
- [En] Engler, A. J., Totally real rigid elements and F_{π} -henselian valuation rings, Comm. Algebra 25, (1997), 3673-3697.

[En2] Engler, A. J., Totally real rigid elements and Galois Theory, Can. J. Math. 50, (1998), 1189-1208.

- [L] Lam, T. Y., The Algebraic Theory of Quadratic Forms, New York: Benjamin 1973
- [R] Ribes, L., Introduction to Profinite Groups and Galois Cohomology, (Queen's Papers in Pure and Applied Mathematics, 24) Kingston, Ontario: Queens Univ. 1970.
- [Sch] Scharlau W., Quadratische Formen und Galois-Cohomologie, Invent. Math. 4, (1967), 238-264.
- [Se] Serre, J.-P., Local Fields, New York-Heidelberg-Berlin: Springer-Verlag, 1979.
- [W] Ware, R., Valuation rings and rigid elements in fields, Can. J. Math. 33, (1981), 1338-1355.
- [W2] Ware, R., Quadratic forms and pro 2-groups II: The Galois group of the Pythagorean closure of a formally real field, J. Pure Appl. Algebra 30, (1983), 95-107.

Antonio José Engler
IMECC - UNICAMP
Caixa Postal 6065
13081-970-Campinas-SP-Brasil
E-mail: engler@ime.unicamp.br