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WITT-GROTHENDIECK RINGS AND
m-HENSELIANITY

Antonio José Engler*

Abstract

Consideramos neste artigo o subanel W(ZFZ), do anel de Witt-
Grothendieck de um corpo formalmente real F', gerado por elementos
que sdao somas de quadrados. Nosso objetivo é demonstrar que se F
contém um anel de valorizagdo que tem a propriedade do levantamento
para rafzes quadradas de somas de quadrados, entdo W(ZFQ) pode ser
descrito como um quociente de um anel de grupo.

In this note we consider the subring W(El7'2), of the Witt-Grothendieck
ring of a formally real field F', generated by sums of squares. Our goal
is to show that if I” admits a valuation ring which has the lift property
relative to square roots of sums of squares, then W(ZFZ) is a suitable
quotient of a group ring.

1. Introduction

Let F' be field of characteristic different from two. Following [L.] we denote
by W(F) the Witt-Grothendieck ring of quadratic forms over F. Let YF? be
the subgroup of the multiplicative group ' = F\ {0} consisting of all sums of
squares. Set W’(EFZ) for the subring of W(F) generated by isometry classes of
quadratic forms (¢1,... ,t,) with ¢; € YF? i=1,...,n. Weshall also denote by
I the pythagorean closure of I (F; is the field which arises from F' by iterating
the process of adjoining the square roots of all sums of squares). A valuation
ring A of F' is called m-henselian if A extends uniquely to F. Equivalently,
Hensel’s Lemma applies to polynomials splitting over Fi.

The aim of this note is to establish a m-henselian analogue of a result of W.

Scharlau concerning henselian fields of characteristic different from two ([Sch],

*Supported by a grant from CNPq-Brasil.


http://doi.org/10.21711/231766361999/rmc163

32 A. J. ENGLER

Korollar 4.1.3). Scharlau’s theorem extends an old result of T. A. Springer on

local fields ( [L], Chapter 6).

Main Theorem: Let F' be a formally real field which admils a w-henselian
valuation ring A such that the residue field k of A is not formally real and
chark # 2. Then there exists a subgroup T of SI?/F? such that W(EFZ) =
W(k)[T]/a, where a is the ideal generated by {{tH—H |t € T and H = (1,-1)}.

In next section we prove the Main Theorem and we deduce from it that
W(ZFZ) is isomorphic to the Witt-Grothendieck ring of a generalized formal

power series field.

In section 3 we recall from [En] and [En2] how m-henselian valuation rings
arise from totally positive rigid elements (see Definition 3.1). We deduce from
this a partial converse of the Main Theorem where the link between m-henselian
valuation rings and the Witt-Grothendieck ring of a generalized formal power
series field will be completed (Theorem 3.6). This result may as well be regarded
as a relative version for W (X F?) of a result of Berman ([Ber], Theorem 1.1) on

power series fields.

Conventions: Throughout the paper, unless otherwise explicitly stated, all
valuation rings considered have non-formally real residue field of characteristic

not 2.

In what follows all fields will have characteristic # 2 and for any field
F, F, sz and LF? will denote the multiplicative groups of nonzero ele-
ments, squares, and sums of squares, respectively. The quadratic closure of
F and the pythagorean closure are denoted by F(2) and F; respectively. Write
Gal(F(2); F) = Go(F) and Gal(Fr; F) = G-(F) for the Galois groups.

For a1, as, ... ,a, € F, (a1,az,...,a,) denotes the diagonal quadratic form
a1 X+ a;XZ 4 -+ + a, X2 over F and D{ay,as,...,a,) stands for its nonzero
values. If ¢; and ¢y are quadratic forms over F, ¢, ~ ¢, means that ¢, and ¢,

are isometric. Let W(F') be the Witt ring of all isometry classes of anisotropic
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quadratic forms over F.

Observe that if F is not formally real then LF? = F and F, = F(2).
Hence w-henselian valuation rings are the well-known 2-henselian valuation
rings, W(EFZ) = W(F), and so our Main Theorem coincides with Scharlau’s
result ([Sch], Korollar 4.1.3). On the other side, if I is formally real, the restric-
tion of the natural map W(F) — W(F) to W(SF?) is injective. Therefore
W(E Fz) may be seen as a subring of W (F').

Any unexplained property concerning quadratic forms can be found in [L],

while any concerning valuation theory can be found in [E].

2. The subring W (ZF?)

For every profinite group G let H'(G) = H'((G,Z/2Z) be the i-th cohomology
group of G with coefficients in Z/27Z. Since G operates trivially on Z/2Z, H'(G)
is precisely the group of all continuous group homomorphisms from G to Z/27.

If G = Gy(F), for some field F, then H'(G) and H*(G) can be studied by
arithmetic objects within F' itself. The natural isomorphism Z/2Z = {1} in-
duces an isomorphism F/F? —s H'(G.(F)) where each class tF* corresponds
to x: defined by y.(o) = o(v/1)/\/t. Clearly kernely, = G,,(F(\/Z)) Observe
that this isomorphism restricts naturally to $F?/F? = H'(G.(F)). Indeed,
if F(ﬂ) C Fj, each order of F' extends to F(ﬂ) Thus ¢ has to be totally
positive in F.

It is well-known that H?() = Br(F)(2) = the subgroup of the Brauer
group consisting of elements of order < 2. Under this isomorphism y; U x,
corresponds to the Brauer class of the quaternion algebra (¢, s), for every ¢,r € F
(see [Se], pp. 204-207). The isomorphism and Corollary 2.2 of [W2] imply that
H*(G.(F)) may be seen as a subgroup of Br(F)(2).

For a profinite group G, Scharlau defined the Witt-Grothendieck ring of
G as the quotient ring W(G) = Z[H'(G)]/Ke(G), where Ke(@) is the ideal
of the group-ring Z[H'(G)] generated by the elements of the form x; + x2 —
(X3 + xa) With x1,x2, X3, x4 € H'(G) and x1x2 = xax4 in H'(G) and x, U
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X2 = X3 U x4 in H3(G) ([Sch], Definition 1.2.1). Delzant ([D], or [Sch], Satz
1.3.1) stated that if G is the Galois group of the separable closure of a field F,
then W (() is canonically isomorphic to W(F). Actually, by ([Sch], Korollar
1.2.4) W(F) = W(GZ(F)) Ware has shown that W(GW(F)) = W(EFZ) (see
the proof of Theorem 2.5 in [W2]). Let us point out that the isomorphism
W(F) = W(Gy(F)) (resp. W(SF?) = W(G.(F))) is induced by (t) — x;
([Sch], Satz 1.3.1).

Next we record a result which will be crucial in the proof of the Main The-
orem. Recall first that if N is a normal subgroup of a profinite group G, G/N
has a natural action on H'(G). Namely, for every g,h € G if h is the class of h
in G/N, X;l(g) = x(h7'gh). As usual, Infand Res denote respectively the maps
inflation and restriction ([R], p. 131 and p. 134).

Proposition 2.1 ([Sch], Satz 4.1.1) Let | — N — G — G/N — 1 be

an exacl sequence of profinite groups such that
(a) N is abelian,
(b) the action of G/N on H'(N) is trivial,
(c¢) Inf H}(G/N) — H*(Q) is injective,
(d) there exists a € H'(G/N) such that x U x = x U Infla) for every x €
HY(G).

If T is a subgroup of H' (@) for which Res|y : T — H'(N) is an isomorphism,
then W(G) = W(G/N)[T)/a, where a is the ideal generated by {t(1) + t{a) —
(1) = (@) |t T}.

The above ring isomorphism is induced by the natural homomorphism G —
G/N.

The conditions (a) to (d) are the motivation for the next three propositions.

Proposition 2.2. Let F be a field such that SF? = D(1,r) for somer € TF2,
Then, (t,t) = (t,r), for every t € YF?,
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Proof: Since t € D(1,r), —r € D(1,—t). Thus, by ( [L], Proposition 1.3, p.
276), (1,—t,—r,tr) ~ 2(1,—t) ~ (1,—t,—t,1). Therefore Proposition 2.5, (p.
57), of [L] implies that (¢,1) = (¢,r), as desired.
O
We now consider a formally real field F' which admits a m-henselian valuation
ring A with non-formally real residue field k, chark # 2. Let C be its unique
extension to F; and denote by GT(C; F') the inertia group of C over F. By ([En],
Proposition 4.1) k¢ is the quadratic closure of k. Therefore G(ko; k) = G2 (k).
For the sake of completeness we shall record the description of G(F) by means

of GT(C; F) and Gy(k).

Proposition 2.3. Keeping above notation,

(1) GT(C; F) is an abelian pro-2 group (see the comments at the beginning of
53 of [Fn2]).

(2) G.(F)= GT(C; F) xGy(k) ([En2], Proposition 3.2 (b)).

Proposition 2.4. With the same notation of the last proposition,
(1) Gy(k) operates trivially on H'(GT(C; F)).

(2) Inf: H*(Gy(k)) — H*(G-(F)) is injective.

Proof: We shall prove that Res: H'(G(F)) — H'(GT(C;F)) is a surjec-
tive map. Therefore the result follows from the “5-term exact sequence” ([R],
Corollary 5.4 p. 177).

Let us denote by K the fix field of GT(C : F) (K is the inertia field of C' over
F). By ([En2], Proposition 3.6) the inclusion ' C K induces an isomorphism
SF?)(A*F? N SF?) = YK?/K?. Thus, as remarked in the beginning of the
section, for every y € HY(GT(C; F)) there is t € Y F? such that Res(x:) = x.

]

Proof of the Main Theorem: We shall prove that the conditions of Propo-
sition 2.1 apply to G(F), GT(C; F) and Gy(k).



36 A..J. ENGLER

By the propositions 2.3 and 2.4 conditions (@) to (b) are satisfied.

Let ¢ : A — k be the natural map. Since k is not formally real, there is
u € A* N LF? such that ¢(u) = —1. In order to use Proposition 2.2 to verify
(d) we shall show that $F? = D(1,u).

Let t € SF? and write { = zy + -+ + x, where xy,....,2, € F2. We
may assume that n > 2. Take 1 < ¢ < n such that v(z;) < v(z;), for every
1 < j < n, where v is a valuation corresponding to A. Without loss of generality
we may assume ¢ = 1. Then txl_l =1+ xl_l(xg + -+ 2,) € A and also
.13]_1(&32 +-4a,) e Al xl_l(xg + -4+ x,) € m, the maximal ideal of A,
then tz=' € (1 + m) N YF? and so tz~! € F2, by ([En], Proposition 2.1).
Since this contradicts n > 2, it follows that .’1?1_1(.’1,'2 + -+ x,) € A*. We now
consider two cases. If tz7' € m, then (a7 (zs + -+ + 2,)) = —1 = p(u).
Hence 11_1(12 + -+ :L'n)u_l e(l4+m)n Y2, Therefore, arguing as above,
a7 zg 4 -+ zp)u™t € F? and t € D(1,u) as desired. If tz7! € A, for a =
(a7 +1)/2)" and b= ((ta7" ~ 1)/2)", @(ta7") = @(a) — o(b) = @(a+ ub).
Once again tz7'(a+ub)™ € (1+m)N SF? will imply ¢ € D(1,u), proving the
claim.

Once this is established, then Proposition 2.2 implies that (¢,¢) = (¢,u),
for every t € TE2, Thus, as we have seen in the beginning of the section,
Xt U xt = Xt U xy for every x4 € H'(G(F)). To complete the verification that
condition (d) holds it remains to be seen that x, € Inf(H'(G2(k)). To this end,
assume first that —1 ¢ k2 and take L = F(\/u). Let B be the unique extension
of A to L. Tt is pretty clear that k(y/—1) is the residue field of B. Then L
is unramified over F. Since chark # 2, by ([E], Theorem 20.21, p. 70), A is
defectless in any finite subextension ' C E C F,. So, by ([E], Theorem 22.7, p.
182) it follows that GT(C; F) C Gr(L). Hence Gy(k(v/—1)) = G(L)/GT (C; F)
which means that Inf(x_1) = x. and so (d) is true in this case. Consider now
the case —1 € k2. By ([En2], Lemma 5.6) we can choose u = 1. Since x1 = x_1
in H'(Gq(k)), Inf(x-1) = xu again. Therefore o = x_; € H'(Gy(k)) verifies
the condition (d).

Finally, take a subgroup T of $F2/F? such that T & (A*F? N LF?/F?) =
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$F?/F?. Then, by ([En2], Proposition 3.6), Res: Ty = {x¢ | t € T} —
HY(GT(C; F)) is an isomorphism. Therefore, Scharlau’s result implies that
W(GA(F)) = W(Gy(k))[To) /a0, where a, is the ideal generated by {y.(1) +
Xe{x-1) — (1) = {(x=1) | ¢ € T}. Then, the statement follows immediately
from the isomorphisms W (X F?) = W (G(F)) and W(k) = W(Gy) previously
described when one bears in mind that (1) + (—1) = H.

O

Observe that (1) € W(XF?) does not have finite additive order, while W (k)
is a torsion group, since k is not formally real. Therefore W(k) cannot be

replaced by W (k) in the above result.

Corollary 2.5. For a field F' verifying the condition of the last theorem there
are a non-formally real field k, chark # 2, and a totally ordered group A such
that if K = k((X))* is the field of generalized formal power series over k with

o~

respect to A, then W(EF2) = W(K).

Proof: As in the proof of the theorem let & be the residue field of A, T" the value
group, and v be the corresponding valuation. Let A = U(EF2) with the natural
ordering. Observe that EFQ/(A*FZ N EFZ) ] (EFZ)(A”‘F"Z)/A*F2 =~ A/2A
where the last isomorphism is induced by wv.

It is well-known that the valuation ring O of K = k((X))® corresponding
to the Krull valuation w defined by w <ESEA ang) =min{d € A | a5 # 0} is
henselian, has value group A, and residue field k. Therefore the result follows

by the previous theorem and ([Sch], Korollar 4.1.3).

3. Totally real rigid elements and 7-henselianity

We start this section reviewing the results developed in [En] and [En2] for
detecting the existence of m-henselian valuation rings of fields. We first recall

two essential ingredients in this process.
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Definition 3.1. An element t € SF? is called rigid if t & F? and D(1,t) =
PR,
Let B(F) = {t € SF?*|t is not rigid }.

Next we improve Corollary 2.13 (2) of [En].

Proposition 3.2. For every formally real field I, B,(F) is a subgroup of F.

Proof: If B,(F) = S F?, there is nothing to prove. Assume B (F) # YF2 By
([Bos], Proposition 1.7), there exists modulo % exactly one r € LF? such that
TF? = D(1,r) and also dr is rigid, for every rigid d € TF?, Consequently, if
rs is rigid for some s € B.(F), then r?s € B,(F) is also rigid, a contradiction.
Hence rB,(F) C By(F). On the other side, since SF? = D(1,r), by ([En],
Proposition 2.1), B.(F) = B:(F)UrB:(F) is a subgroup of F.
O
If F'is a non-formally real field (F' = EFZ), every rigid element ¢ is birigid
(when -t is also rigid ([CR], Corollary)). In this case Br(F') is the so-called
set of basic elements and it is well-known that it is a subgroup of I ([W],
Proposition 2.4). If I is formally real, a rigid element ¢ € YF? is not birigid
([BCW], Proposition 1) and so £/ is contained in the set of basic elements.
Thus B(F') is a proper subgroup of the group of basic elements.

The above proposition allows a more precise formulation of Theorem 2.8 of

[En].

Proposition 3.3. Let I be a formally real field such that (EFZ : B(F)) > 2
and (SF? : F?) = 4 if (SF? : B,(F)) = 2. Then there exists a m-henselian
valuation ring O of F such that its residue field k is a non-formally real field
of characteristic not 2 verifying (k : Br(k)) < 2.

Moreover,

(1) O can be chosen such that either k = k% or k does not admit any 2-

henselian valuation ring.

(2) k = B.(k) if and only if B.(F)= O*"F*n %[
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(3) If k # Bu(k), then B.(F) = F?, (O"F*NSF? : F?) = 2, SF? =
D(1,1), —1 € k2 and (k : k2) =92.

Proof: In the case (EF2 : Br(F)) > 2 the existence of O follows from ([En],
Theorem 3.8) by putting S = B,(F).

In the other case, by ([En2], Proposition 5.4), there is a quadratic extension
E of F such that B.(F) = B2, Thus, applying the previous case to I we get a
m-henselian valuation ring O’ of E. By ([En2], Corollary 2.8) F' also admits a
m-henselian valuation ring.

(1) Following the notation of Corollary 2.6 of [En2] we choose O = Ay if
Hy # 0 and O = Ay) otherwise. Hence the statement follows either from the
properties of Ay or Hy = 0 and Ag).

(2) By ([En], Proposition 2.5) Br(F) C O*F2. Hence B(F) C O*F*NLF?
is always true (B,(IF") C EFZ). Let ¢ the canonical projection @ — k. Since
k is not formally real, ¢ : O*F2 N\ SF2 —s k is a surjective map. By ([En],
Corollary 2.15) ¢(O* N Br(F)) = B:(k). Therefore, an easy computation ends
the proof of the equivalence.

(3) By the choice of O, k # By(k) can only occur if k # k2 and k does not
admit any 2-henselian valuation ring. Hence, by ([AEJ], Theorem 2.16) k? is
exceptional ([AEJ], Definition 2.15). Since k is not formally real and k # k?
(chark # 2), it follows that Br(k) = k* and —1 € k*. Hence (k : kg) =
2. On the other side, if m is the maximal ideal of O, we know from ([En],
Proposition 2.1) that (14+m)N Y F? C F?. Therefore  induces an isomorphism
from (O° N LF?)/(0%)? onto k/k%. Thus (O* N TF? : (O°)?) = 2. Hence
((0*n EFZ)FQ = F2) = 2, as desired.

Now, Proposition 2.5 of [En] implies that B,(F) = F2 and by ([En2], Lemma
5.6) LF? = D(1,1).

Observe that k = k? also implies B.(F) = F? ([En2], Proposition 2.5).

Next, let us organize some easy facts concerning W(K). Following Lam ([1],

Chapter 2, p. 34) we denote by f([x") the kernel of the ring homomorphism
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“dimension” dim : W(K) —» Z. Let us write [(SK?) = I(K) N W(2K?) and
also W(K)t to denote the torsion subgroup of the additive group W(K). Recall
that if K is not formally real, then W(SK?) = W(K) and [(SK?) = I(K).

The next simple lemma gives a characterization of W(E [;’2) N W(K)t'

Lemma 3.4. For a field K of characteristic different from 2, f(EKQ) —
W(EK) N W(K),.
Consequently f(K) =) W(K)t, for a non-formally real field K.

Proof: Let z = ¢ —q2 € W(Z‘[&'Z) and assume that there is N > 1 such that
Nz = 0. By the construction of W(K) this means that N¢; ~ Ngs. Therefore
dimq, = dimg, and so z € [(ZK?).

Take now z = (ay,...,a,) — {by,... b)) € I(EK?). Assume first n =
1. Since ay,b; € EI&’Z, there is M > 1 such that a;b7" € D(2M(1)). Thus
albl_l(QM(l)) ~ (2M<1>) and so 2M<a1> ~ 2M<b1>. Hence z € W(K)t as desired.
To complete the proof we proceed by induction on n.

O

We know from ([L], Proposition 1.2, p. 35) that f( K') is additively generated
by elements of the form 1—(a), a € K. The same argument shows that (£ K?)
is additively generated by 1—(a), a € Y K2, Hence the ideals TZ(EKQ), f‘(zlﬁ)
are additively generated by the expressions (1 — (a))(1 — (b)) and (1 — (a))(1 —
) (1 = (c)), a,b,c € Y K? respectively.

The next property is well-known and we produce it here to highlight that

its restriction to $K? holds.

Lemma 3.5. Let K be a field of characteristic # 2. The map g(a[&ﬁ) =
(1—(a))+ T*(XK?) is an isomorphism from K2/ K? onto [(SK?)/T*(2K?).

Proof: The map g is clearly well-defined. It is a homomorphism since (1—(a))+
(1= (b)) — (1 = (ab)) = (1 — (a))(1 — (b)) € I*(BK?). As I[(ZK?) is generated
by 1 — (a), a € Y K2, g is surjective. To see the injectivity take a € LK?2
such that 1 — (a) € TA(ZK?). Let z = ¥, (1 — (s))(1 — (&) € TX(TK?)
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verifying 1 — (a) = z in W(EK?). Then 1 — (a) = 7 (1, siti) — (20, (si, 1)),

in W(Ek%. Thus (a) + >0 (1, site) ~ (1) + 37 (si, t;). Taking determinant,
we have as;t; -~-5ntn1&’2 EX? ~-~sntnli’2. Therefore a € K2.

[}

The next result will provide the converse of the Main Theorem under the

limitations imposed by Proposition 3.3.

Theorem 3.6. Let F be a formally real field such that W(SF?) = W (k)[T)/a,
(ring isomorphism) where k is not formally real and char k # 2, T is an abelian
group of exponent 2, and a is the ideal generated by {tH —H | ¢t € T and H =
(1,-1)}.

Furthermore, we assume that (k:k?) =|T | if | T |< 2.

Then F' admils a m-henselian valuation ring A verifying the conditions of the

Main Theorem.

Proof: We first consider the case | 7' |= 1 and k = k. Then W(XF?) =
W(k) =~ 7. Hence W(EFZ) is torsion free, and so T(EFZ) = {0}. On the other
hand, for r € $F?2, (r) — (1) € [(ZF?). Hence (r) ~ (1), and so r € F2. Thus
F is pythagorean, which trivially implies that every valuation ring A of F is
m-henselian.

We assume now | 7' |> 2. Let A be a totally ordered abelian group such that
A/2A = T. Take now K = k((X))2. As in Corollary 2.5, W(K) = W (k)[T]/a
and so W(K) = W(XF?). Recall that the valuation ring @ = Kk[[X]]* is
henselian with residue field & and value group A. Hence K/K? = k/k? x
AJ2A = k/k2 x T. For further reference let us denote by w the valuation
corresponding to O.

Next, denote by # the isomorphism W(K) — I/\V(EFZ) By Lemma 3.4

O(I(K)) = I(SF?) (observe that K is not formally real). So § induces the

following isomorphisms
0, : I(K)/T(K) — I(ZF?)/T(ZF?)
8, : I(K)/P(K) — TA(SEFY)/P(SF?)
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From 6, and the previous lemma we get an isomorphism © : K/K? —s
$F?/F? where ©(ak?) = sF2 if 6,((1 — (a)) + T*(K)) = (1 — (s)) + I(ZF?).

For every z € K such that w(z) ¢ 2A take s € T2 verifying @(1[&2) =
sk,

We claim that s is rigid (Definition 3.1). Observe that a € D(1,s), if and
only if a(l,s) ~ (1,s) ( [L], Corollary 1.7, p. 279), if and only if (1 — (a))(1 +
(s)) = 0in T(SE?). As (1 - (a))(1 +(s)) = (1 — ())? + (1 — (a))(1 — (s)) €
TZ(EF.'Z), ify € K verifies @(y[&’z) = LLFZ, then 0, ((1 —(y)(A + () + f?’([()) =
(1= (@)(1 +{s)) + T*(SF?) = 0. Thus (1—(y))(1+(2)) € *(K) which im-
plies (1 —(y))(1+{x)) € I*(K) in W(K). On the other side, since (1 —(y))(1+
(z)) = (1 =(y))(1 = (—=2)) in W(K) we have that (1 — (y))(1 — (—x)) is hyper-
bolic by ( [L], Corollary 3.4, p. 290). Hence ([L], Theorem 2.7, p. 58) implies
that y € D(1,z). Since O is henselian and w(z) ¢ 2A, it follows from ([En],
Proposition 2.5 (1)) that z is rigid. Therefore y € K2UzK?and so a € F2UsF?2,
Hence s is rigid as claimed.

Observe now that © induces an isomorphism k/k? x A/2A —s SEF?/F2,
Therefore we may assume that ©(A/2A) is a subgroup of SFZ/F2 By the
claim above O(A/2A) N B,(F) = {1}. Hence | F?/B.(F) |>| A/2A | and so

the conditions of Proposition 3.3 are verified and the result is proved.

Remark. (1) If F'is pythagorean, by ([En], Proposition 4.1), k4 is quadrat-
ically closed for every valuation ring A such that k4 is not formally real of
characteristic not 2. Hence W(SF?) = Z = W(ky). Consequently, the condi-
tion W(EFQ) 2 7 characterizes pythagorean fields.

(2) Let k4 and I'4 be the residue field and the value group of the valuation ring A
of the last theorem. We may conclude that k4/k% = k/k? and T4 /204 = A/2A,
but we cannot state any further relationship between ks and k, I'y and A.

(3) Disregarding one exceptional case, the valuation ring A of our Main Theo-
rem can be chosen such that B, (F) = A*F? N ©F?, by Proposition 3.3. Hence
T = $F?/B.(F) and k/k? = B,(F)/F?. Actually, if W(B,(F)) denotes the
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subring of W(XF?) generated by (b), b € B.(F) and ¢ is the canonical pro-
jection A — k, then ¢ induces an isomorphism W(BW(F)) = W(k), where
(by,...,b,) — (@(b1),. .., 0(by)).

(4) Let w € TF? be the element in the proof of the Main Theorem which
corresponds to —1 € k. Since BF? = D(1,u) it follows that (a)(1,u) ~
(L, u), for every a € YF?. Thus W(EF2)<1,U> = Z(1,u) and this ideal corre-
sponds to the ideal ZH by the isomorphism W(SF?) = W (k)[T]/a. Therefore
W(SF?)/Z(1,u) = W(k)[T).
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