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SOME ASPECTS OF RADICAL THEORY

Richard Wiegandt *

Abstract

In this survey we attempt to glimpse the utility of radical theory in the
development of ring theory. Various radicals, namely the Baer (prime),
the Kéthe (nil), the Jacobson, the Brown-McCoy, the torsion and the
von Neumann regular radicals will be considered, and structure theo-
rems concerning these radicals will be given. Distinguishing the different
radicals led to interesting ring constructions which contributed substan-
tially to the better understanding of the structure of rings. It is also an
important issue when certain radicals coincide, for instance, when the
Jacobson radical becomes nil or nilpotent. Radicals of related rings, such
as matrix rings and polynomial rings, will be mentioned including also
some very recent results. Common characteristic properties of radicals
will be briefly touched. Finally, we shall illustrate by some recent results
a typical way of developing radical theory: the introduction of new rad-
icals led to new types of structure theorems and to the construction of a
ring with unusual properties.

1. It was Wedderburn [30] in 1908 who used an ingenious technique in the
study of rings and algebras. He discarded or ignored a ”"bad” ideal R of a
ring or algebra A such that the factor ring A/R had no longer "bad” ideals
and, in addition, A/R had a "nice” structure (representable by rings of linear
transformations on vector spaces). In 1930 Kothe [16] considered the unique
largest nil ideal

N(A) => (I« A|I is a nil ring)

as a "bad” ideal of A, and determined the structure of A/N(A) in terms of rings

of linear transformations. To each nonzero element a € N'(A), being nilpotent,
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there exists an exponent n > 1 with «” = 0, whence the element ¢ € N(A)
can be viewed as an n-th root of 0. Root in Latin is radiz, so Kéthe called
the "pathological” ideal N'(A) as the radical of A. Note that N'(A) has also an

intersection representation,
N(A)=nN(JaA|A/J is a prime ring without nonzero nil ideals).

Kothe posed also the problem: does N(A) contain every nil left ideal of A?
Kothe’s problem is still open, it is one of the central problems, and it seems to
be the hardest one in ring theory.

This was the genesis of radical theory.

Later several other successful radicals have been introduced, based on var-
ious calculation rules. In 1943 Baer investigated the structure of rings which
have no nonzero nilpotent ideals. These rings are the semiprime rings. The
ideal

B(A)=nN(I <« A|A/I is a prime ring)
of a ring A, is called the Baer or prime radical of A. A ring A is semiprime if
and only if 3(A) = 0.

In a ring A we may define an additional operation o by
aob=a+b—ab Ya,b e A.

An ideal I of the ring is called a quasi-regular ideal, if (I,0) is a group with

unity element 0. The unique maximal quasi-regular ideal
J(A)=> (IaA|(I,0)is a group)

is called the Jacobson radical of A ([15]). Important is that the Jacobson radical
has also an intersection representation. A ring A is called (left) primitive, if A
contains a maximal left ideal L such that x A C L implies z = 0, (or equivalently,
there exists a faithful irreducible A-module). The Jacobson radical of A is equal
to

J(A)=n(J <« A|A/J is a primitive ring).
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The Jacobson radical, introduced in 1945, is claimed to be the queen of all
radicals, because it turned out to be the most successful to prove structure
theorems for rings with 0 Jacobson radical.

In 1947 another radical, the Brown-MecCoy radical has been introduced.

Call a ring A a G-ring, if each element a € A is contained in the set
{az —z +ya—y|z,y € A}

Then the Brown-McCoy radical G(A) of a ring A is

G(A) =X(I<A|lisa G-ring) =
=N(JaA|A/J is a simple ring with 1).

All these four classical radicals share a common property:

whenever A is a nilpotent ring. There are also other radicals of rings which do
not have this property. We mention two of them.

The maximal torsion ideal
7(A) = {a € A|na =0 for some integer n # 0}

may be regarded as the torsion radical of the ring A. In fact, A/7(A) is tor-
sionfree, so 7(A/7(A)) = 0. Fields as well as nilpotent rings may be torsion
rings.

A ring A is a von Neumann regular ring, if a € aAa for every element
a € A. Every ring has a unique maximal von Neumann regular ideal v(A),
called the von Neumann regular radical of A. Again we have v(A/v(A)) = 0.
Rings of linear transformations on vector spaces are von Neumann regular, so
von Neumann regularity cannot be considered as a ”bad” property of rings. On
the other hand, v(A) = 0 for every nilpotent ring A.

Though the torsion radical and the von Neumann regular radical look sus-
picious, they provide useful informations concerning the structure of rings, as

we shall see later.
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2. The factor rings A/N(A), A/B(A), A/T(A)and A/G(A) have 0 Kothe, Baer,
Jacobson and Brown-McCoy radical, respectively, so we expect to get structure
theorems for such rings. If a radical has an intersection representation, then

the rings with 0 radical have a subdirect decomposition, namely,

BA) =0 A = Z (A/I\| each A/I, is a prime ring),

NA) =0 A = SubdlreCt(A/I,\ | each A/I, is a prime ring without
ubdirect nonzero nil ideals),

J(A)=0& A = > (A/IL| each A/, is a primitive ring),

GA =0 A = Sl]bzdifm(A/[” each A/I, is a simple ring with 1).
subdirect

The primitive rings, the subdirect components of rings with 0 Jacobson
radical, have a beautiful description. A ring A is said to be a dense subring of
linear transformations on a vector space V , if for every finitely many linearly
independent elements zq,...,x, € V and arbitrary elements y;,... ,y, € V
there exists a linear transformation ¢ € A such that tx; = y; for e = 1,... ,n.
Jacobson’s Density Theorem states that a ring A is primitive if and only if A is
isomorphic to a dense subring of linear transformations on a vector space over
a division ring.

If a ring A is (left) artinian (that is, A satisfies the descending chain condi-

tion on left ideals), then
BAY=0N(A)=0& J(A)=0&G(A) =0,
and the subdirect decomposition becomes a finite direct sum
A=A 8 ...8 A,

where each of Ay,..., A, is a simple artinian ring isomorphic to a matrix ring
over a division ring, (that is, a ring of linear transformations on a finite dimen-
sional vector space). This is the famous Wedderburn—Artin Structure Theorem.

Also the torsion radical and the von Neumann regular radical play a role,

a different role, in the structure theory of rings. The theorem of F. Szdsz [26]
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tells us that in every artinian ring A the torsion radical is a direct summand. A
similar, even more explicit result is true for the von Neumann regular radical:
v(A) is a direct summand in every arlinian ring A and v(A) is a finite direct

sum of matrix rings over division rings.

3. Beside the primary task of radical theory, secondary but not inferior problems
arise in a natural way. The first question one may ask is: are the Kothe, Baer,
Jacobson and Brown—-McCoy radicals really different? The answer is affirmative.

One can easily see that
B(A) C N(4) C T(A) C G(A)

for all rings A.
Let V be a countably infinite dimensional vector space. It is well-known

that the subring
H ={t € Hom(V,V)|[{(V) is finite dimensional}

of finite valued linear transformations is a simple ring without unity element,

and, of course, a dense subring of linear transformations. Hence
0=J(H)# H =G(H).

The set

2
A= {—x |z, y are integers and g.c.d (2z,2y + 1) = 1}
2y 41

of all rationals of even numerator and odd denominator forms a subring of

2z
2y+1

rationals. For any a = € A the equation

aoz=a+z—az=0

has a solution
a 2z
a—1" 20z —y—1)+1

whence A is quasi-regular. Clearly A has no nonzero nilpotent elements. Hence

€A,

2 =

0=N(A) # A = J(A).
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To show that 3(A) # N (A) may happen, one has to construct, for instance,
a nil ring A which is also a prime ring. The construction of such rings is a very
difficult and involved task. An example of such a ring was given first by Baer
[7] (see also [27]), and another one by Zelmanov [31].

The definition of the Jacobson radical in terms of quasi-regularity is left
and right symmetric, but the notion of primitivity is not. Bergman [10] (see
also [27]) constructed a ring which is left but not right primitive. Although, as
already seen, a Jacobson radical ring A (that is, J(A) = A) need not be a nil
ring, the question arises: does there exist a simple idempotent Jacobson radical
ring A, (that is, J(A) = A = A% # 0)? An affirmative answer was given by
Sasiada [23], [24].

Levitzki posed a similar question which is still open: does there exist a
simple idempotent nil ring A, (that is, N (4) = A = A? £ 0)?

Kothe’s problem can be put also in the following form: does there exist a
ring A such that A contains a nonzero nil left ideal and A (A) = 07 Kothe’s
problem has many equivalent formulations. The interested reader is referred to
Puczylowski [19] and Rowen [21].

Constructing rings with peculiar properties exhibits how delicate or nasty
(up to the reader’s taste) the behaviour of rings may be. This activity con-
tributes substantially to the better understanding of the structure of rings, and

gives impetus for further researches.

4. One may investigate also the coincidence of certain radicals on a given class
of rings.
On the class of artinian rings the Baer, Kothe, Jacobson and Brown-McCoy

radicals coincide, that is,

for all artinian rings A. Moreover, for any artinian ring A the Jacobson radical
J(A) is nilpotent, (though J(A) need not be artinian).

If a ring A is noetherian, (that is, A satisfies the ascending chain condition
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on left ideals), then its nil radical A'(A) is nilpotent, and so N'(A4) = 3(A).
Furthermore, every nil left ideal of a noetherian ring is nilpotent.
In a commutative ring A the set N of all nilpotent elements form an ideal

and
N = 3(A) = N(A).

In the theory of group rings a problem of central importance is to decide as
whether the Jacobson radical is nil or nilpotent. Such investigations involve a
lot of group theory.

At this point we turn again to Kothe’s problem. Kothe’s problem has a
positive solution, (that is, every nil left ideal of a ring A is contained in N (A))
if and only if the sum of two nil left ideals is necessarily nil. Let A be a ring such
that A is the sum of two subrings B and C. Kegel [15] proved that if B and
C are nilpotent rings then A is nilpotent. Nevertheless, Salwa [22] has given
recently an example of a ring A = B + C such that B as well as C are sums of
their nilpotent ideals but A (A) = 0. Ferrero and Puczylowski [12] developed
further Kegel’s result, and got that

if B is nilpotent and J(C) = C then J(A) = A,
il M(B)= B and G(C) = C then G(A) = A.

They also proved in [12] that the positive solution of Kéthe’s problem is equiv-

alent to the condition:
if B is nilpotent and V' (C') = C then N'(A) = A.

5. Given a radical (the Jacobson, Kéthe, etc), it is natural to ask about the
relation between the radical of a ring A and the radical of the matrix ring
(polynomial ring, skew polynomial ring, formal power series ring, etc) over A.

A ring A is primitive if and only if the n x n matrix ring A, over A is
primitive. The Jacobson radical J(A,) of the n x n matrix ring over a ring A

is the n x n matrix ring over [J(A), that is, the matrix equation

T (An) = (T (A)n (%)
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holds for every ring A. The same is true for the Baer, Brown-McCoy, von
Neumann regular and the torsion radical, that is, in (*) we may write 3,G,v
or 7 in place of J, (cf[19] and [27]). The analogous question for Kothe’s nil
radical is more delicate, Kéthe’s problem is equivalent to a special case of the
equation N'(A4,) = (N(A)),. Krempa [17] proved that Kothe’s problem has a
positive solution if and only if A = N'(A) implies A; = N(A;) where A, stands
for the 2 x 2 matrix ring over A.

Let A[z] denote the ring of polynomials over a ring A. Amitsur [4] proved
that V' (A) = 0 implies J (A[z]) = 0, or equivalently,

if 7(Alz]) = A[z] then N(A) = A.
The converse implication,
if N(A) = A then J(A[z]) = Alz]) ()

is equivalent to the positive solution of Kothe’s problem (see Krempa [17] and
Puczylowski [19]). As Edmund Puczylowski reported at the XV Escola de
Algebra, recent investigations approximate the implication (**) from below and
from above. Agata Smoktunowicz [25] solved a long standing problem of Amit-

sur by constructing a ring A such that
N(A) = Abut N(Alz]) # Alz).

Nevertheless,

if N (A) = A then G(A[z]) = Alz],

as proved by Puczylowski and Smoktunowicz [20]. The coincidence of radicals
is sometimes reflected also on polynomial rings. Watters [28], [29] proved that

for every homomorphic image B of a ring A
J(B) = #(B) if and only if J(B[z]) = 8(B]z])

and

G(B) = A(B) if and only if G(Blz]) = B(Bla]).
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For more general results the reader is referred to Ferrero and Parmenter [12].

6. Many more radicals have been introduced beside the ones we have already
seen. The various radicals may be defined by a property v of rings, or equiva-

lently, by the class of all rings possessing property 4. Thus the class
N = {all nil rings} = {A|N(A) = A}

is a radical class, that of Kothe radical rings. Similarly, the class
J = {all quasi-regular rings} = {A| J(A4) = A},
G = {all G-regular rings} = {A|G(A) = A},
v = {all von Neumann regular rings} = {A|v(A) = A},
7 = {all rings with torsion additive group} = {A|7(A) = A}
define the Jacobson, Brown-McCoy, von Neumann regular and lorsion radical

classes, respectively. Also the Baer radical class can be given as

every nonzero homomorpic image
of A has a nonzero nilpotent ideal [~

ﬂz{Am(A):A}:{A

We are faced with the question: given an arbitrary class of rings, (that is, a
property of rings), is it a radical class? In the early fifties Amitsur [1], [2],
[3] and Kurosh [18] independently observed that all radical classes 4 have the
following common properties
(i) the class v is homomorphically closed: f: A — f(A) and A € v imply
S(A) € v for every homomorphism f,

(ii) the radical y(A) of the ring A is

7(A) =Y (T < A|I € 4) and 4(A) € v for all A,

(iii) v(A/v(A)) = 0 for all A.

Thereafter, a class v of rings is called a radical class in the sense of Kurosh
and Amitsur, if v fulfils conditions (i), (ii) and (iii). A Kurosh-Amitsur rad-

ical v is a general radical, and examples, such as the Kothe, Baer, Jacobson,



300 R. WIEGANDT

Brown-McCoy, von Neumann regular and torsion radicals are conerete radicals.
The introduction of a new, more abstract notion like that of Kurosh—Amitsur
radicals must be justified by important statements. The most significant state-
ment is expressed in the ADS-Theorem, named after Anderson, Divinsky and
Suliniski [5]: for any Kurosh-Amitsur radical v, if I < A then v(I) < A. The lack
of transitivity of the relation 71 is an ideal in A” makes the situation difficult
in the variety of rings. The ADS—Theorem is a remedy and establishes a bridge
for the missing transitivity. We mention two easy but important consequences
of the ADS-Theorem.

Let v be any Kurosh—-Amitsur radical. If 7 @ A and v(A) = 0, then also
(1) = 0. In fact, y(I) € v and by the ADS-Theorem ~(7) « A. Hence v(I) C
v(A) =0.

Many radical classes, including all the six concrete radicals we have seen,
are hereditary: if [ < A € v, then also I € v. Let v be a hereditary radical class
and [ 9 A. Then y(I) = v(A) N I. In fact, since y(A) € v and the class 7 is
hereditary, we have that v(A)N T C y(I). The inclusion y(I) C y(A) is a direct
consequence of the ADS-Theorem.

There are also recipes how to build a radical class. Starting from any hered-

itary class o of rings, the class
v =Uo = {A| A has no nonzero homomorphic image in ¢}

is always a radical class, the largest radical class v such that y No = {0}. Of
particular interest are the special radicals introduced by Andrunakievich [6].

Let o be a hereditary class of prime rings satisfying the following condition

if Iis an essential ideal of a ring A, (that is, IN K # 0

for every nonzero ideal K of A) and I € o, then A € 0.

Such a class o is referred to as a special class and the radical v = Uo is
called a special radical. Note that the class of all prime rings, all prime rings
with nonzero nil ideals, all primitive rings, all simple rings with unity element,

respectively, are special classes, and so 3, N, J and G are all special radicals.
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The importance of special radicals is featured in the following: if o is a special
class, then the special radical v = Uo is hereditary and v(A) = 0 if and only if

A is a subdireclt sum of o-rings.

7. Finally, some recent results will be surveyed which will show a way how to
make radical theory.

For module theoretic purposes Kasch defined the total of a ring A by
Tot(A) = {a € A|aA does not contain nonzero idempotents}.

Tot(A) resembles to a radical assignment. The shortcoming is that Tot(A) is
not closed under addition, so it cannot be an ideal of A. To overcome this

difficulty, in [9] we considered the class
p = {all rings A|Tol(A) =0},

and proved that g is a hereditary class. Thus K = Uy is a radical class what
we called the Kasch radical. The Kasch radical K has several decent properties,
for instance K is hereditary, J(A) C K(A) for every ring A, but K is not
comparable with the Brown-McCoy radical G, that is, there exist rings A and
B such that K(A) € G(A) and G(B) € K(B). Furthermore, K is a left and
right hereditary radical, that is, if A € K and [ is a one-sided ideal of A then
also I € K, (the Baer, Kothe, Jacobson and torsion radicals are left and right
hereditary but the Brown-McCoy and the von Neumann regular radicals are
not). K is also a left and right strong radical, that is, if I € K for a one-sided
ideal I of A then I C K(A), (the Baer, Jacobson and torsion radicals are left
and right strong but the Brown-McCoy and the von Neumann regular radicals
are not; as whether the nil radical A is left or right strong, is exactly Kothe’s
problem). We have shown in [9] that the Kasch radical is not a special radical

in the following way. We proved that the class
pp = {all prime rings A|Tot(A) = 0}

is a special class, so K, = Up, is a special radical which is also left and right

hereditary and left and right strong. To decide that K and K, are different
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radicals, Beidar [9] gave an ingenious and involved construction of a ring A
such that Tot(A) = 0 but T'ot(A/P) # 0 for all prime factor rings A/P of A.
Then K(A) = 0 but K,(A) = A. This example shows also that K is not a
special radical.

The study of rings with zero total yields interesting structure theorems.
Beidar [8] determined the structure of rings A such that Tot(A) = 0 and the
degrees of nilpotency of elements in A are bounded. In particular, A is a prime
ring, Tot(A) = 0 and the degrees of nilpotency of elements in A are bounded if
and only if A is isomorphic to a matrix ring over a division ring.

Another recent develpoment in radical theory is due to Ferrero and Puczylowski
[13]. Specializing a module theoretic notion to rings, the singular ideal Z(A) of
a ring A is defined as the set of all elements @ € A such that the right annihi-

lator r4(a) has zero intersection with every nonzero right ideal of A. A ring A

is called singular if Z(A) = A, and non-singular if Z(A) = 0. The class

S—{A
:{A

is then a radical class, called the singular radical. For every ring A, S(A) is

has a nonzero ideal which is a singular ring

every nonzero homomorphic image of A }

A cannot be homomorphically mapped onto
a nonzero semiprime non-singular ring

not far from being a singular ring whereas A/S(A) is close to being a non-
singular ring. The radical S is left and right hereditary, left and right strong,
and contains all nilpotent rings.

As whether § is a special radical, is an open question.
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