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REES ALGEBRAS OF COMPLETE BIPARTITE
GRAPHS

Rafael H. Villarreal*®

Abstract

We study Rees algebras of edge ideals associated to complete bipartite
graphs, the main result is a compact expression for their canonical mo-
dule. Some formulae for the Cohen-Macaulay type and Hilbert series of
those algebras are also presented.

1. Introduction

Let G be a graph on the vertex set V = {a1,... ,2,} and R = Kzy,... ,2,] a

polynomial ring over a field K. The monomial subring of G is the K-subalgebra
K[G] = K[{zizj| z; is adjacent to z;}] C R,

and the edge ideal I(G) of G is the ideal of R generated by all the squarefree
monomials x;z; so that z; is adjacent to z;. To relate properties of K[G] and

I(G) it is useful to introduce the Rees algebra of 1(G) defined as:
R(I(G)) = R{z;z;T|x; is adjacent to z;}] C R[T].

A remarkable connection between the monomial subring K[G] and the edge
ideal I(() occurs when G is a connected graph, in this case K[G] is a normal
domain if and only if all the powers of I(G) are complete [8].

Here we examine the Rees algebra R([I) of the edge ideal I of the complete
bipartite graph G' = K, ,, using two of its representations. The contents of this

note are as follows. First we compute the Hilbert series of R([) by representing
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this algebra as a polynomial ring modulo its ideal of relations and applying an
explicit description of Conca and Herzog [2] for the Hilbert series of K[K,, .].
It will turn out that R([) is defined by a ladder ideal of the simplest kind.

To introduce a second representation of R(I) recall that the cone C(G),
over the graph (G, is obtained by adding a new vertex = to G and joining every

vertex of G to x. According to [9, Section 7.3], there is an isomorphism:
R(I) £ K[C(G))],

thus R([) can be regarded as the monomial subring of a graph, this observation
is used to find an explicit formula for the canonical module of R(/) and to
compute its last Betti number. The main tool is a result of Danilov-Stanley
that provides a useful expression for the canonical module of certain monomial
subrings; for details about this result, as well as for basic facts and terminology

on polyhedral theory, the reader is refer to [1, Chapter 6].

2. The Hilbert series and canonical module

The following result do not seem to have been noticed, it shows that Rees

algebras of edge ideals of complete bipartite graphs have some structure.

Proposition 2.1. Let B/Q be the presentation of the Rees algebra of the edge
ideal I = (z;y;]1 <i<m,1 <j<n) of acomplete bipartite graph. Then the
toric ideal Q) is equal to the ideal I,(Y') generated by the 2-minors of the ladder

Y Y2 = Un
v= o e e
Tm Tml Tm2 Tmn

and the 2-minors of Y form a Grébner basis w.r.t the lex ordering induced by

Y>>y, >y >Ty > >T, >z > > T

Proof. Let K be a field and consider the presentation of the Rees algebra of I:

¥ B=Klz's,y;’s, Tij’'s) — R(I), (1) =Tay;, Q = ker(y).
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Note I(Y') C Q. As they are both prime ideals of height mn — 1, by [3, Section
4] and [6], one has the equality. The last assertion that the 2-minors are a

Grobner basis of Ir(Y) is a general fact of ladder ideals [6]. O

Lemma 2.2. Let K, ,, be the complete bipartite graph and A/ P the presentation
of K[Kwn]. If n > m, then the Hilbert series of A/ P is given by

s SL )

(1 _ Z)n-{-'m.—l

In particular e(K[K,, ), the multiplicity of K[K,, ] s equal to (m::f)

Proof. Let Vi = {z1,...,2m}, Vo = {y1,... ,ys} be disjoint sets of vertices
and R = K[V; UV;] a polynomial ring over a field K.
Let Ti;,1 <@ <m, 1 <7 <n be distinct indeterminates and map

: A= K[T;’s] — KK, = Klzy;’s] C R, (1) = 2y,

It is known [4] that the toric ideal P = ker(¢) equals the ideal I,(X') generated
by the 2-minors of the m x n matrix X = (7};) and dim(K[K,,,]) = m+n— L.

Let I,41(X) be the ideal generated by the r + I-minors of X. According to
[2] the Hilbert series of R,41 = K[T};]/1,+1(X) has a description as:

da(y (m N Z) (” ;J) Fiirr
AB)(1 = 2y

H(R7”+17 Z) =

where d = dim R,;;. Making r = 1 the result follows. |

Proposition 2.3. Let B/Q be the presentation of R(I), the Rees algebra of the
edge ideal I = (z;y;]1 <i<m,1 <j<n). Ifn>m, then the Hilbert series of
B/Q can be written as

1+ (mn — 1)z + 2:; (:L) (i”) 2

(1 _ Z)n+m+l

H(B/Q,z) =
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In particular a(B/Q) = —(n+ 1) and e(B/Q) = (m;n) = Ls

Proof. Let B = K[x;,y;,T;j|1 <i<m, 1< j <n]be a polynomial ring over

a field K and consider the ladders

Y1 Y2 0 Yn . " "
Ty Tye - Tin 1 2. - n

. . . Ty Ty - T,

M, = - : : Ny= T Ty - Ty,
. xg Tp T - Ty ¢ ) : .

S - : : T T o T.n-
Tm Tml Tm2 Tt Tmn “ “ !

Let I, and J; be the ideals generated by the 2-diagonals of M, and N, respec-
tively, where a 2-diagonal is the product of the diagonal entries of a 2 x 2

submatrix.

By Proposition 2.1 and [1, Theorem 4.2.3] one has H(B/Q, z) = H(B/I, z).
Hence the proof reduces to compute H(B/I;, z).

For 1 </ <m — 1 consider the graded exact sequences

0 — B/K,[—1] =% B/(z1,... yxe-1, 1)) — B/(21,- .. , %0, Le41) — 0,

,2o—1). Therefore

where K, = (Ti;[ 0+ 1 < i)+ Jo + (24, ...
m—1
H(B/I,z) = (Z H(B/Kg,Z)) z+ HB/ (%1, s Tme1,Im), ).
=1

As xp,... 2, is a regular sequence on B/K, using Lemma 2.2 one readily

obtains
E(\ (n—1)\ ;
207

i)

H(B/A’sz) = i=((1 _ Z)m+n+1 3

and consequently

EEOUT))+E0()

H(B/L,z) = — (1 — z)mnt1
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L ) 1
Using the formula Z (x + Z) = (I TRt ) yields the required equality. O
1

i=0 L

Theorem 2.4. Let K be a field, S = Klzyj, vz, y;z|l <i<m,1 <j<n
the monomial subring of the cone over a complete bipartite graph K., and ws

the canonical module of S. Assume n > m > 2.

(a) If n = m, then ws = (1 Tpy1 - Yur?|1 <1 <n —1).

(b) If n > m + 1, then ws is generated by the set of monomials of the form:

(9) M=za12ny1- Yo, n—m+1<b<n+m—1and n+m+bec 2N, or

(it) M = 2§' - ztmy - yp2b, iai =n—-0+2,06=23,...,n—m+1, and
i=1

a; > 1 for all 1.

Moreover in both cases (a) and (b) those generating sets for ws are minimal.

Proof. For M = ' - - - a%mylt - - yPnab set log(M) = (a1, .. yam,b1,- .. ,bn,b).
Define

A={log M| M € {zy;,ziz,y;z|l <i<m,1<j<n}}.

Since S is a normal Cohen-Macaulay domain of dimension n +m+ 1 by [5] and
[8, Theorem 1.1], one can use the Danilov-Stanley formula [1, Theorem 6.3.5]

to express its canonical module as:
ws=({M =22 ... zmybr . ybrab| Tog(M) € NAN (RLA)°Y),

where (R;.A)° is the interior of the cone generated by A and S has the nor-

malized grading. Let M = z}' - z%myb .

According to [10, Theorem 3.2] a vector 3 € N™*"*! is in (R;.4)° if and only

-+ ybn2® be a minimal generator of ws.

if 3 satisfies the inequalities:
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1 < Biyi=1,...,m+n
m m4+n
Zﬁz < =14 Brgns1 + Z Bs
i=1 i=m+1
m4+n m (1)
Z Bi < =14 Bmynt1+ Zﬂz
i=m+1 =1
m+n
/Bm+n+1 S -1 + Z Bi;
i=1
Therefore one has:
1 < a;p 1 < by, 1<i<m, 1<j<n
Zai < —1 —I—Z)—I—Zl),-
=1 =1

=1

-
1
—

o
IA

14+ ai+) b
=1 =1
Using that « € NA one also obtains:
b+ a;+ Y b €2N (3)
=1 =1

Observe that (2) and (3) yield b > 2. We consider the following cases:

I. Assume a; > 2 for some 1. We claim that b; = 1, for all ¢. For simplicity

assume a; > 2 and b; > 2. Write:
i=1 i=1

If 1 <@ <2, write M = M'y;z. Since log M = log M’ 4 log y12 one has that
log M" is in ZA. Tt is not hard to see that log M’ satisfies all the equations in
(1), thus log M’ € (R;.A)°. By the normality of S one concludes log M’ € NA,
hence M’ is in wg, which contradicts the minimality of M. If ¢ > 3, consider
M = M'z1y;, as before one readily obtains M’ € wg, which again contradicts
the choice of M.

II. Assume n = m. First let us show a; = 1 and b; = 1, for all 7, j. By the

previous case and symmetry if a; > 2 for some ¢ (resp. b; > 2), then b; = 1 for
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all ¢ (resp. a; = 1 for all 7). If a; > 2 for some 7, say i = 1, then M’ € wg,
where M = Mz, and this is impossible by the choice of M. Next, using (2)
and (3), it follows that b = 2i for some 1 <i <n — 1, and we are in case (a).
IT1. Assume n > m + 1 > 3. We claim that b, = 1, for all 7. If b; > 2, say
¢ = 1, then by case I one has a; = 1 for all 2. As before one readily derives a

contradiction by writing M = M'y,xz. Altogether one can write:
M=z%. . gimy gz B> 2
If a; = 1 for all ¢, then using (2) and (3) one has
n—m+1<b<m+n—1 and m+n+be2N,

and we are in case (b). Next assume a; > 2 for some 7, say ¢ = 1. Combining
(2) and (3) one has n < Za@- +b—-2 Ifn< Zai + b — 3, one derives a

=1 =1
contradiction by considering M = M’z z. Therefore

m
m+ 1 SZaizn—b—l—Q, b=2,....n—m+1,
=1
and we are in case (b).
Thus any minimal generator of ws must be as in (a) or (b). To complete
the argument observe that any of the monomials occuring in (a) or (b) are in

wg and they are not multiple of each other. a

Remark 2.5. If n > m = 1, then assertion (b) above still holds. To show it
replace the very first set of inequalities in (1) by 8; > 1,7 =2,... ,n+m. On
the other hand if n = m = 1, then ws = (z}y?a?).

Let B/@Q be the presentation of a Cohen-Macaulay monomial subring K[G],
where (G is a graph. The Cohen-Macaulay type of the ring K[G] is the last Betti
number in the minimal free resolution of B/(Q) as a B-module; it will be denoted
by type(K[G]). Set S = K[G]. We recall that the type of S is also equal to the

minimal number of generators of the canonical module wg of 5.

Corollary 2.6. Let S = R(I) be the Rees algebra of the edge ideal I of the
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complete bipartite graph K,,p. If n >m >2 orn >m =1, then

type(S) = (n> +(m—2).

m

Proof. If n = m > 2 or n > m = 1 the formula follows from Theorem 2.4(a)
and Remark 2.5. Assume n > m + 1 > 3. Observe that there are m — 1
generators of wg as in Theorem 2.4(i), to count the remaining generators of wg
as in Theorem 2.4(ii) note that the sum from b = 2 to b = n —m + 1 of the

m-partitions of n — b + 2 is equal to

B L 00 E ) e )

b=2 i=m+1
Hence type(S) = (m — 1) + (Z) —1= (Z) + (m —2). O
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