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SOME RESULTS AND QUESTIONS ON NIL RINGS

Edmund R. Puczylowski*

Abstract

The purpose of this paper is to survey some old and new results on
associative nil rings. Several of them are connected with Koethe’s prob-
lem. We also formulate some open problems and make several comments

and remarks.

1. Introduction and Preliminaries

Many open problems in the theory of associative rings concern nil rings. The
most famous is Koethe’s problem (it asks whether the two-sided ideals gener-
ated by left nil ideals must be nil) and Levitzki’s problem (which asks whether
there exist simple nil rings). Many other questions are also extensively studied.
Recently several new interesting and deep results were obatined. In this paper
we survey and discuss them making some comments and remarks and raising
new questions. We also present several relevant older results.

In [7, 31] one can find many other related questions, in particular on tensor
products of nil algebras. We do not discuss them here because no progress in
this area was made in the last years.

All considered rings are associative but not necessarily have identities. The
ring (or algebra if we consider algebras) R with an identity adjoined will be

denoted by R*.

*The author was supported by KBN Grant 2 PO3A 039 14 and the organizers of the XV
Escola de A]gebra, Canela, RS - Brazil
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To denote that [ is a two-sided ideal (left ideal) of a ring R we write I < R
(I <i R). Obviously if L is a left ideal of R, then the two-sided ideal of R
generated by L is equal LR*.

The prime and the Jacobson radicals will be denoted by 8 and J, respec-

tively.

2. Koethe’s Problem

It is not difficult to check that if L <; R and L is locally nilpotent, then so
is LR*. In some classes of rings, e.g. Pl-rings or rings with Krull dimension
(in particular Noetherian rings), left nil ideals are locally nilpotent. Hence in
these classes of rings Koethe’s problem has a positive solution. For some time
it was hoped that all nil rings might be locally nilpotent. This obviously would
solve Koethe’s problem positively. However the famous examples constructed
by Golod and Shafarevich [9, 10] show that this is not true.

Another approach to Koethe’s problem was applied in [1] by Amitsur. He

proved

Theorem 2.1. If R is an algebra over a field F' and dimpR < cardF', then the
Jacobson radical J(R) of R is nil.

This theorem easily implies that Koethe’s problem has a positive solution
in the classes of algebras over uncountable fields. Indeed, let L be a left nil
ideal of an algebra A over an uncountable field F. For every a € LA*, there are
liy.ln € L and ay,...,a, € A* such that a = lya; + ... + l,a,. Let B be the
subalgebra of A* generated by [y, ...L,, a1, ..., a,. Clearly LN B is a left nil ideal
of B,soa € (LNB)B* C J(B). Since B is finitely generated, dimpB < cardF.
Hence the theorem implies that « is nilpotent.

The following result due to Krempa shows that studying Koethe’s problem

one can concentrate on algebras over fields only.

Theorem 2.2. (Krempa [22]). Koethe’s problem has a positive solution if and
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only if it has a positive solution for F-algebras over each field F.

This result and a reasoning similar to that for uncountable fields show that
Koethe’s problem would have a positive solution if we knew that finitely gen-
erated algebras over fields necessarily have nil Jacobson radicals. It was hoped
that it might be true. However this is not always the case. As it was noted by
Beidar [4] a counterexample can be easily constructed by employing the follow-
ing general result due to Markov (Beidar gave also another example based on

Markov’s theorem). We sketch the argument.

Theorem 2.3. (Markov [25]). Suppose that R is an isomorphically closed class
of algebras over a field F' such that

(i) R contains an algebra A with dimpA < Ry;

(ii) If I 9 R, I =0 and R/I € R then R € R.

Then there exists an F-algebra with an identily generated by two elements

which has a non-zero left ideal in R.

Proof. Let T = F{X,Y} be the algebra of polynomials in non-commuting
indeterminates X and Y with coefficients in F' and let L = TX. It is not
difficult to check that L is isomorphic to the free F-algebra P in indeterminates
T1, T2, .... Since dimpA < Vg, P can be homomorphically mapped onto A.
Hence there exists an ideal I in L such that L/ ~ A.

Observe that LIT < T and I* C (LIT) N L. Moreover, since T = F +
TX +1Y, we have (LIT)NL = LI(F+TX+7TY)NnL C (LI + LIL +
LITYYNLC(I+TY)NL. However [ C Land TY NL=TYNTX =0, so
(I+TY)NL=1I14+((TY)NnL)=1. Consequently

PCLITNLCI.

Now (L/(LOLIT)/(I/(LALIT)) ~ L/T € Rand I/(LALIT) < L/(LOLIT),
(I/(LNLIT))? =0, so by (ii), L/(L N LIT) € R. Moreover L/(L N LIT) =~
(L+ LIT)/LIT <; T/LIT. Thus T/LIT is an F-algebra with an identity

generated by two generators (images of X and Y') which contains the non-zero

left ideal (L + LIT)/LIT in R. ]
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Now let F' be a countable field and let R be the class of all Jacobson radical
F-algebras which are not nil. It is clear that R satisfies the second condition of
Markov’s theorem. To see that it also satisfies the condition (i) one can take
the Jacobson radical of the ring of polynomials in one indeteminate x over F
localized at the ideal generated by x. Thus Markov’s theorem implies that there
exists an algebra A with an identity generated by two generators and containing

a non-zero left ideal L € R. Clearly the Jacobson radical of A is not nil.

Remark. Note that to solve Koethe’s problem it is enough to prove that sums
of left nil algebras over fields are nil. Indeed, let L be a left nil ideal of an algebra
A over a field F. Then for each a € A* and every [ € L, (la)"*' = [(al)"a.
Hence La is a left nil ideal of A. Now for every z € L A* there are ay, ..., a,, € A*
such that € Laj + ... + La,,. Hence if sums of left nil ideals are nil, then x is
nilpotent. Consequently LA™ is nil.

Clearly to check that sums of left nil ideals are nil it suffices to do this for
two such ideals. Thus let L; and Ly be left nil ideals of an algebra A. Pick
ly € Ly and [, € Ly and denote by B the subalgebra of A generated by [y
and [,. Now !l € Lin B and [, € LyN B and both Ly N B and L, N B are
left nil ideals of B. Hence ly,1; € J(B), so B is Jacobson radical. Therefore
L1+ Ly would be nil if we could prove that finitely generated Jacobson radical
algebras over fields are nil. However this is also not true. A counterexample
based on Markov’s and Golod-Shafarevich’s ideas was recently constructed by

Smoktunowicz (unpublished).

The following question remains open.

Question 1. Do the Jacobson and nil radicals coincide for finitely presented
algebras, i.e., factor algebras of finitely generated free algebras modulo finitely

generated ideals?

We conclude this section with a result due to Krempa which gives two equiva-

lent formulations of Koethe’s problem. This result inspired many further studies
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not only connected with Koethe’s problem.
Given a ring R, we shall denote by M,(R) the ring of 2 x 2-matrices over R

and by R[z] the ring of polynomials in an indeterminate z over R.

Theorem 2.4. ([22]). The following are equivalent

(1) Koethe’s problem has a positive solution;

(i) if R is a nil ring, then My(R) is a nil ring;

(iii) if R is a nil ring, then R[z] is a Jacobson radical ring.

Other proofs of Theorem 2.4 can be found in [3] and [23]. The equivalence
of (i) and (ii) was independently obtained by Sands [37].

Polynomial rings and monomial algebras

In a connection with Theorem 2.4 it was asked [3, 22] whether for every nil ring
R, the ring R[z] is nil. Applying Theorem 2.1 and Theorem 2.4 (or direct argu-
ments) it is not difficult to show that the answer is positive if R is an algebra
over an uncountable field. Recently Smoktunowicz [38] constructed an example
showing that the question has a negative answer for algebras over countable
fields. The general idea of the example is similar to that of Golod and Shafare-
vich applied in [9, 10] (cf. also [28]) in their construction of a finitely generated
nil but not nilpotent algebra. Namely, take a finitely generated free algebra A
over a countable field F'. Obviously A is countable, i.e., A = {a1,as,...}. Take
the factor algebra A/I, where I is the ideal of A generated by ai',ay?,... for
a sequence ny,na, ... of natural numbers. Clearly A/I is nil and Smoktunowicz
proved that if the sequence ny,ng,... increases quickly enough, then the poly-
nomial algebra (A/I)[X,Y] in two commuting indeterminates over A/I is not
nil. Then A/I or (A/I)[X] (it was not clarified which one) is a nil ring, the
polynomial ring in one indeterminate over which is not nil. More precisely in

[38] the following theorem was proved.

Theorem 3.1. Let I be a countable field and let A = {a1, aq,...} be the free F'-
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10m;41 |
(3

algebra in indeterminates x,y,z. Let I be the ideal of A generated by {a
i=1,2,...}, where my, ma, ... are natural numbers salisfying

i) my > 108 and miq > m; 24100 ford > 1;

i) m; > 38499 for i > 1;

iii) each m; divides miy1.

Then (A/I)[X,Y] is not nil.

The choice of the exponents in the theorem is so complicated for some tech-
nical reasons appearing in the proof (which is quite difficult). It is however
not hard to see that one could take any enough quickly increasing sequence n;
and then for the ideal J of A generated as I with exponents n;, one would get
that A/J is nil but (A/J)[X,Y] is not. This case can be just easily reduced to
that appearing in the theorem. Note also that if R is a finitely generated nil
algebra over a field F' such that R[z] is not Jacobson radical, then by the above
quoted results, F' must be countable. Obviously R is isomorphic to A/I, for a
finitely generated free F-algebra A and an ideal I of A. Now A is countable, so
A = {a1,ay,...}. Since R is nil, there are natural numbers n,ns, ... such that
a;* € I. Of course if we take the ideal J generated by all ¢, then we get that
J C I. Clearly A/J is nil and R[z] is a homomorphic image of (A/.J)[z], so
(A/J)[z] is not Jacobson radical. These remarks show that the idea applied by
Smoktunowicz might be useful in constructing a counterexample to Koethe’s

problem.

Recall that a ring is Brown-McCoy radical if and only if it cannot be homo-
morphically mapped onto a ring with an identity. The Brown-McCoy radical
is larger than the Jacobson radical. Hence a first step in proving that Koethe’s
problem has a positive solution might be to show that for every nil ring R the
ring R[z] is Brown-McCoy radical. The question whether it is so was raised in
[31]. A positive answer was recently obtained in [33] as a consequence of the

following more general result.

Theorem 3.2. Gliven a ring R, the ring R[x] can be homomorphically mapped
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onto a ring with an identity if and only if the ring R can be homomorphically
mapped onto a prime ring containing a non-zero central element.

This theorem implies also the following.
Corollary 3.3. If L <; R and L is nil, then (LR*)[z] is Brown-McCoy radical.

Proof. If (LR*)[z] is not Brown-McCoy radical, then by Theorem 3.2 there is a
primeideal [ of LR* such that LR*/I contains a non-zero central element a. It is
not hard to see that (since I is a prime ideal of LR*) [ is an ideal of R*. Moreover
if J is an ideal of R* maximal with respect to J N (LR*) = I, then J is a prime
ideal of R* and LR*/I = LR*/(JNLR*) ~ (LR*+ J)/J =L+ J)/J)(R*)J)
and that the image of a in ((L 4 J)/J)(R*/J) is a regular element of R*/J.
Factoring out the ideal J we can assume that R* is a prime ring. Then «a is
a regular element of R* contained in LR*. Let R be the ring R* localized
at the set {a" | n = 0,1,2...}, where a° denotes the identity of R*. Now
Lo=A{la |l € L,n=0,1,2,...} is a left nil ideal of R%, so the two-sided ideal
T of R* generated by L, is a Jacobson radical ring. This is impossible because
a € LR* implies that T is a ring with an identity.

[}

Remark. Note that it is not true that if L <; R and L[z] is Brown-McCoy
radical, then (LR*)[z] is Brown-McCoy radical. Indeed, let R be a simple
domain with an identity which is not a division ring. Then R contains a non-
zero proper left ideal L. Omne can check that L is a simple ring without an
identity, so L cannot be homomorphically mapped onto a ring containing a
non-zero central element. Consequently by Theorem 3.2, L[z] is Brown-McCoy
radical. However LR* = R, so (LR*)[x] is not Brown-McCoy radical.

[}

To make a further progress one can try to answer the following questions.

Question 2. Suppose that R is a nil ring.

a) Is it true that R[z] cannot be homomorphically mapped onto a ring



272 E. R. PUCZYLOWSKI

containing a non-zero idempotent?;

b) Is the ring R[X] of polynomials in a set X of two or more commuting
indeterminates Brown-McCoy radical?;

¢) Is the polynomial ring R{X} in a set X of two or more non-commuting
indeterminates Brown-McCoy radical?

As we have seen the problem of describing the Jacobson radical of poly-
nomial rings in commuting indeterminates is difficult and strictly connected
with Koethe’s problem. It is much easier to describe the Jacobson radical of
polynomial rings in non-commuting indeterminates. Namely [29] the Jacobson
radical of the polynomial ring R{X} in a set X of at least two non-commuting
indeterminates is locally nilpotent and is equal L(R){X}, where L(R) is the
locally nilpotent radical of R. Related are some recent results on the Jacobson
radical of monomial algebras.

Recall that monomial algebras are defined as the factor algebras F{X}/I,
where F{X} is the polynomial algebra over a field F in a set X of non-
commuting indeterminates and [ is an ideal of F{X} generated by monomials.

In [26, 27] Okninski asked whether the Jacobson radical of monomial al-
gebras is locally nilpotent. He proved that in the characteristic zero case the
answer is positive if and only if the Jacobson radical of the monomial algebra
F{X}/I regarded as an algebra graded in the natural way by the free group
generated by X is homogeneous. Homogenity of the Jacobson radical of mono-
mial algebras was proved in [13]. These answered the question for monomial
algebras of characteristic zero. Next in [5] Belov and Gateva-Ivanova proved
that the Jacobson radical of monomial algebras is nil. Finally in [6] Beidar and

Fong answerd Okninski’s question in the positive.

4. Power series rings

It is not difficult to prove [29] that the power series ring R{{X}} in a set of
at least two non-commuting indeterminates is nil if and only if the ring R is

nilpotent and it is nil semisimple if and only if 3(R) = 0.
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Recently [32] the following result, giving in particular a complete description
of the nil radical of power series rings in non-commuting indeterminates, was
obtained. It answers positively a question of [31]. This characterization was in

[30] obtained for uncountable sets of indeterminates.

Theorem 4.1. An element a of the power series ring R{{X}} in a set X of at
least two non-commuting indeterminates belongs to a right nil ideal of R{{X}}
if and only if the right ideal of R generated by the coefficients of a is nilpotent.

The problem concerning a description of the nil radical of power series rings
in one indeterminate is much more complicated. In [19] Klein proved that if a
ring R is nil of bounded index, then so is R[z]. From this result it easily follows
that if R is nil of bounded index, then also the ring R{{z}} of power series
in an indeterminate = over R is nil of bounded index. In [30] it was proved
that if R{{x}} is nil, then R is nil of bounded index. Consequently R{{z}} is
nil if and only if R is nil of bounded index. It was natural to expect that an
element a of R{{z}} belongs to the nil radical of R{{z}} if and only if the ideal
of R generated by the coefficients of a is nil of bounded index. This question
was raised in [31]. It turns out that it was known ealier that it has a negative
answer even for commutative rings. An example showing that was constructed
in another context by Hamann and Swan in [11].

In [32] the following characterization of the nil radical of R{{z}} was ob-

tained.

Theorem 4.2. The nil radical of R{{x}} coincides with {a € R{{x}} |
aR{{z}} is nil of bounded index}.

Rings which are sums of two subrings

In [14] Kegel proved that a ring which is a sum of two nilpotent subrings is

nilpotent and in [15] he showed that a ring which is a sum of a nilpotent subring
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and a locally nilpotent subring is locally nilpotent. Some extensions of Kegel’s
results were found in [8]. In particular it was there proved that Koethe’s problem
is equivalent to the problem of whether a ring which is a sum of a nilpotent
subring (or even a subring with zero multiplication) and a nil subring must be
nil. These results led to many natural questions (cf. [15, 31]), e.g., whether
a ring which is a sum of two nil (locally nilpotent, S-radical) subrings must
be nil. It was expected that at least some of these questions have positive
answers. For instance in [12] it was conjectured that rings which are sums
of two locally nilpotent subrings must be locally nilpotent and the same was
expected in [31] for Wedderburn radical subrings (recall that a ring is called
Wedderburn radical if it is equal to the sum of its nilpotent ideals). However
it turned out that the situation is quite opposite. In [16] Kelarev showed that
rings which are sums of two locally nilpotent subrings need not be nil. In his
construction he presented the free semigroup W on letters x,y as the union of
the subsemigroups Wi = {w € W | deg,w < deg,w} and Wy, = W \ W; and
found an ideal I in W such that for a field F' the contracted semigroup algebra
Fo[W/ 1] was not nil but its subalgebras Fo[(W;UI)/I] and Fo[(WoUI)/I] were
locally nilpotent. Clearly Fo[W/I] = Fo[(W; U I)/1] 4+ Fo[(W2 U I)/I]. The
construction of the ideal I as well as the proofs were quite complicated. In [35]
Salwa found simpler and stronger examples. They were based on semigroups of
partial translations of intervals of the real line. He presented them also as some

monomial algebras which was useful in studying their further properties.

Now we shall present one of the most extreme of Salwa’s examples in a bit

modified form.

Example. Let a, 3 be positive real numbers such that «/3 is irrational and let
I be a field. Let f be the homomorphism of the free semigroup W on letters
z,y into the additive group of real numbers such that f(z) = —a and f(y) = 8.
Clearly Wi = {w € W | f(w) < 0} and Wy = {w € W | f(w) > 0} are
subsemigroups of W and W = W; U W, (since /@ is irrational, f(w) # 0 for
w € W). Let I be the ideal of W generated by the set M = {w € W | | f(w)| >
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(4

a+ G}

Observe that if w € W \ I and wz € I, then there are v/,u € W such
that w = w'u and uz € M. Obviously u € M, so f(u) < a+ 3 and f(uz) =
f(u)—a < B < a+f3. Hence since ux € M, we have f(u)—a = f(uzr) < —a—p0,
so f(u) < —p. Similarly if wy € I, then there are v',v € W such that w = v'v
and f(v) > a. However wz and wy cannot belong to I simultaneously. Namely
if they both were in I, then we would have that ©v = {v or v = tu for some
t € W. In the former case f(1) +a < f(1)+ f(v) = f(tv) = f(u) < =3, so
f(t) < —a— 3. This implies that w € I, a contradiction. Similarly if v = {u,
then f(t) > a +  and again w € I which is impossible. This shows that the
image of  +y in R = Fo[W/I] is left regular. Symmetric arguments show that
it is right regular.

If S is a finite subset of W; and 11, ...,1, belong to the ideal of W; generated
by S, then f(4;...i,) < nmaz{f(s)|s € S}. This implies that every element of
Ry = Fo[(Wy UT)/1] belongs to a nilpotent ideal of Ry. Similarly every element
of Ry = Fy[(W, U I)/I] belongs to a nilpotent ideal of Ry. Thus both Ry and
Ry are Wedderburn radical.

Obvioulsy R = Ry + Ry. Thus R is a ring containing a regular element (in
particular it is not a nil ring) which is the sum of Wedderburn radical subrings

Rl and R2 .

Salwa proved that this example has the following further properties:

1. R is primitive,

2. R is nilpotent modulo each non-zero ideal,

3. The Gelfand-Kirillov dimension of R is 2.

In a connection with the last of these properties Salwa proved the follow-
ing two results. The former of them shows that in some sense his example is

minimal.

Theorem 5.1. Assume thalt A is a finitely generated algebra over a field. If A

is a sum of two nil subalgebras and the Gelfand-Kirillov dimenstion of A is < 2,
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then A is nilpotent.

Theorem 5.2. If an algebra A over a field is a sum of two nil subalgebras and

the Gelfand-Kirillov dimension of A is 0, then A is locally nilpotent.

Remark. It is clear that given a real number v > « + # the construction of
the example applied to M = {w € W | |f(w)| > ~} gives an algebra containing
a regular element which is a sum of two Wedderburn radical subalgebras. How-
ever such algebras have higher Gelfand-Kirillov dimension. All of them can be
homomorphically mapped onto so constructed algebra for v = « + 3 and this
algebra has, as it was proved by Salwa, the Gelfand-Kirillov dimension equal 3.

In [17] Kelarev considered the particular case of such algebras for a = /2,
B =1 and v = 3. He found simpler arguments to show that in characteristic
zero the obtained algebra is not nil.

]

Remark. During his talk at the XV Escola de Algebra Prof. Y. Bakhturin
announced that Fukshansky showed that rings which are sums of two locally
nilpotent subrings can contain free subrings. Let us observe that applying
Salwa’s example it is easy to show that such rings can be also found among
rings which are sums of two Wedderburn radical subrings. Indeed, it is not
hard to check that if r is a non-nilpotent element of a ring R, then the subring
of the polynomial ring R{z,y} in two non-commuting indeterminates z,y over
R generated by ra,ry is a free ring in two indeterminates. Obviously if R is a
sum of two Wedderburn radical subring, then so is R{z,y}.
O
In [18] it was proved that rings which are sums of two nil subrings of bounded
index are also nil of bounded index. However no relation between the indices
is known. Klein obtained the same result [20] when the subrings are left ideals

but also did not find such a relation.

We conclude with some questions.
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Question 3. Can a ring which is a sum of a nilpotent ring and a nil ring
contain a regular element?

From the quoted above result of [8] it follows that such a ring would give a
counterexample to Koethe’s problem. Thus one would rather expect a negative

answer to this question.

Question 4. Can a ring which is a sum of two nil (locally nilpotent, 3-radical,

etc.) subrings contain a non-zero idempotent?

Question 5. Is every finitely generated nil ring which is a sum of two Wedder-

burn radical subrings nilpotent?

Question 6. Does there exist a simple ring which is a sum of two nil (locally

nilpotent, G-radical, etc.) subrings?

In [18] it was proved that there exists a simple ring which is a sum of a

nilpotent subring and a nil subring if and only if there exists a simple nil ring.
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