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TAME ALGEBRAS AND DERIVED CATEGORIES

J. A. de la Pena®

0. Introduction

Let A be a finite dimensional algebra over an algebraically closed field k. One
of the main tasks of the representation theory of algebras is the study of the
category A of modules. In the best understood cases, this task is achieved by
classifying all the indecomposable A-modules (up to isomorphism). From this
point of view, the simplest situation occurs when there are only finitely many
isomorphism classes of indecomposable A-modules, that is, A is representation
finite. The problem of determining if a given algebra A is representation-finite
and, in case it is, classifying all the indecomposable modules, is well understood,
see for examples [7].

Tame algebras are precisely those algebras for which one may expect to
reach the classification of the indecomposable modules. Indeed, the tame-wild
dichotomy tell us that any algebra A is either tame and hence the indecom-
posable modules of each fixed dimension are classified in a finite number of
one-parametric or discrete families of modules, or A is wild and then there
is a A — k(z,y)-bimodule M which is free as right k(z,y)-module and such
that the functor M ® —: k(z,y) — A preserves indecomposability and reflects
isomorphism classes.

For certain families of algebras there are good criteria to determine the
representation type (tame or wild). Disgracefully there is no general solution
for this problem or for the problem of classifying the indecomposable modules
over a tame algebra. For the best known examples of tame algebras A, also

the derived category DP(A) of the category A is well understood. Namely, for
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A = kQ an hereditary algebra of finite or tame type (that is, A is the path
algebra of a quiver @ of Dynkin or extended Dynkin type), the description
of the indecomposable objects over DP(A) is given in [8]; in the case, A is a
tubular algebra, the description was given in [9]. It is worth recalling that the
category of coherent sheaves on the projective space P" is derived equivalent to
the module category modA, of a certain finite dimensional algebra A,,.

Two derived-equivalent algebras A and B (that is, D*(A) and D*(B) are
triangle equivalent) share many other invariants, among which the Grothendieck
group, equipped with the Euler bilinear form, is most important. Work has
been done to characterize algebras A which are derived-equivalent to a tame
hereditary or to a tubular algebra.

The purpose of these lectures is to present the main concepts of tame and
wild algebras and to consider the associated derived categories. For the un-
derstanding of tame algebras and their modules categories, the introduction
of some geometric concepts and techniques is of fundamental importance. In
section 2 we introduce the notion of module varieties and show some geometric
characterizations of tame algebras. In section 3 we describe some examples of
derived categories of tame algebras and in section 4 we present some recent
characterizations of algebras which are derived-equivalent to tame hereditary
or tubular algebras.

For some basic notions, the reader may refer to [7] and [12]. For further
information on tame algebras to [13]. Most of the recent results reported on

these notes come from the papers [3], [5].

1. Tame and wild algebras

1.1. A problem from analysis. Consider the system of m differential equa-
tions of degree s in n indeterminates
d°x d*lz

dx
M,== + M,y —— 4+ My — + Moz = f(t
s Mot g + o+ My o Moz = [(1),
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where My, My, ... , M, are complex m X n-matrices, x is a column formed by
the indeterminates and f(¢) is a vector function. The problem is to solve the
system.

The case of degree s = 1 was consider originally by K. Weiestrass and only
partially solved. The complete solution for that case was given years alter by
Kronecker. We shall start examining the general problem.

Given two invertible matrices P of size m x m and Q of size n X n, we may

transform the system to

d®z Atz dz
M=+ Moy g o+ My 4 Moz = (),

where M! = PM;Q, z = Q™ 'z and f'(t) = Pf(t). In case we find a solution for
the transformed system, we immediately find a solution for the original system.

The aim is therefore, to find adequate matrices P and @ which transform the
system in an ‘easy to solve’ problem. For instance, in case of an homogeneous

system of degree s = 1 and

3 -10 2 -10
lW() = —2 2 O 5 M] = —1 1 0
1 -4 1 -2 =21
1 10 100
we may choose P =1 0 1 0 | and @ = | 1 1 0 | which yields a new
1 01 1 11
system M{% 4+ M}z = 0 where
210 100
My=10 20 and M=1010
001 001

The new system is readily solved by
(z1(),22()) = e, where A = — ( 2 od )
0 2
and z;3(t) = €.

1.2. The Weierstrass-Kronecker solution. Consider the problem (1.1)

when s = 1. The aim is to find ‘normal forms’ for pairs of matrices (Mo, M),
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given that two pairs (Mo, M) and (M{, M]) are equivalent if M! = PM;Q (i =

0,1) for some invertible matrices P and (). The solution is as follows.

A0

0 B )
Given two pairs (Ao, A1) and (By, By), the sum (Ag, A1) & (Bo, By) is defined

coordinatewise. A pair (Ag, A;) is indecomposable if it is not equivalent to the

Given two matrices A and B we define the direct sum A @ B as

direct sum of two non-trivial pairs. Clearly, every pair (Ag, A1) is equivalent to
a direct sum of finitely many indecomposable pairs.

Representatives of the equivalence classes of indecomposable pairs are the
following;:

(a) (J,(N),1,) of size n X n, where J,()) is the Jordan block with eigenvalue
recC

(b) (1,,J,(0)) of size n X n.

(c) For each n, a pair of size n x (n + 1) of the form (Po(n)7 Pl(n)) where
POl wd PO —(0ln,)

d) For each n, a pair of size (n + 1) x n of the form [(n), 1) where
o I

1, 0
[(()n) =| —— and [](n) = ——
0 1
1.3. Trying to solve the system for degree s > 1. To fix ideas, consider

the case s = 2. We shall restrict to the following type of system

where My and M; are n X n-matrices. Two such systems (Mo, M;,1,) and

(M, M],1,) are equivalent if and only if there are invertible n X n-matrices P

and @) such that
M) =PMyQ, M, =PMQE and 1,=PQ.

Therefore, the pairs (Mo, My) and (M), M]) are equivalent by simultaneous

conjugation.
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The problem of finding ‘normal forms’ for pairs of square matrices where
equivalence is defined by simultaneous conjugation is a well-known open problem
that we will consider in more detail. In this moment we only conclude that there
is no hope to solve the systems of differential equations of degree s > 1 by giving

a set of normal forms.

1.4. Quivers, algebras and representations. Consider the following ori-

ented graph

consisting of two vertices @ and b and s arrows ay,... ,as. A representation X
of A; over the complex numbers C is given as a couple of finite dimensional
vector spaces X, and X} (say a dimension m and n respectively) and for each
arrow «;, a linear map X (a;): X, = X,. Fixing basis for X, and X3, we may
identify X with a tuple (X(ay),...,X(as)) of s matrices of size m X n.

Two representation X and Y of A, are equivalent if there are linear iso-
morphisms P,: X, — Y, and Py: X, — Y} such that Y (o) = P, X (a;) P, for
1=1,...,8.

In case s = 2, the pairs described in (1.2a,b,c,d) form a complete set of
representatives of the isomorphism classes of indecomposable representations of
A,.

Associated with A we define an algebra Ay = CA; with a basis aq, ... , as,
€q, e (hence of dimension s + 2) and multiplication given by €? = e,, ¢} =
ey, e, = oy, epa; = oy, ¢t = 1,...,s and all other products equal to zero.
Then {eq, e} is a complete set of pairwise orthogonal idempotents. Moreover,
observe that the category of representations of Ay is equivalent to the category
A; of finitely generated left A;-modules (indeed, if X is an A,-module, then

Xo = e, X, Xy = X and X(oj): X, = X3, m — a;m yields a representation
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of Ag; conversely, if Y is a Ag-representation, then Y, @& Y, gets a structure of
Agmodule).

The above notions may be easily generalized. Let A be any finite quiver (=
oriented graph). By kA we denote the path algebra whose underlying vector
space has as basis all the oriented paths in A (including a ‘lazy’ path e, for
each vertex x); the multiplication of a path 4 from a to b and 4 from ¥’ to ¢ is
the path 7'y if 5 = &’ and 0 otherwise. The importance of path algebras arises
from the following observation of Gabriel:

Let A be a finite dimensional algebra over an algebraically closed field k.
Then there exists a unique quiver A and an ideal I of kA with I C J? where
J is the ideal of kA generated by the arrows of A, such that the category A is
equivalent to kA/I.

A representation X of a quiver A is a collection X = ((X,)sen,, (X(a): X, —
Xp)ass), where X, is a finite dimensional k-vector space for each a in the set
Ag of vertices of A and a linear map X(a): X, — X, for each arrow a 25 b
in A. A map f: X — Y between representations is a family of linear maps
F=((fa: Xa = Ya)uea,) such that fX(a) = Y(a)f, for every arrow a — b
in A. The dimension vector of X is dim X = (dimzX,)asca,-

A represertltation X of A is said to satisfy an ideal I of kA if for every

element p = Z A, ... a5, € I, where \; € k and «; is an arrow, the matrix

=1

is zero.

Finally, as in the case of A; above, it is easy to see that the category of
representations of A satisfying an ideal I of kA is equivalent to kA/I. In what
follows we usually consider algebras A of the form A = kA/I and identify left

A-modules with representations satisfying I.

1.5. Tame algebras. An algebra A is said to be tame if for each dimension

d there is a finite family of A — k[T]-bimodules My, ..., My which are free as
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right &[T]-modules and such that almost every indecomposable A-module X of
dimension d is isomorphic to some module of the form M; @y Sy for some

1 <7< s and some A € k, where Sy = k[T]/(T — ) is a simple k[T]-module.

Examples: (a) Every representation-finite algebra is tame.
(b) The algebra A; = kA, where A,: - is tame. Indeed, for every s € N,
consider the A — k[T]-bimodule M defined by

According to (1.2), every indecomposable A-module X with dim; X, = s =
dimy, X} is isomorphic to M @pr) Sy for some A € k.

(c) Let A be a connected quiver without oriented cycles. Then A = kA is a
finite dimensional hereditary algebra. Gabriel showed that algebras of this form
are representation-finite if and only if A is of Dynkin type. Dlab and Ringel
showed that kA is tame if and only if A is of extended Dynkin type, see [7].

1.6. Wild algebras. We denote by k(T3,T3) the algebra of polynomials in
two non-commutative variables 7} and T5.

We say that an algebra A is wild if there is an A — k(T},T3)-bimodule M
which is free as right k(Ty,T,)-module and such that the functor M Q (T, o)
—: K(T1,T5) — A insels indecomposables, that is, for every indecomposable
k(Ty, Ty)-module X, the A-module M @ X is indecomposable and in case M @ X
and M ® Y are isomorphic, then X and Y are isomorphic.

Examples: (a) The algebra As = kA with Aj: - - is wild. Indeed, con-
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sider the As — k(T1, T5)-bimodule M defined as follows

It is an easy exercise to check that M @, 1,) — insets indecomposables.
(b) The five dimensional algebra k{z,y)/(z%, zy,y*z,y?) is wild. The proof
is left to the reader.

To get a clear idea of the behavior of wild algebras we show the following

remark.

Proposition. Let A be a wild algebra and let B be any finitely generated k-
algebra. Then there exvists an A — B-bimodule N such that the functor N ®@p

—: B — A insets indecomposables.

Proof: Let by,...,b; be a set of generators of B. Consider the k(T},T;) — B-

bimodule L given as

then L ®p —: B — k(T},T3) insets indecomposables. Since A is wild, there
is an A — k(T1,Ts)-bimodule M such that M O, 1) —* k(T1,T3) — A insets
indecomposable. The A — B-bimodule L @g M yields the result.
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1.7. Tame and wild dichotomy. In 1980, Drozd proved the following fun-

damental result.

Theorem. [6] Fvery finite dimensional algebra over an algebraically closed field

s either tame or wild and not both.

The known proofs of the Theorem use some rather sophisticated techiniques
(bocses, subspace categories). Some insight may be gained by considering some
geometric aspects of the modules varieties associated with an algebra. This is

the purpose of the following section.

2. Some geometric aspects.

2.1. Module varieties. Let A = kQ/I be a finite dimensional k-algebra

and L be a finite set of generators of [ with L C |J e;le;. Let v € N®
4,5€Qo
be a dimension vector. The module varielty mod(v) is the closed subset, with

respect to the Zariski topology, of the affine space k¥ = H kYO0 defined by
i—+j
the polynomial equations given by the entries of the matrices

t t
m, = Z AiMmg,, N where p = Z)\iaﬂ swoillin; € L
i=1 i=1

and for each arrow x — y, m, is the matrix of size v(y) x v(z)
Mo = (Xay; )ij

where X, are pairwise different indeterminates. We shall identify points in the
variety mod 4 (v) with representations X of A with vector dimension dim X = v.

The group G(v) = [ GLyu (k) acts on k¥ by conjugation, that is, for
1€Q0
X €k, g € G(v) and * — y, then X9(a) = g,X(a)g;'. By restriction of this

action, G(v) also acts on moda(v). Moreover, there is a bijection between the
isoclasses of A-modules X with dim X = v and the G(v)-orbits in mod4(v).
Given X € mod4(v), we denote by G(v)X the G(v)-orbit of X. Then

dim G(v)X = dim G(v) — dim Stabgy X
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where the stabilizer Stabg,)(X) = {g € G(v): X9 = X} = Auty(X) is the
group of automorphisms of X. Since Aut4(X) is open on the affine variety

End4(X), we get
dim Stabg(,) X = dim Aut4(X) = dim End4(X).

Observe that an orbit is always irreducible and locally closed.

2.2. Examples. (a) The orbit G(v)X is closed if and only if X is semisimple.
For the proof one shows that for an exact sequence 0 =+ X’ - X — X" — 0,
the direct sum X' @& X" is a degeneration of X, that is, X’ & X" belongs to the
closure G(v) X of the orbit of X.

(b) The subset ind4(v) of mod4(v) formed by the points corresponding to

indecomposable A-modules is a constructible subset of moda(v). Indeed, the

set of pairs
{(X,f): X € mods(v), f € Ends(X) with 0 f+# 1, and 2 =1,}

is a locally closed subset of mod 4(v) x k?*, where d = >~ v(i). The projection
1€Q0
m1: moda(v) x k% — mod4(v) is a regular map with image mod4(v) \ ind4(v).

Hence mod4(v)\ind4(v) (and therefore ind 4(v)) is constructible by Chevalley’s
Theorem.

(c) Let F = k(Ty,...,T,) be a free algebra in m indeterminates. Let
M be a A — F-bimodule which is free as right F"-module. Then the functor
M ®F —: F — A induces a family of regular maps fj;: modg(n) — mod4(nv)
for some vector v € N9 and every n € N. Indeed, v(i) = rkpM; and for an
arrow i — j in @, M(a): M; — M; is a v(j) x v(i)-matrix with entries in
F. Therefore, for an element A = (Ar,...,A\yn) € modr(n), each A\;isan xn

matrix over k£ and
SuA) = (M(@)se(M, ..., Am))st € moda(no).

(d) Suppose V' C k™ is defined by certain polynomials f(7i,...,T,) for

x €V, define d,.f = da; (2)(T; — x;) the derivative of f at . Then the
=1 t
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tangent space of V' at x is the linear variety T,(V') in k" defined by the vanishing
of all d, f as f(T') ranges over the polynomials in the ideal defining V and x € V.
There is an interesting result going back to Voigt, see [13].

Theorem. Let X € moda(v). Consider T,(G(v)X) as a linear subspace of

Tx(mod4(v)). Then there exists a natural linear monomorphism
Tx(moda(v))/Tx(G(v)X) — Extl (X, X).

(e) As a consequence of the above we get that a module X with Ext (X, X) =
0 has an open orbit G(v)X.

(f) If A = EQ is a hereditary algebra, then for any X € mod4(X) we get an
isomorphism

Tx(moda(v))/Tx(G(v)X) = Exty (X, X).

On the other hand, consider the algebra B = Kk[T]/(T?) and the simple B-
module S. Then modg(1) = G(1)S but Extg(S,S)+ 0.

2.3. Geometric characterizations of tameness. The powerful tame and

wild dichotomy accepts the following geometric interpretations.

Theorem. [12] Let A = kQ/I be a finite dimensional k-algebra. The following

are equivalent:

(a) A is tame

(b) For each v € N9 there is a constructible subset C' of mod 4 (v) satisfying
dim C <1 and ind4(v) C G(v)C.

(c) For each v € N9 if C is a constructible subset C' of mod 4 (v) intersecting
each orbit of G(v) in at most one point, then dim C' < 1.

(d) For each v € N9 and t € N, the closed subset moda(v,t) = {X €
moda(v):
dimgEnd 4(X) > ¢} of mod4(v) satisfies

1
dim mod4(v,t) < §|fu| +v? — ¢,
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where [v] = > v(i) and v? = > v(1)*.

1€Qo 1€Qo
2.4. An algebra is not tame and wild simultaniously. Indeed, if A is
a wild algebra, there is a regular injective map f: modgr, 1,)(1) — mod(v)
which preserves indecomposable modules (2.2¢). Then Im f is a constructible
set in ind4(v) intersecting only once each G(v)-orbit and with dim Im f = 2.

By (2.3), A cannot be tame.

2.5. The Tits form. The following criterion is useful.

Proposition. Let A = kQ/I be a tame algebra and v € N?°. Then dim mod4(v) <
dim G(v) = v?.

The converse of the above result is not true as may be shown by considering

B = k[T, T, T5]/(T;T;: 1 <4 < j < 3) which is a wild algebra with

. n? if n even
oy ozl = { n?—1 ifnodd. } =

On the other hand, dim modg(2n,n*+ 1) = 4n? and the characterization (2.3)
yields dim mod4(2n,n? + 1) < 3n* + 2n — 1 for any tame local algebra A.

An interesting application of the above Proposition is the following.

Let A = kQ/I and L be a minimal set of generators of I with L C | e;/e;.
1,j€Qo
Consider the quadratic form ¢ : Z% — Z given by

qa(v) = 3 v(i)* = Do v(i)o(i) + 3 r(i,5)v(E)v(h),
1€Qo i—j 4,5€Qo
where r(i,7) is the cardinality of L N ¢;le;. For any algebra and any set L we
have for v € N%,
ga(v) > dim G(v) — dim mod 4(v).

The quadratic form g4 is called the Tits form of A.

Corollary. Let A = kQ/I be a tame algebra, then qa is weakly non-negative,
that is, ga(v) > 0 for any v € N9,
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The usefullness of the Tits form may be appreciated in the following ezam-

ples
(a) Let A = kA be a hereditary algebra where

Then qa(v) = 26:0(2')2 — Zﬁ:v(l)v(z') and ga(w) = —1. Hence A is not tame
(and therefore \va:llld) =

(b) Consider an hereditary algebra A = kA, then (1.5¢) may be reformulated
in the following way. The algebra A is representation-finite if and only if g4 is
positive. The algebra A is tame if and only if ¢4 is non-negative. If A is tame
not of finite type, then corank g4 = 1. In fact, there is a vector vy € N® such

that
{v € Z%: qa(v) = 0} = Zuw,.

(c) As a non-hereditary example consider the algebra A = kQ /I, where

6 5

and ideal I generated by Sa. Then ga(v) = z:v(i)2 =Y " w(@)v(6) + v(3)v(5)

with ga(w) = —1.
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3. Derived categories.

3.1. Definitions. Let A be a finite dimensional k-algebra. A differential
complez C in A is a family (C*, d%,);ez formed by A-modules C* and morphisms
diy: CF — O™ such that dif'ds, = 0 for every i € Z. A morphism of differential
complexes f: C — D is a family (f*);ez of morphisms fi: C* — D' such that
firidy, = diy f for each i € Z. The morphism f: C' — D is null homotopic
if there exists a family (h')icz of morphisms h': C* — D'=! such that f' =
d5'ht + h*dL for each i € Z. More generally, two morphisms f,g: C' — D
are homotopic if f — g is null homotopic. A complex C' is bounded if C? 0
only for finitely many 7 € Z.

Denote by K(A) (resp. K°(A)) the category whose objects are the differ-
ential complexes (resp. bounded differential complexes) and whose space of
morphisms are the homotopy classes of morphisms. Given C' € K*(A), we con-
sider H'(C') = ker d3' /Im d, the i-th cohomology of C. A morphism f: C' — D
induces a family of maps H'(f): H'(C) — H'(D), for i € Z. In case H'(f) is
an isomorphism for every ¢ € Z we say that f is a quasi-isomorphism.

Given C € K"(A), consider the category Jc with objects (X, s) where X €
K*(A) and s: X — C a quasi-isomorphism. A map f: (X,s) — (X',s') is a
morphism f: X — X’ such that s'f = s. Then the derived category D*(A) of
A has as objects the bounded differential complexes and as morphisms from C'
to D;

Hompu4y(C, D) = lim  Hompgu4y(X, D).

(X,5)edc
3.2. Triangulated structure of D’(A). We observe that we have an auto-
morphism T: K*(A) — K°(A) given by TX = (X!, di§!).cz for every complex
X = (X', d%)iez- For each morphism f: D — E in K*(A) we have the cone C
which is a complex associated to f with C} = E~' @ D! and
i di' ()] i i i it
’Cf:[o o | ETeD s EeD™.

With the canonical maps ay and wy we get an exact sequence

i =5 0 Ly B 25 10
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The set T of all sextuples (C, D, E,a, f,w) with C,D,E € K*(A), mor-
phisms a: ¢ — D, f: D — FE and w: E — TC such that there is an iso-
morphism ¢: C — Cf with ajp = a and (T')w = wy, is called the set of
triangles.

The triple (K*(A), T, T) satisfies the axioms defining a triangulated category
in the sense of Verdier (see [8]).

Consider the quotient functor m: K*(A) — DP(A). Then there is an auto-
morphism 7': D*(A) — DP(A) with Tm = 7T. Moreover, let T be the set of
sextuples s = (X,Y, Z,z,y, z) in D*(A) such that there is a triangle ¢ in 7 with
s isomorphic to m(¢). Then (D*(A),T,T) is a triangulated category. We shall
write X[1] for T(X).

3.3. The hereditary case. Let A be a finite dimensional k-algebra. For each
A-module M we denote by M[i] the complex in D?(A) with 0 in all degrees
except in degree —i where it has M. Hence TM[i] = M[i 4 1].

Lemma. Let A = kQ be a hereditary algebra. Fach indecomposable object
C € D*(A) is isomorphic to M[i] for some i € Z and some indecomposable
A-module M. Moreover

Hompe(a) (M([i], N[j]) = Exti (M, N).

Proof: Let C € K*(A). We show that there is a complex P(C) € K*(A) whose
modules in each degree are projective and a quasi-isomorphism ¢: P(C') — C.
Indeed, assume C"# 0 and C™ = 0 for all m > n. Let e": P* — C™ be a

projective cover of C", dy = 0. Consider the following construction:
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where the D* are defined as fibered products, the m;: P* — D' are projective
covers and all parts commute. Since gl.dim A is finite, P(C') is a bounded
complexand & = (&');ez: P(C) — (' is easily verified to be a quasi-isomorphism.

Let now P € D*(A) be an indecomposable complex whose modules in each
degree are projective. Assume P" # 0 and P™ = 0 for m > n. Since A is
hereditary, ) = Imd;‘_] is a projective A-module. In case @) = 0, then P is

isomorphic to P"[—n]. Assume that Q# 0, then the complex
QPR TR, PULEY . QU (R

is a direct summand of P, hence isomorphic to P. This last complex is isomor-
phic to (coker ¢)[—n].

The last claim is easy to verify.

3.4 The Grothendieck group of the derived category. Let A = kQ/I be
a finite dimensional k-algebra with gl.dim A < oco. The Grothendieck group
Ky(A) is the free abelian group Z%. We consider the homological bilinear form
given by
(dim X, dimY) 4 = i(-])idimkExtg(x, Y)
i=0

where X and Y are A-modules.

The canonical embedding A — DP(A) induces an isomorphism Ko(A) —
Ko(D*(A)), whose inverse is given by [X'] — > (—=1)"[X"]. There is also a

neL
bilinear form

Ko(D'(A))x Ko(D*(A)) = Z, ([X],[Y]) = >_(—1)"dimHompeay(X,T"Y).
nez
Clearly, the isomorphism Ko(A) — Ko(Db(A)) is an isometry.
Associated with the homological bilinear form we consider the quadratic
form x,(v) = (v,v)4 which is called the Euler form of A.
Two algebras A and B are said to be derived equivalent if the derived cat-
egories D*(A) and D°(B) are triangle equivalent. If F': D*(A) — DY(B) is



TAME ALGEBRAS AND DERIVED CATEGORIES 253

a triangle equivalence, then there is an induced isometry f: Ko(DP(A)) —
Ko(Db(B)). Therefore, we get an isometry f: Ko(A) — Ko(B) with x, = x,f-
In particular, y, is positive (resp. non-negative) if and only if so is x . In that

case corank x, = corank x .

Examples: (a) If A is derived equivalent to a tame hereditary algebra k@,

then x, is non-negative with corank xy, <1.

Proof: By the above we may suppose that A = k£Q. Since gl.dim A =1, then

for a module X with v = dim X,

Xa(v) = dimpHomyu (X, X) — dimkExth(X, X)
= Y wv(i)v(j)[dimHom4(S;, S;) — dimgExty (S5, S;)]

.7€Q0
= .%: v(i)? = Y- v(i)v(j) = qa(v),

where (5;)icq, is a set of representatives of the isomorphism classes of simple

A-modules. As we have seen in (2.5), g4 is non-negative of corankgs < 1. O

(b) The algebra A = kQ/I given by the quiver

and ideal I generated by yfa and §Ba (this is denoted by the dotted edges), is
not derived equivalente to a representation-finite hereditary algebra.

Indeed, the Euler form of A is
Xa(v) = 2 0(i)” = v(1)v(2) - Py v(3)v(7) + v(1)o(4) + v(1)v(5),

as easily follows from the definition. Then x,(—1,0,1,1,1) = 0 and therefore

X, 18 not positive.
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3.5. Reflections and tilting. Let A = kQ/I be a finite dimensional algebra
and = be a source in the quiver ). Then the indecomposable projective A-
module P, = Ae, has radical R = rad P, with R, = 0. Hence R is a module
over the quotient algebra B = A/(e;). We say that A = B[R] is a one-point
extension of B by the module R. Dually we define a one-point coextension
[M]B of an algebra B by a module M.

Consider again A = B[R] with R = rad P,. The one-point coextension [R]B
is called the reflection S; A of A at x. As an example, in (3.4b), the vertex 1 is

a source in A and ST A is given as k@' where

Coreflections S A of A are defined dually.

A tilting complez in DP(A) is a differential complex T satisfying that
Hompe4)(T, T[n]) = 0 for every n # 0 and that T' generates Db(A), that is,
the smallest triangulated full subcategory of D?(A) containing T is D*(A) it-
self.

As an example we remark that for a reflection S A, there is a tilting complex

T in Db(A) such that Endps4y(T) = S; A. More generally we have

Theorem. [16] Let A and B be two algebras. There is a triangle equivalence o :
DP(A) — D*(B) if and only if there is a tilting complex T in D*(A) such that
EIldDb(A)(T) = B.

3.6. Extending triangle equivalences. The following result is a useful tool
in the proof of several theorems considered in the next section.

Theorem. [2] Let A and B be two algebras and ¢: D*(A) — DP(B) be a
triangle equivalence. Let My be an A-module such that o(M;[0]) = M;[0] for
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(24

some B-module M. Then ¢ may be extended to a triangle equivalence

@: DP(A[Mi]) — D*(B[Ma)).

Sketch of proof: Let M, be the B[M,]-module whose radical is M. Then the

complex

T = p(A[0]) ® M2[0]

in D*(B[M,)) is tilting and Endpe(gpary(T) = A[M;]. Then the result follows
from (3.5). O

3.7. The repetitive category. Let A = kQ)/I be a finite dimensional algebra.
The repetitive category A of A has object set Ob A= Qo X Z (we shall write
s[i] instead of (s,7)); morphism spaces are given by A(r[i], s[i]) = A(r,s) x {i},

A(r[d), sli — 1]) = Homy(A(s, 7), k) x {i} and A(r[i],s[j]) = 0

if i+ j,j+ 1. Composition is given in the natural way: for e* € A(r[i 4 1], s[1]),
fe 4(5[7],1[7]) and g* € A(i[v],u[z— 1]) then fe* = e*(f-?7) and g*f = g*(7 - f).
As an example consider A = kQ/I where

and [ is generated by fSa. Then Ais given as kQ'/I’' where
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and [’ is generated by the differences of the paths whose extremal vertices are
joined by dotted edges.
The importance of the construction of the repetitive category is due to the

following result.

Theorem. [8] Let A be a finite dimensional algebra with gl. dim A < co. Then
D(A) is triangle equivalent to mod A which is the quotient category of A ob-
tained by ‘killing’ the morphisms factorizing through projective objects.

4. Algebras whose Euler form is non-negative.

4.1. Hereditary and canonical tame algebras. There are two classes of
algebras for which the derived category has been completely described. On
one hand, the tame hereditary algebras A = kA for which A is of Dynkin or
extended Dynkin type. As we have seen, in that case x, is either positive or
non-negative with corank x, = 1. The other described case is that of tame
canonical algebras.

Let n > 2 and py, ..., p, be natural numbers > 2 and A3, ..., A, be pairwise
different elements in £\{0,1}. The canonical algebra C = C(p1,... ,pnysAsy ...,

Ay) is given by the quiver

and bounded by relations oy, ...a11 + Aiagp, ...021 = p, ... for ¢ =

3 v

Theorem. [12] A canonical algebra C = C(p1,... ,pnyA3y... ,A,) is lame
if and only if either C is tilting equivalent to a tame hereditary algebra or
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(p1,--- ,pn) is of the form (2,2,2,2), (3,3,3), (2,4,4) or (2,3,6). In the latter

case, X s non-negative with corank y. = 2.

4.2. Strongly simply connected algebras. We say that an algebra A
is said to be strongly simply connected if for every algebra B convex in A,
the first Hochschild cohomology H'(B) vanishes. Equivalently, A is strongly
simply connected if and only if every algebra B convex in A is separated, that

is, B = kQp/I' and for every vertex z in @ g the following condition is satisfied:
¢

let rad P, = @Ml be a decomposition into indecomposable modules of the

1=1
B-module rad P,, then for any 7 j, the support of M; and M; are contained

in different connected components of Qg \ {y: there is a path from y to z}.

Examples: (a) If A = kQ 4/ is a tree algebra (that is, the underlying graph
of Q4 is a tree), then A is strongly simply connected.

(b) Let A = k[S] be a poset algebra (that is, S is a poset and dim; A(z,y) =1
if 2 <y and dimgA(z,y) = 0 otherwise). Then A is strongly simply connected
if and only if A has no crowns. We recall that a crown in A is an algebra C',

fully contained in A, of the form

and such that the convex closure {a;,b;} of {a;,b;} intersects {a;41,b;} (resp.

{ai,bi—1}) in b; (resp. in a;), for i =1,... ,m and apy1 = a1, by = bp,.
The following results are central in our considerations.

Theorem. Let A be a strongly simply connected algebra.
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(i) [1,4] A is derived equivalent to a tame hereditary algebra kA if and only
if X, is non-negative with corankx, = 1. In this case, A is of lype

D, (n>4) orE, (p=6,7,8).

(i

S

[3] If Q4 has more than 6 vertices, then A is derived equivalent to a tame

canonical algebra if and only if x, is non-negative with corank y, = 2
and x (1) N xTH0)t =0 (where V& = {w € Ko(A): (v,w)s =0 for all
veV}).

4.3. Derived-tame algebras. Following [11], we say that A is derived-tame if
A has finite global dimension and the repetitive category A is tame. Examples
of derived-tame algebras are the following:

(a) By [8], hereditary tame algebras are also derived-tame. By [9], tame
canonical algebras are also derived-tame.

(b) If A is derived tame and D°(A) ~ D’(B) is a triangular equivalence,
then B is also derived-tame, see [11].

(c) Other examples of derived tame algebras are provided by the poset al-

gebras P(n,m) associated to posets of the form

Observe that X pinm 18 NON-NEGative with corank Xpmm = M-

Remark: (1) All algebras in the above examples have a non-negative Euler
form.

(2) We conjecture that a strongly simply connected algebra A whose Euler
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form y, is non-negative is derived-tame. The results of this section point in

this direction.

4.4. Non-negative unit forms. Let g: Z™ — Z be an integral quadratic form
of the shape ¢(v) = zn:qiv(i)z + > qiv(i)v(j). We say that g is a unit (resp.
semi-unit) form if ¢; :11 (resp. q;<€J {0,1}).

Associated with a semi-unit form we define a bigraph G, with vertices
1,...,n; two vertices i # j are joined by |g;| full edges if ¢;; < 0 and by
qij dotted edges if g;; > 0; for every vertex ¢, there are 1 — ¢; full loops at 7. We

say that ¢ is connected if G is connected. The following are elementary facts.

(a) If A= kQ/Iis a connected and triangular algebra, then y , is a connected

unit form.

(b) Given a connected graph A formed by full edges and at most one loop at
each vertex, there is a semi-unit form ga such that G,, = A. Then ga is
positive (resp. non-negative) if and only if A is a Dynkin diagram (resp.

extended Dynkin diagram).

For Dynkin diagrams we consider the following partial order:
A, <A, <D, <D, for m <n <pand

D, <E, <E, for6 <p<qg<8.

The following result is relevant in our discussion.

Theorem. [4] Let q: Z™ — Z be a connecled, non-negative semi-unit form.
Then there exists a Z-invertible linear transformation T: Z" — Z™ such that
qT(z1,... ,25) = qa(1,... ,2p—c), where ¢ = corankq and A = Dyn(q) is
a Dynkin diagram uniquely determined by q. Moreover, if ¢' is a connected

restriction of g, then Dyn (¢') < Dyn (q).
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As a simple example we consider the algebra A given by

the quiver with indicated relations. The Euler form x, is non-negative and
corank

X4 = 2 (in fact x7'(0) is generated by the indicated vectors). The associated
Dynkin graph Dyn (y,) is Ee.

4.5. The corank two case. The most general result on derived-tame algebras

we know is the following.

Theorem. [5] Let A = kQ/I be a connected finite dimensional k-algebra such
that x , ts non-negative of corank 2. Assume that A is in one of the following
classes:

(1) Tree algebras; (2) strongly simply connected posetl algebras.

Then A is derived equivalent to a tame canonical algebra or to a poset alge-

bra P(n) of the form

Moreover, if A has more than 6 vertices, then A is derived equivalent to a
tubular algebra (resp. to P(n)) if and only if Dyn(x,) = E, (p = 6,7 or8)
(resp. Dyn(x,) =Dn_s).
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Sketch of proof: (1) There exists an algebra B satisfying the following two

conditions:

(i) B is derived equivalent to a tree algebra and x, is non-negative with

corank

Xp = 1.

(i) A is derived equivalent to B[M] for some indecomposable B-module M.

The proof of this claim is quite technical but mainly combinatorial.

(2) As we mention in (4.3), B is derived equivalent to a tame algebra kA
where A is either of type D, or Ep (p=6,7 or 8). Consider a triangle equiv-
alence ¢: D*(B) — DY(kA). Since M is an indecomposable B-module, the
object M[0] is indecomposable and ¢(M][0]) is isomorphic to an object N[¢]
where N is an indecomposable kA-module and 7 € Z (3.3). By shifting the
functor ¢ we may assume that ¢ = 0. Applying (3.6), we get an equivalence
@: DY(B[M]) — D*(KA[N]).

(3) We conclude that A is derived equivalent to D = kA[N] and x, is non-
negative with corank y, = 2. Using the Tits form criterion of section 2, it is

not hard to get the result (details of this part may be seen in [10]). m]

4.6. More examples. We give some ezamples showing that the results similar
to the above can not be expected in the non strongly simply connected case.
(a) Let A be the algebra given by the following quiver with commutativity

relations as indicated by dotted lines.

Then x, is non-negative with corank x, = 2 and Dyn (x,) = Es. Moreover, A

is wild and hence A cannot be derived tame.
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(b) Let A be the algebra given by the following quiver with zero relations
as indicated by dotted lines.

Then y, is non-negative with corank x, = 3 and Dyn (x,) = Es.

Remarks: (1) We have recently shown that a tree algebra A with y, non-
negative and containing a convex subcategory B derived equivalent to a Dynkin
algebra of type E, (p = 6,7,8) has corank y, < 2. Therefore A is derived-tame
of one of the cases considered in (4.5).

(2) We conjecture that a tree algebra A with x , non-negative and Dyn (y,) =
D), is derived equivalent to a poset algebra of the form P(n,m) and therefore
also derived-tame. Recent results in this direction have been obtained in joint
work with Ch. Geiss [8], where we also obtain a description of the Auslander-
Reiten quiver of the derived category D*(P(n,m)).

(3) Finally we remark that all the quadratic form criteria mentioned in this

paper has been implemented as computer programs.
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