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LIE ALGEBRAS AND QUANTUM GROUPS

Consuelo Martinez ®

Abstract

In classical and in quantum mechanics there are two basic concepts:
state and observable. In classical mechanics states are points of a mani-
fold M and observables are functions on M. In quantum mechanics states
are 1-dimensional subspaces of a Hilbert space H and observables are op-
erators in H. In both cases observables form an associative algebra that is
commutative in the classic case and is noncommutative in the quantum
case. So, in some way, we can understand quantization as a replacement
of commutative algebras by noncommutative ones. (see [1])

If we consider elements in a group G as states and functions on G
as observables, to quantize the notion of group it is needed to translate
it first to the language of observables. Let us consider the algebra A =
Fun(G) consisting of functions on G' (smooth if G is a Lie group, regular if
G is an algebraic group, etc.). Then A is a commutative associative unital
algebra and Fun(G' x G) = A® A (understanding ® in the appropiate
sense).

The general principle is: the functor X — Fun(X) is an antiequiv-
alence from the category of spaces in the category of commutative asso-
ciative unital algebras (may be with some additional property). So the
category of groups is antiequivalent to the category of commutative Hopf
algebras.

It is possible to define the category of quantum spaces as dual to the
category of (not necessarily commutative) associative unital algebras.
Denote by SpecA the quantum space corresponding to an algebra A. A
quantum group is the spectrum of a not necessarily commuta-
tive Hopf algebra. So the notions of quantum group and Hopf algebra
are equivalent, but the first one has some geometric flavor.

When we try to find natural examples of noncommutative Hopf al-
gebras universal enveloping algebras of a Lie algebra and relations with
Kac-Moody algebras appear.

We will try to give here an introduction to the theory of Lie algebras,
Kac-Moody algebras and quantum groups, noticing the relations between
those notions.
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1. Lie algebras

1.1. Definitions and First Properties

We will consider always algebras over a field F', so an algebra is an F- vector
space with a bilinear operation A x A — A.

A Lie algebra is an algebra G whose map [,]: G X G — G satisfies:

(L.1) [z,2] = 0Vz € G (skewsymmetry)

(L.2) [z, ]y, 2]] + [y, [z, 2]] + [z, [z, y]] = 0 (Jacobi identity).

If charF" # 2, then (L.1) is equivalent to [z,y] = —[y,z] for every pair of
elements z, y in G. From now on (unless the contrary is explicitly mentioned) we
will assume I' = Ror I' = C (real numbers and complex numbers respectively).

Starting with an associative algebra A we can define a new algebra structure
over the same underlying vector space with the new product [a,b] = ab — ba,
(where juxtaposition denotes the original product in the algebra A). We will

denote this new algebra by A~. It is easy to check that A~ is a Lie algebra.

Examples

1. Let dim(V) = [+ 1. We will denote by sl{(V') or sl(l + 1, F') the set of
endomorphisms of V' having zero trace. Then s[(V') is a Lie algebra called the
special linear algebra. Its dimension is (/ 4+ 1)® — 1. These algebras are also

called algebras of type A and A; = sl({ + 1, F)

2. Let dim(V) = 2{ with basis {v1,...,vx}. Define a nondegenerate skew-
0 I
-, 0
plectic algebra by C; = sp(V) or sp(2[, F) that, by definition, consists of all

symmetric form f on V by the matrix S = . Denote the sym-

endomorphisms ¢ of V' such that f(p(v), w) = —f(v,o(w)). In matrix terms,
the condition for a 2/ x 2[-matrix over F, X = ZL Z , to be symplectic
is that SX = —X'S, that is, n* = n, p' = p and m' = —g. It can easily be

checked that dim(sp(2l, F) = 2[* + [.
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3. Let dim(V) = 2l + 1 be odd and take f the nondegenerate symmetric

1 00
bilinear form on V' whose matrix is S = ( 0 0 [ ) The orthogonal alge-
0 I, 0

bra B; = o(V') or o(2l + 1, F) consists of all endomorphisms ¢ of V' satisfying
flo(v),w) = —f(v,o(w)). Again in matrix terms, if ¢ is represented by the

a b] bg

matrix X = | ¢, m n |, then the condition SX = —X*S translates to the
@ poq

following set of conditions: @ = 0, ¢; = —bh, ¢; = —bl, g= —m',n' = —n,p' =

—p. Again we can easily check that dim B; = 2/% + 1.

4. We can obtain another orthogonal algebra in an identical way to the

one followed for By, except that dim(V') = 2/ is even and the matrix of the non-

? {)l ) This algebra D; = o(21, F)
!

degenerate symmetric form is now S = (

has dimension 2{% — [.

The following definitions are the natural ones.

A subalgebra H of G is a vector subspace H C G that is a Lie algebra with
the restriction of the map in G. The subalgebra is called proper if H # G.

A subalgebra H satisfying [G,H] C H is an ideal.

If H and K are two ideals of the Lie algebra G, then H N K, [H,K] and
H + K are also ideals of G.

The subalgebra (it is an ideal) G’ = [G, G] is called the derived subalgebra
of G.

The derived series of G is constructed inductively by:

G = g/, g+ = [g®), g0 si ¢ > 1.

The lower central series is defined by:

Gy =9', Giig1) = [G,G) for every i > 1.

A Lie algebra G is called solvable if the derived series of G ends up with 0
and is called nilpotent if the lower central series of G ends up with 0.

We will give now, without proofs, some well known properties:

1. If G is nilpotent, then it is solvable. The converse is not true.
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2. The Lie algebra G is solvable if and only if its derived algebra G’ is
nilpotent.

3. G is nilpotent if and only if there exists a natural number n = n(G) such
that ad(zy) - ad(zs) - - - ad(z,) = 0 for every xq,...,2, € G.

4. If G is solvable (resp. nilpotent) and H is a subalgebra of G, then H is
solvable (resp. nilpotent).

5. If H and K are two solvable (resp. nilpotent) ideals of G, then H + K is
solvable (resp. nilpotent).

6. If G is nilpotent, then the center of G, Z(G) = {z € §|[z,G] = 0} (which
is always an ideal of G) is non zero.

7. There is a unique maximal solvable ideal of G, namely its radical G,,4.

For a given subset K of G we define its centralizer by C¢(K) = {2 €
G|z, K] = 0}. Cg(K) is always a subalgebra of G.

A homomorphism of Lie algebras is a linear map such that the image of
a product of two elements is the product of the respective images. If it is also
bijective it is called an isomorphism. An isomorphism of a Lie algebra to itself
is an automorphism.

A derivation D of a Lie algebra G is a linear map that satisfies: [z,y]D =
[xD,y] + [x,yD], for every pair of elements in the algebra G. Every element
z € G defines an (inner) derivation by ad, : G — G, y — [y, ].

The element z is called nilpotent if there exists a natural number n such
that (ad;)"™ = 0 and it is called locally nilpotent if for each element y € G
there exists n = n(y) such that (ad;)"*(y) = 0.

A Lie algebra G is called abelian if [G,G] = 0, simple if it is non abelian
and does not contain proper ideals, semisimple if it is a direct sum of simple
Lie algebras and reductive if it is a direct sum of a semisimple Lie algebra and
an abelian Lie algebra.

If K is an ideal of G, the quotient vector space G/K can be given the structure
of a Lie algebra by defining the product: [z + K,y 4+ K] = [z,y] + K,and it is
called the quotient Lie algebra of G over K.
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If the Lie algebra G is not solvable, then there is a semisimple subalgebra &
satisfying S ~ G/G,qq and G = S + G,q4, (semidirect sum, so that SN G = 0.)
(Levi decomposition).

It is known ( Harish-Chandra Theorem) that S is a maximal semisimple
subalgebra and if X C G is another semisimple subalgebra of G, there exists an
automorphism ¢ with p(K) C S.

By Engel’s Theorem it is known that if G is a finite dimensional Lie algebra
whose elements are all ad-nilpotent, i.e., for every @ € G there is some natural
number n such that ad(z)” = 0, then the Lie algebra G is nilpotent.

Cartan’s Theorem ensures that if G < gl(V), V finite dimensional and
Tr(zy) = 0 for every x € [G,G], y € G, then G is solvable. In the general
case, if G is a Lie algebra and Tr(adzady) = 0 for every x € [G,G], y € G, then
G is solvable.

Definition 1.1. A Cartan subalgebra Gy of G is a mazimal nilpolent subalge-

bra.

A Borel subalgebra is a maximal solvable subalgebra.

If the field F' is infinite, Cartan subalgebras always exist. A nilpotent sub-
algebra H of G is a Cartan subalgebra if and only if H = Ng(H).
If the Lie algebra G is semisimple, its Cartan subalgebras are precisely the

maximal abelian subalgebras.

Definition 1.2. A gradalion of a Lie algebra G is a decomposilion G = ®;c 4G;
salisfying that [G;, G;] € Giyj, where A is an abelian group.

Example 1.1. 1. Let § = F(u,v,w) be the 3-dimensional Lie algebra with
the product: [u,v] = w, [u,w] = [v,w] = 0. The algebra G is solvable and
nilpotent.

2. The 2-dimensional algebra G = F'(u,v) with [u,v] = v is solvable but is

not nilpotent.
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3. The 3-dimensional algebra G = F(e, f, k) with [e, f] = h, [h, €] = 2¢ and
[h, f] = —2f is simple.

1.2. Representations and modules

Let V be an F- vector space and let us consider gl(V) = {p : V — V| ¢ is linear
Then gl(V') is a Lie algebra with the (associative) commutator product of linear
mappings, that is, [p,¥] = ¢ - ¥ — ¥ - ¢ and it is called the general linear al-
gebra. There is an isomorphism of Lie algebras between gl(V') and the algebra
of n x n matrices over the field F. The isomorphism maps a linear map to the

coordinate matrix with respect to a fixed basis.

Definition 1.3. A representation R of the Lie algebra G is a homomorphism

from G to gl(V) for some vector space V', i.e.

R:G — gl(V), [x,y] = R([z,y]) = R(z)R(y) — R(y)R(x)
Let us notice that using the above mentioned isomorphism between gl(V)
and the n X n matrices we can consider in a similar way matrix representations.

Example 1.2.  1.Let us consider G to be the algebra in example 1.1. Then

G has a representation given by:

_ O = O o OO
S————

Rw)=10 0

0

2. The 2-dimensional solvable non nilpotent algebra in example 1.1 has the

wo-(33)

=

P

(=)

R

Il
Ty
o O

T s s S e = T e O O =

representation
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wa=(4 1)

3.The simple 3-dimensional algebra in example 1.1 (s/(2)) has the represen-

wo=(3 1)

rn=(10)

tation

4. The adjoint representation R.q: G — gl(G), * — ad, satisfies ImR,q <
Der(G)

Definition 1.4. A G-module is a vector space V' logether with an action
o :G xV =V that satisfies:

(6o + py) o w = E(x 0 w) + ply o w),

2o (£0 + ) = E(z 0 0) + u(z o w),

[z,y]ew =ze(yew)—ye(zew) for arbilrary {,u € F, v,w € V, and

T,y €g.

The notion of submodule can be defined in the usual way. We can think
equivalently in terms of representations or in terms of modules.

An irreducible module of a Lie algebra is a module that does not contain
proper submodules, that is, distinct from 0 and the proper module.

A completely reducible module of a Lie algebra is a module that is a
direct sum of irreducible modules.

The adjoint representation of G is irreducible (resp. completely reducible)
if and only if G is simple (resp. semisimple).

Weyl’s theorem ensures that if G is semisimple and ¢ : G — ¢l(V') is a finite

dimensional representation, then ¢ is completely reducible.

Definition 1.5. The Kronecker product Vg x Vs of two G-modules Vg and Vs
is the veclor space VR @p Vs wilh the action of G defined by: (Rx .S)(z)(v@w) =
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(R(z)v) @ w+ v ® (S(x)w) for arbilrary elements x € G, v € Vi and w € Vs.

The Kronecker product is associative and if G is semisimple, the Kronecker

product of irreducible finite dimensional modules is completely reducible.

Remark 1.1. For an arbitrary algebra we can define in the same way the
representation concept, but not the notion of tensor product. The necessary
restrictions an algebra must obey in order for the definition of a tensor product

to make sense lead to the concept of Hopf algebra.

Definition 1.6. The universal enveloping algebra of a Lie algebra G is a
pair (U(G), 1), where U(G) is an associalive algebra, i is a homomorphism of G
in U(G)™ such thal given an arbilrary associalive algebra A and a homomor-

phism 0 : G — A~ there exists a unique homomorphism of associative algebras

0 :U(G) — A such thal 0 =i0'.

One of the main properties of U(G) is that it lets us reduce the representa-
tion theory of G to the representation theory of (the associative algebra) U(G).
Notice that G C U(G)~.

Let us see a construction of the universal enveloping algebra. Let us denote

by T(G) the tensor algebra over the vector space G. By definition
T=F10G63G6o - 0G -

where Gy =G and G, =GRG® -G, ¢ times.
The operations of sum and product in the vector space 7(G) are the usual

ones:
(210 ®z)Q(N® - BY;) =10z, QY ® - QYj.

Let R be the ideal of T generated by all elements of the form [a,b] — a ®
b+b®a,abeq. Then U(G)=T/R

That is, the universal enveloping algebra of G is the associative algebra
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spanned by all monomials in elements of a basis of G, under identification of
those products that are equal by using the Lie relations.
The Poincaré-Birkofl-Witt theorem ensures that if 7 : T(G) — U(G) then

its restriction to G is injective.

1.3. Real and Complex Lie Algebras. Killing form. Cartan-Weyl

bases

If V' is a vector space an endomorphism ¢ € End(V) is semisimple if the roots
of its minimal polynomial over I are all distinct. If the field [ is algebraically
closed this is equivalent to saying that ¢ is diagonalizable. Let V' be a finite
dimensional vector space on F and ¢ an endomorphism of V. Then there exist
unique ;s and ¢, endomorphisms of V, semisimple and nilpotent respectively,
such that ¢ = @5 + ¢, (Jordan decomposition).

If G is a semisimple Lie algebra all its derivations are inner and every
representation is completely reducible. If G C gl(V) then G contains the
semisimple and nilpotent parts of all of its elements. In the general case, G
a semisimple abstract Lie algebra, we can consider the above decomposition for
adz = (adz)s + (adz), in the semisimple and nilpotent part. Then there are
elements s and n such that (adz)s = ads and (adz), = adn respectively and
z = s +n (abstract Jordan decomposition).

Let G be a semisimple Lie algebra and ¢ : G — gl(V) a finite dimensional
representation. Then if x = s + n is the abstract Jordan decomposition of an
element x € G, ¢(x) = ¢(s) + ¢(n) is the Jordan decomposition of ¢(x).

Let us have a look to the representation theory of A; = sl(2) = F(e, f,h)
(see example 1.1(3)) that will help to understand the general situation. In
example 1.2 (3) we have seen one representation of sl(2).

If V is an A;-module, since the element h is semisimple h acts diagonally
on V. This yields a decomposition of V as direct sum of eigenspaces V) =
{v € Vlhv = Av}, A € F. When Vi # 0, that is, X is an eigenvalue of the
endomorphism of V' that represents h, X is called a weight of h in V and V)
a weight space. If v € V), then ev € Viyy and fv € Vi_,. Since V is finite
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dimensional, there must exist V) # 0 such that Vy;» = 0. This proves that
every nonzero vector in V) is annihilated by e and is called a maximal vector

of weight A.

Theorem 1.1. Let V' be an irreducible module over G = sl(2, F). Then V is
a direct sum of weight spaces V,, p=m,m —2,...,—m, dimV,, = 1Vu. There
exisls al most one irreducible G-module (up lo isomorphism) of each dimension

m+1, m>0

Definition 1.7. The Killing form of the Lie algebra G is the map k : GXG —
I, such that k(z,y) = tr(ad, - ady).

The Killing form is bilinear, symmetric and associative, i.e., £([z,y],z) =
&(z,[y,2]) and it is preserved by automorphisms, i.e., k(o (z),0(y)) = &(z,y)
for every automorphism o of G.

The algebra G is solvable if and only if k(x,x) = 0 for every z € G'.

The algebra G is semisimple if and only if the Killing form is non-degenerate,

e, k(z,z) =0 if and only if = = 0.

Properties

1. The radical of G is the orthogonal complement with respect to x of the
derived algebra G'.

2. If G =S @ H is a Levi decomposition of G into its radical H and its
semisimple part S and K is the maximal nilpotent subalgebra of H, then &
is non-degenerate on § and on ‘H mod K and is identically zero on K. In
particular, if G is nilpotent, then k = 0. Conversely,if & = 0, then G is solvable.

3. If H is an ideal of G, then |y = k.

4. The ideals in a direct sum X @ H are mutually orthogonal. As a conse-
quence, the Killing form of a semisimple Lie algebra is already determined by

the Killing forms of its simple ideals.
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If a Lie algebra is not nilpotent it has non zero subalgebras that consist of
ad-semisimple elements. Such algebras are called toral algebras.

Let G be a semisimple Lie algebra. We can consider a maximal toral algebra,
H = Gy = F(hi), [hi,h;] = 0. Since G is semisimple, the algebra H = Gy is
abelian and a Cartan subalgebra. Hence adgH is simultaneously diagonalizable
and thus we get a decomposition of G, G = H &, G*, where G* = {z €
G| adp(z) = a(h)x Vh € H = Go}. (root space decomposition).

That is, for a given Cartan subalgebra G, the remaining elements e, of G in
a basis of G can be chosen such that they are eigenvectors of Go: [hi, €a] = ase,.

We will denote by ® the set of roots, that is, ® = {a|G* # 0}. So ® is a
subset of H*, the dual space of H.

Definition 1.8. A basis of the semisimple Lie algebra G of the form B =
{hili =1,...,1} U {es|a € ®} is called a Cartan-Weyl basis of G.

If o, € H*, then [Lq, Lg] € Lays. Foreveryx € L,, a # 0, adz is nilpotent
and if we consider a, 8 € H* such that a + 8 # 0, then L, is orthogonal to Lg
with respect to the Killing form . The restriction of k to Go = H = Cg(H)
is non-degenerate. So we can identify H and H*: For every ¢ € H* there is a
unique ty € H such that ¢(h) = k(ty, h), Vh € H. In this way we can identify
® with the subset of H that consists of ¢{,, o € ®.

Orthogonality properties

1. ® spans H*.

2. f « € @, then —a € ®.

3. faed®, o€, ye€ G_,, then [z,y] = k(z,y)ts. Hence [Ga,G_s] is
1-dimensional with basis ¢,.

4. For every a € ®, a(t,) = k(ta,ta) # 0.

5 If « € ® and z, is any nonzero element of G, then there exists y, € G_,
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such that < ., Ya, bo = [Tas Ya] > is a subalgebra of G isomorphic to si(2, F').
6. by = —Ras by = —h_,.

a
n(ta,ta) )

Integrability properties

1. fa€e®,dimG, =1and if H, = [La, L_s],then S, = Lo+ Ly + Hy =~
sl(2, F).

2. If & € ® the only scalar multiples of « that are in ® are « and —av.

3. If o, 8 € ®, then 8(h,) € Z (Cartan integers) and 8 — B(hy)o € .

4. o, 8,04 3 € ®, then [L,, Lg] = Loys-

5 If a,8 € ¢, f # +a, then there are r,q the largest integers for which
B —ra, B+ qa are roots. Then 3+ ia € ¢ (—r <i < gq) and B(hs) =7 —q.

6. G is generated (as a Lie algebra) by the root spaces G,.

Rationality properties

Since ® spans H*, we can choose a basis in H* that consists of roots of
®. Let us denote such a basis by {a,...,a,}. In particular, if 8 € &, 8 =
Zle cia;, ¢; € F. Tt can be proved that the coefficients ¢; belong to the rational
field Q.

Let Fg be the Q-subspace of H* spaned by the roots. Then dimgFEqg =1 =
dimpH* = dimpH. The Killing form on FEg is positive definite.

Let £ = R ®q Eq be the real vector space obtained by extending the base
field from @ to R. Then F is a euclidean space and ® contains a basis of F, so
dimpll = 1.

In this way ® is a root system of the euclidean space E, so that theory
can be applied. The existence of a base A C ® can be proved. A is a basis
of E and every root 3 can be written as § = 3 k,a, a € A with integral
coeflicients k, which are all nonnegative (¢, will denote the set of roots with
nonnegative coeflicients, positive roots) or all nonpositive (®_ denotes the set

of such roots, negative roots).
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By the above mentioned properties of roots, we have ®_ = —®, and & =
oL UD_.

If G = Fleala € 94), G_ = Fleala € ®_) then G = G, &Gy D G- is a
Cartan decomposition of G and By = Gy @ G4+ are Borel subalgebras of G.

If we fix an order on the r elements of A, we can define the associated Cartan

matrix.

Definition 1.9. The Carlan malriz A of the rool system ® is the | x | matriz

; o PR (C77:7))
with elements o;; =< oy, 05 >= Zm.

The elements < a;, a; > are integer numbers (Cartan inlegers).

If ¥ = (jf;) ( dual root or coroot of @) we can writte < oy, ; >= (v, af).

The Cartan matrix of ® determines ® up to isomorphism.

If a, B are positive roots, then < o, 8 >< f,a >=0,1,2 or 3.

A root system @ is called irreducible if it can not be expressed as the union
of two proper subsets such that each root in one set is orthogonal to each root
in the other. If A is a base of ®, the same is true for A.

When the root system @ is irreducible, not more than two root lengths can
occur in @, so we can speak of short roots and long roots.

The Coxeter graph of ® is defined as the graph with [ vertices such that
a vertex 1 is joined to a vertex j by < a4, a; >< «j,a; > edges. The Coxeter
graph determines the numbers < «;, ; > in case all roots have equal length.

When a double or triple edge occurs in the Coxeter graph of @, we can add
an arrow pointing to the shorter of the two roots. The resulting graph is called
the Dynkin diagram of ®.

It is clear that @ is irreducible if and only if its Coxeter graph is connected.

In general ® decomposes (uniquely) as the union of irreducible root systems

D;.
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1.4. Clasification of simple Lie complex algebras

Let G be a semisimple complex Lie algebra, H a Cartan subalgebra and ® C H*
the set of roots of G relative to H. If G is simple, then ® is irreducible.

If G and G are semisimple complex Lie algebras with repective Cartan sub-
algebras Gy and Gy and root systems ® and ®, any isomorphism ¢ : Gy — Go
which induces a bijection of ® onto ® can be extended to an isomorphism of
Lie algebras of G onto G.

Hence, in order to classify simple Lie algebras up to isomorphism, we only
need to classify root systems and the associated Cartan matrices.

The problem of characterizing semisimple Lie algebras by their root systems
can be reduced to the problem of characterizing simple ones by their (irre-
ducible) root systems. We can sumarize those results in the following Proposi-

tion and Theorem.

Proposition 1.1. Lel G be a semisimple Lie algebra with Carlan subalgebra
H and root system ®. IfG =G & - B Gy is the decomposition of G into simple
ideals, then H; = H N G; is a Cartan subalgebra of G; and the corresponding
(irreducible) rool system ®; may be regarded canonically as a subsystem of ® in
such a way that ® = &y U ---U D, is the decomposition of ® into ils irreducible

componenlts.

Theorem 1.2.  The semisimple Lie algebra G(®;) associated to a set &, =
{ag]i = 1,...,1} of simple rools a; is uniquely determined as follows:

i) There exist 31 generators {ef, hili = 1,...,r} such that [hi, k] = 0, [hs, €F] =
+aje, [ef,e;] = 6;;hi. (standard system of generators)

He

¥ 178

For every i, the subalgebra < e e;, h; > is isomorphic to sl(2).
ii) These generalors obey the Jacobi idenlily.
iti) (ade ) "er =0 ifi,j=1,...,r, i # j.
(i)

2
IfA=(< a0 >)(<a,a; >= st

®,, it is known that < oy, >=2, < o, 0; >= 0 if and only if < «j, 0y >= 0,

) is the Cartan matrix associated to
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if ¢ # 7 the elements < a4, ; > are nonpositive integers and detA > 0.

We can classify simple Lie algebras by using the associated Dynkin diagram.
Remember that each vertex corresponds to a simple root and vertices associated
to roots a; and a; are connected by max{| < a;,a; > |,| < aj, a; > |} edges.

In this way four families of simple complex Lie algebras are obtained: A,, r >
1, B, r >2,C., v >3, D, » > 4 and also the five algebras Fs, F7, Es, F4
and (5. (See the corresponding Dynkin diagrams at the end of this survey).

2. Kac-Moody algebras

In physics, Lie algebras arise in the description of symmetries. Since many
interesting systems possess infinitely many independent symmetries, infinite-
dimensional Lie algebras are as important in physics as finite-dimensional ones.

At the present there is no general theory of infinite-dimensional Lie algebras
and their representations. Some classes such as Lie algebras of vector fields, Lie
algebras of operators in a Hilbert or Banach space or Kac-Moody algebras have
been more intensively studied.

The Kac-Moody algebras have attracted a lot of attention in both mathe-
matics and physics. Mathematically they are of interest because a large subclass
of them (the affine Lie algebras) can be classified completely and the classifica-
tion theory is very similar to the one of finite dimensional simple Lie algebras.
Affine Lie algebras also possess an interesting representation theory that again
reproduces the situation of finite dimensional simple Lie algebras. They have
connections to other branches of mathematics such as number theory, topology,
singularity theory or the theory of finite simple groups. In physics, Kac-Moody
algebras have important applications in two-dimensional conformal field theory
and in the theory of completely integrable systems.

As we have seen in the previous section, a finite dimensional simple Lie
algebra is completely characterized by 3! generators {e;, fi,hi|i = 1,...,1}
obeying the Jacobi identity and the relations [h;,hj] = 0, [hi,e;] = aijey,

[hi, fj] = —aijfj, lei, ;] = iy and (ade;)'™9e; = 0, (ady)'™f; = 0 if
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In other words, the simple Lie algebras are obtained by requiring that the
[ x I matrix A = (oy;) is a Cartan matrix, that is, its elements satisfy the
following conditions: «;; = 2, a;; < 0if ¢ # j, a;; = 0 if and only if aj; = 0,
the elements o;; are integer and det(A) > 0.

The Kac-Moody algebras are obtained by weakening the conditions on the
matrix A. When the condition det(A) > 0 is dropped, the class of Kac-Moody
algebras is obtained.

In a more precise way, we have

Definition 2.1. Lel A = («yj) be a generalized Cartan matrix, that is, an
integral [ x | matriz such that oy; = 2, ay; <0 if v # 7 and a; = 0 if and only if
aj; = 0. The associaled Kac-Moody algebra G'(A) is a complex Lie algebra

on 3l generators {e;, fi,hili = 1,...,1} and the following defining relations:
(hishi] =0, e fil = hi, e f]=0if i #j

[his €] = aijej,  [hi, fi] = —euj £,
(ad..)' ™€ =0, (ady)'™"f; =0if i # j.

The class of Kac-Moody algebras breaks up into three subclasses. We will
assume that the matrix A is indecomposable, i.e., there is no partition of the
set {1,...,/} into two nonempty subsets so that o;; = 0 whenever ¢ belongs to
the first subset and j to the second. We do not lose generality in doing that
since the direct sum of matrices corresponds to the direct sum of Kac-Moody
algebras. Then the following three mutually exclusive possibilities appear:

a) There is a vector @ of positive integers such that the coordinates of the
vector Af are positive. In such case all the principal minors of the matrix A
are positive and the Lie algebra G'(A) is finite-dimensional. The generalized
Cartan matrix A is said to be of finite type.

b) There is a vector d of positive integers such that Ad = 0. In such case all

the principal minors of the matrix A are nonnegative and detA = 0. Now the
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algebra G'(A) is infinite-dimensional (it has finite growth, that is, it admits a
Z-gradation by subspaces whose dimensions are uniformly bounded). The Lie
algebra G'(A) is called an affine Lie algebra and the Cartan matrix A is called
of affine type.

¢) There is a vector a of positive integers such that all the coordinates of
the vector Af are negative. In this case the Lie algebra G'(A) and the Cartan
matrix A are called of indefined type.

To classify generalized affine matrices of affine type (the ones of finite type
correspond to the simple finite dimensional algebras) Dynkin diagrams are con-
sidered. Let A = (a;;) be the [ x [ generalized Cartan matrix. The associated
Dynkin diagram is the graph with [ vertices such that vertices ¢, 7 are connected
by |eij| if ajjaj; < 4 and |ayj| > |ayi| and these lines are equipped with an arrow
pointing toward ¢ if |a;;| > 1. If a;ja; > 4 the vertices 7 and j are connected
by a bold-faced line equipped with an ordered pair of integers |a;l, |eil.

Clearly A is indecomposable if and only if S(A) is a connected graph. A is
determined by the Dynkin diagram and some enumeration of its vertices. S(A)
is of finite, affine or indefinite type if A is of that type.

The classification of indecomposable generalized Cartan matrices can be

given in the following

Proposition 2.1. Let A be an indecomposable generalized Cartan matriz.

a) A is of finite type if and only if all ils principal minors are posilive.

b) A is of affine lype if and only if all ils proper principal minors are posilive
and detA = 0.

¢) If A is of finile or affine lype, then any proper subdiagram of S(A) is a
unton of (connected) Dynkin diagrams of finite type.

d) If A is of finile lype, then S(A) conlains no cycles. If A is of affine lype
and S(A) contains a cycle, then it is the cycle of Agl) (see the Dynkin diagrams
al the end).

e) A is of affine type if and only if there exists § > 0 such that AS = 0. Such
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d is unique up to a constanl factor

Applying Dynkin diagrams to the classification of affine algebras two types
are obtained, “untwisted” (A®M), BM M p), Eél), Eél), Eél), }7'4(1)7 Ggl))
and “twisted” (ASZ), B®, B®), @), Fiz), Gf’)). (See diagrams at the end)

2.1. Loop algebras and central extensions

Now we will describe a concrete construction of affine algebras. All “untwisted”
affine algebras can be realized in terms of an “underlying” simple finite dimen-
sional Lie algebra.
Let £ = C[t,t7"] be the algebra of Laurent polynomials in ¢. If P =
S kez cxt® is a Laurent polynomial, its residue is defined by Res P = c¢_;. This
linear functional on £ is defined by the properties:
Rest™ =1, Resﬁ =0

and defines a C-bilinear function ¢ on £ by
dP
(P, Q) = —0
¢(P,Q) = Res—-Q
The following two properties can be checked:

QS(P’Q) = _¢(Q7P)v

¢(PQ, R) + ¢(QR, P) + $(RP,Q) =0, P,Q, R e L.

The affine algebra associated to a generalized Cartan matrix of type Xl(l)
(see table at the end) is called a nonlwisted affine algebra. Such a matrix of
type Xl(l) (where X = A, B,...,() is the extended Cartan matrix of the simple
finite dimensional Lie algebra G whose Cartan matrix A is a matrix of finite
type X; obtained from A removing the 0th row and column.

Consider the loop algebra £(G) = £ ®¢ G. This is an infinite dimensional
complex Lie algebra with the bracket [,] defined by [P®z,Q ®y] = PQ ® [z, y],
where P,Q) € £ and z,y € G.
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If the set {a;|¢ = 1,...,d} is a basis of G, then {a? = t"®q;li =1,...,d,n €
Z} is a basis of £(G) and if [a;, a;] = Xjjily, then [a%a;”] = /\Z-]-kazl'*'”.

For every Lie algebra G we can construct a central extension simply by
adding r central generators ki, ..., k. to the generators a; and defining [k;, a;] =
0, [ai,a;] = Nijrag + pijiks with the structure constants \;jj, the ones appearing
in the algebra G and p;;; choosen in a way that ensures the Jacobi identity is
satisfied.

Let us consider the (nondegenerate invariant symmetric bilinear C-valued)

Killing form & on G. Tt can be extended by linearity to an £-valued bilinear

form k¢ on L(G) by
’if(P ® xaQ & y) = PQK(‘rvy)'

We can also extend every derivation D of the algebra £ to a derivation of

the Lie algebra £(G) by

D(P®z)=D(P)®x.

Let us define the bilinear C-valued function ¢ on the Lie algebra £(G) by

(a,b) = Reskq( g

—,b).
dt‘)

The function ¢ satisfies the following two conditions:
1/)(0’7 b) = _1/)((11 b)7
¥(a,b) + ¢¥(a,b) + ¢(a,b) = 0.
Now we can use % to construct £(G) a central extension of £(G) by a 1-
dimensional center. Explicitly, £(G) = £(G) ® Ck (direct sum of vector spaces)
and the bracket is given by

[a+ Mk, b+ pk] = [a,b] + ¢¥(a,b)k, a,b € L(G); A\, u€C.

Finally we will denote £(G) the Lie algebra obtained by adjoining to £(G) a
derivation d that acts as {4 on L£(G) and kills k. That is, £(G) is the complex
vector space

L(G)=LG)oCkoCd
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with the bracket
[("RzDADpd, 1" QyOMkDd] = (1" Q [z, y] + pnt® @ y — pymt™ @ x)
DM, —nki(z, y)k.

Then ﬁ(g) is an untwisted affine algebra associated to the generalized Car-
tan matrix of affine type Xl(l).

Hence affine algebras are infinite-dimensional.

Now we will do the same in the “twisted” case.

If w is an automorphism of finite order m ( i.e., w™ = 1) of the Lie algebra
G, w induces a Z/mZ-gradation in G. Indeed, since w is diagonalizable, G splits

m dlreC sum Of elgenSpaCeS Of w
j=0 Y7

G; ={z €Glw(z) = e?™/m 2} and so [Gh, G;] € Ghyj, where h + j is understood
mod m (Let us notice that Gy is a subalgebra of G).
Conversely, every 7 /mZ- gradation in G defines an automorphism w of order

m by w(z) = /"y
If G is a simple finite dimensional Lie algebra, we can associate a subalgebra
L(G,w,m) of L(G) to the automorphism w as follows
'C(gawv Tn) = ®j€Z£(g7 W, m)]-,
where £(G,w,m); =t/ @ G;, j = j mod m.

If £(G) = L(G) ® Ck @ Cd denotes the algebra that we have constructed

before, we can consider its subalgebra
L(G,w,m) = L(G,w,m) & Ck & Cd.

The following theorem expresses the concrete result that we are looking for:

Theorem 2.1. Let G be a complex simple finite dimensional Lie algebra of

type Xy = Diyy, Agi_1, Fs, Dy or Ay and m = 2,2,2,3, or 2, respectively. Let
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w be an automorphism of G of order m induced by a diagram aulomorphism.
Then the Lie algebra ﬁ(g,w,rn) is a twisted affine Kac-Moody algebra associ-
aled lo the affine malriz of lype X](Vm). (With the notalion of [5]).

The analogue of the Cartan-Weyl basis can be constructed for affine Lie
algebras.

Among the modules of an affine algebra, the highest weight modules are
again the most interesting ones. A highest weight module can be constructed
from some highest weight vector vy by applying lowering operators. If the set
of vectors obtained in this way (that can be described in terms of the universal
enveloping algebra) is formally taken to be independent, then the module is
called a Verma module. Thus the underlying vector space of a Verma module
is not given a priori, but obtained by construction.

Verma modules are in general not irreducible. To get an irreducible module
from some given Verma module V, one must divide out any relations which
exist among this set of vectors. Thus the irreducible quotient of V} is obtained
by setting an appropiate set of elements of Vi to zero. Such vectors, which are
actually zero although formally they are not, are called null vectors. For any
Verma module there is a unique irreducible highest weight module R, that is

obtained as a quotient of the Verma module V}.

3. Hopf Algebras and Quantum Groups

One of the fundamental tasks in quantum field theory is to express the properties
of the field theory in terms of an underlying symmetry object. For conformal
field theories, this means that in particular one would like to understand the
operator product algebra in terms of the symmetry algebra of the theory.

It seems natural to search for structures related to the symmetry algebra
which do possess tensor products corresponding to the operator product alge-

bras. This search leads to the concepts of Hopf algebras and quantum groups.
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3.1. Hopf Algebras

Definition 3.1. A Hopf algebra is a vector space A endowed with five linear

operations:
p:ARA— A multiplication,
n:F— A unit map,
AA— AR A co-multiplication
e:A— F co-unit map,
v:A— A antipode,

which possess the following properties:

(H1) p-(ld@p)=p® (p®id) associativity,

(H2) p-(id@n)=id =p-(n®id) unilary properly,

(H.3) (id@ A)-A=(A®id)- A co-assoctalivity,

(Hi) (e®id)-A=1id=(id®¢€)- A counitary property,

(H3) p-(ld@y) - A=n-e=p-(y®id) - A,

(H.6) The co-multiplication A and co-unil € are F-algebra morphisms, that

is, preserve the multiplication.

We will assume that the base field F'is R or C.

An associative algebra with unit satisfies H.1 and H.2.

A vector space with a co-multiplication and a counit that satisfy (H.3) and
(H.4) is called co-algebra. The theory of co-algebras is dual to the theory
of co-algebras. The concepts of co-multiplication and co-unit arise naturally
when one tries to define tensor products of representations of an algebra. It
can not be defined for associative algebras which do not possess any further
structure, for instance. To avoid this problem, one introduces an additional
operation A such that for any two representations R; : A — gl(V;), the map
R:A— gl(Vi®W), 2 — (R; ® Ry) - A(z) is a representation too.

If A is associative it is natural to require that the formation of tensor prod-
ucts is associative, what restricts the map A to being co-associative. If A is

unital it is again natural to require the existence of a co-unit. An algebra
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with the four first operations and satisfying (H.1) to (H.4) and (H.6) is called
bi-algebra.

Finally when one tries to connect the operations of product and co-product
non-trivially we are lead naturally to the concept of antipode.

If we denote p(x®y) = -y, the associativity property (H.1) reads z-(y-z) =
(z-y) -z Va,y,z € A

Similarly the existence of unit (H.2) means that there is an element 1 € A
talquel-z=x=x2-1 Ve € A.

The map 7 is then fiven by n : £ — 1 V€ € F.

Examples

1. If G is a finite group, its group Hopf algebra is the vector space F(G)
(that is, the vector space over F' with basis given by the elements of &' ) and
the algebra structure defined by the multiplication and unit of G:

(deG ay9) - (Chea anh) = g agan(gh).

Now let us define:
Niz—=zQx

e:x—1VeeG
Yi& —» gL
for all x € G.
The co-algebra structure and the antipode are given by extending by linear-

ity the previous definitions on G.

2. Let U(G) be the universal enveloping algebra of a complex Lie algebra G.
Then U(G) is a Hopf algebra by taking p as the usual formal multiplication on
U(G) and defining the unit by n(§) = €1 VE e C.

The co-multiplication, co-unit and antipode are given by:

Az)=2@1+1Q« Al)=1®1

e(z) =0 Ve eg e(l)=1

Vz)=—= (1) =1
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Properties of a Hopf algebra

1. For a given multiplication and co-multiplication, the co-unit is unique.

2. If (A, u,n, AL e,7) is a finite dimensional Hopf algebra, the dual vector
space A* inherits a Hopf algebra structure from A by “exchanging” p,n with
A and e. That is, (A*, pu*,n*, A*, €*,7*) is a Hopf algebra with the operations
defined by:

(1™ (p @ ¥))(z) = (¢ @ ¥)(A(2))

(7" (6)(x) = Ee()

(A () (z @ y) = ¢(z - y)

() = w(n)

(7 (¥)(z) = ¢(v(2))

forz,y € A, @, € A, €€F.

In the infinite-dimensional case, in general (A*)* % A.One possibility to
define the dual Hopf algebra is via the previous definitions, but to restrict the
vector space A™ to an appropiate subspace. In short, the dual of a Hopf algebra
is the maximal Hopf algebra contained in the dual vector space A*.

3. The multiplication g and unit 1 are F-coalgebra morphisms.

4. The antipode is an antihomomorphism, that is, v(z - y) = v(y) - v(z)
Va,y € Aand v(1) = 1.

5. The antipode is an anticohomomorphism, that is, -y = e and (y®7)-A =
m-A-v, wherem: A® A — A® A is defined by 7r(x®y) =y .

6. The map A’ = 7 - A is also a ( co-associative) co-multiplication. So,
together with 4’ the inverse of the antipode 7, it provides another Hopf al-
gebra structure for A. The Hopf algebra is called co-commutative if the
co-multiplication satisfies 7 - A = A. Examples 2 and 3 belong to this type. If

A is commutative or co-commutative, then 42 = 1.

Commutative Hopf algebras are intimately related to compact topological
groups. If for any such group G we consider the vector space C'(G) of continuous

complex-valued functions on G, this space has a Hopf algebra structure via
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(e ¥))(2) = p(z)p(z)

n(€) = €1
(A(p))(z @ y) = p(zy)
e(p) = ¢(1)

(@))(&) = pla)

It can be easily verified that C'(G) is a commutative Hopf algebra. Moreover,
it is co-commutative if and only if the group G is abelian.

In short, we can associate to any compact topological group a commutative
Hopf algebra. And a commutative Hopf algebra is the ring of representative
functions on an algebraic group G (see [6]).

It is possible to describe properties of compact topological groups GG only in
terms of the associated Hopf algebra of functions C'(G), without making explicit
reference to G and its elements at all. If G is a Lie group, there exists a non-
degenerate duality between C'() and the universal enveloping algebra U(G) of
the Lie algebra G of G, that is, C'(G) is isomorphic to (a subspace of) the dual
space U(G)*.

Inspired by the previous fact, one is led to describe also non-commutative
Hopf algebras as function spaces on appropiate objects. These objects can
not be topological groups, and not much is known about their explicit struc-
ture. They are called pseudogroups, non-commutative geometric grups

or quantum groups.

Remark. The term quantum group does not possess a generally accepted
meaning. Often this name is used not only for the geometric objects intro-
duced above, but generically for any Hopf algebra, or sometimes also for the
quasitriangular Hopf algebras.

Quasitriangularity is a property that quantum universal enveloping algebras

have and that we will define next.

Definition 3.2. A quasitriangular Hopf algebra is a Hopf algebra for

which the co-multiplications A and A’ are related by conjugation, that is:
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(HT1) A'(z) = R-A(z)- R™' Vz € A for some element R of A x A which
is invertible and satisfies

(HT2) (id ® A)(R) = Ri5- Ryo

(HT3) (A @id)(R) = Ri3 - Ras

(HT/) (y ® id)(R) = R™".

In the above definition R;3 is meant as the identity in the second factor of
A® A® Aand as R in the first and third factors. (for instance, if R = r; ® ro,
then Ry3 =r; ® 1 @ ry). Similarly for Ry and Ras.

The inverse R~ of R € A ® A is the element of A ® A which satisfies
R R=1®1=R-R™'. In particular, (y ® v)(R) = R.

If R=r4 ®ry, then R™' = 51 ® sy with s, = 77!, s, = 3.

A quasitriangular Hopf algebra is called triangular if Ri2- Ry = 1® 1.

Every co-commutative Hopf algebra is quasitriangular. Since A(1) =1® 1
and (1) = 1, it suffices to take # = 1 ® 1). In particular any group Hopf
algebra is quasitriangular, and so is the universal enveloping algebra of any Lie
algebra.

In general a quasitriangular Hopf algebra is neither commutative nor co-
commuta- tive; however the non-cocommutativity is under control by the axiom
(HT1). Every finite-dimensional Hopf algebra can be embedded in a suitable
finite-dimensional quasitriangular Hopf algebra, its Drinfeld double.

An immediate consequence of the axiom (HT1) is:

Ry (A®id)(r®y)=(A'®id)(z2®y) R YVzRyec AR A.

Taking R = = ® y and using (HT2) y (HT3) this yields

Rig - Riz - Roy = Ry - Riz - Rao.

This is the so-called Yang-Baxter equation, which plays a fundamental
role in the theory of completely integrable systems. In this context, the quantity
R is called a universal R-malriz, and this terminology has been adapted for the
element R of an arbitrary quantum group.

Notice that in the simple case R = r; ® r9, the Yang-Baxter equation simply

reads
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(ri-r)@(ro-r) @ (ra-r2) = (r1-11) @ (r1 - 12) @ (r2 - ra),

that is, ry - ro = rg - rq.

3.2. Deformations of enveloping algebras

The quantum groups that turn out to be relevant in physics (for instansce in the
so called WZW theories) are obtained as deformations of enveloping algebras of
semisimple Lie algebras. The quantum universal enveloping algebra U,(G) can
then be defined as a quantum deformation of the enveloping algebra. Deforming
the relations of U(G) means changing them in a manner depending on some
formal parameter ¢ such that the original algebra U(G) is obtained in the limit
g — 1. The terms “quantum” and “classical” are used in this context because

the g-deformations can be understood as a formal “quantization” procedure.

Definition 3.3.  The quantum universal enveloping algebra U,(G) is
the algebra of power series in the 3r + 1 generators {ei,h'|i = 1,...,r} U {1}
modulo the relalions:

(UQ1) [, W] =0,

(UQ2) [, ek] = £aijek,

(UQ3) [, el] = 6| ],

(0Q)) T (-1PL 1 [P =0 for i £,

(UQ5) 10z =z =201 Vo € Uy(G).

The elements a;; in this definition are the Cartan integers of the Lie algebra

G. Here brackets are to be undertood as commutators,
[z,y] = 20y — yOu

and z{y the formal product in U(G). Also we have used the g-number symbol

B qx/Z _ q—r/2

lz] = =]y = G _ g1
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together with
lz]; = 2], with g = @210,

n)t= [ lm) and | " L]

m 1= [m|!n—m]!
The exponential functions of generators appearing in the expressions |A‘|
are defined through the corresponding power series, that is,
o0 En
et = Z Q"

!
o ™!

where h* = h®" is defined inductively, i.e., %" = h$RO=1 . Note that, in
particular, e¢? et =1,

By using this definition an explicit formula for the “R-matrix” can be given
showing that U,(G) is quasitriangular.

Note that the appearance of ¢¥*'/2 forces us to consider infinite power series
in the h® (contrary to the case of the enveloping algebra U(G)). As a conse-
quence, usually this restriction is included in the definition of U,(G). Instead
of allowing for infinite power series in the hf, one can alternatively replace each
G2

generator h' by a pair of generators ki = and consider only finite power

series in k% as well as in €%.. In terms of these new generators, the relations of
U,(G) read
BE =R .=1,
Ky, k) = (K] =0,
K = L,
kiel = g™ /2elk!,
(€} L] = 89(g% — ™)K} — kL),

We can define the quantum version of the map ad, as a g-deformed com-

mutator,

Ad,a(€P) = [e2, €P], := g~ @ P eay el — (0P 4P ee,
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Now the quantum analogue (UQ4) in Definition 3.3 of the Serre relations

can also be written as

(Adyg )" =" (k) = 0.

Let us ilustrate the above mentioned with an example.

Example

Let us consider G = A; = s{(2). In this case there are no Serre relations, so

the defining relations of U,(A;) are

[h, ei] = :|:26j:7

fesre ] = LA
By definition the enveloping algebra U(A4;) is associative and its unit is given
by the trivial power series 1. These properties are inhereted by U,(A;). More-
over, it turns out that U;(A;) is endowed with the structure of a quasitriangular
Hopf algebra. The Hopf algebra structure arises via the following definitions on

the generators h, ey:

co-multiplication

Ah)y=h®14+1& h,
Alex) = e+ ® ¢** + ¢ @ e,

co-unit

e(h) =€lex) =0; €(1)=1,
antipode

v(h) = —h, ~(ez) = —¢*?ex, y(1)=1.

If we don’t want to use infinite power series in h, we can replace h by two

generators k, and k_.(Notice that we are thinking of k& = ¢*, an exponential).
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In this way U,(A;) is generated by ey, e_, ki, k_ and the product satisfies
kyk_ =k_ky =1, kyesk_ = ¢Pey, kpe_k_ =q%e_, ee_ —e_ep = %

For a simple algebra G it can be shown that the representation theories of G
and U,(G) are “very similar” . Namely, all finite-dimensional modules of U,(G)
are fully reducible, and the irreducible finite- dimensional modules of U,(G)
are parametrized by the dominant integral highest weights A of G. Also the
finite-dimensional modules can be decomposed into weight spaces in complete

analogy to the semisimple Lie case:: R = @ R(y) such that R(hi)'v,\ = M, and
dim Ry (Uy(G)) = dimRy)(G).

3.3. Quantization

Quantum groups play a role for quantum mechanical systems that is analo-
gous to the role of ordinary groups in classical mechanical systems. The Hopf
algebras U,(G) are obtained as g-deformations of more familiar objects. The
mathematical procedure of deformation is precisely what is employed in physics
when the quantization of some theory is performed. It is therefore tempting to
try to obtain quantum groups from more traditional objects by some appropiate
(formal) quantization procedure.

We know an easy way of constructing noncommutative Hopf algebra by
considering A*, for A a commutative but not cocommutative algebra. In this
way more or less all co-commutative noncommutative Hopf algebras are ob-
tained. The most interesting and mysterious Hopf algebras are those which
are neither commutative nor cocommutative. Though Hopf algebras have been
intensively studied by algebraists, it seems that most of the examples of non-
commutative non-cocommutative Hopf algebras invented independently of the
integrable quantum system theory are counterexamples rather than "natural”
examples. There is a general method for constructing such Hopf algebras based
on the concept of quantization that was proposed under the influence of the
QISM (quantum inverse scattering method) (see [2]).

A quantization of a commutative associative algebra Ay over F' is a (not nec-
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essarily commutative) deformation of Ay depending on a parameter i ( Plank’s
constant), that is, an associative algebra A over F[[h]] such that Ay = A/hA
and A is a topologically free F[[h]]-module.

Given A, we can define a new operation on Ay (the Poisson bracket) by the
formula

[a, 6]

{a mod h,b mod h} = —— mod h.

Thus Ap becomes a Poisson algebra (i.e., a Lie algebra with respect to {, }
and a commutative associative algebra with respect to multiplication, these two

structures being compatible in the following sense: {a,bc} = {a,b}c + b{a,c}).

Definition 3.4. A quanlizalion of a Poisson algebra Ao is an associalive
algebra deformation A of Ao over F[[h]] such that the Poisson bracket on Ay

defined as above is equal to the brackel given a priori.

There is a Hopf algebra version of the above definition when Ay is a Poisson-
Hopf algebra (i.e., a Hopf algebra structure and a Poisson algebra structure on
Ay are given such that the multiplication is the same and the co-multiplication
Ao = Ap ® Ag is a Poisson algebra homomorphism, the Poisson bracket on
Ap ® A being defined by {a @ b,c® d} = ac® {b,d} + {a,c} @bd ), and A is a
Hopf algebra deformation of Ay.

A classical dynamical system is defined by the fact that the dynamics is
subject to the requirement df = {h, f} valid for any function f on the manifold
in which the dynamics takes place. If Ay denotes the space of these functions,
Ap is a commutative associative unital algebras and @ is a derivationon Ay, that
is, Mz -y) =z - dy + (0z) - y.

If the algebra Ag is a Poisson-Hopf algebra, and there exists a quantization
A of Ay, it is natural to interpret A as the space of functions on some topological
object G, and to call G, a quantization of the group G or for short quantum
group.

The relation of this type of quantum group with the quantized universal

enveloping algebras arises as follows. Take G a compact Lie group with Lie
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algebra G. There is a pairing between the functions C'(G) on G and the dual
U(G)* of the universal enveloping algebra U(G). Thus one has C'(G) ~ U(G)*.
Moreover from U(G)* one can determine U(G), so that we arrive at the following

scheme of correspondences:

G = CG@)~=U@G) = U(g)
group commutative co — commulative
Hopf algebra Hopf algebra

The formal quantization procedure relates C(G) to C(G}), but it is not
possible to give a precise meaning to the quantum group G}, directly as a quan-
tization of (G. However this is not a real problem because any issue concerning
G, may be reformulated in terms of C'(Gh). But it is possible to translate the
quantizaton procedure into the language of universal enveloping algebras. In

this way we have the following picture of correspondences:

G = C@)~UGr = U(g)
group commutative co — commutative
Hopf algebra Hopf algebra
L1 L1
Gh = C(Gh) = (U(g)h)* = U(g)h
quantum non — commutative non — cocommutative
group Hopf algebra Hopfalgebra

Note that in this diagram (that is not precise and only gives some intuition
into what is happening) there are no arrows directly connecting G' and G,
Although this does not prevent the study of the object G (in terms of the
functions C'(G})) it is still tempting to find a more direct connection. Indeed
it exists via the so called matrix quantum groups which, in short, are matrix

representations of suitable quantum groups Gj.

Example 3.1. Let us consider 2 X 2 matrices M = ( Z Z ), where a,b, ¢, d

are complex numbers, ad # be. These matrices form the (non-semisimple) Lie
group GLy(C).

If q is a complex number, the algebra generated by four elements {a, b, ¢,d}
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satisfying the relations:
ab = ¢"%*ba ac = q[1/2ca
bd = ¢"%db  cd = ¢dc

be = ¢b ad — da = (q]/Q = q_]’ﬂ)bc

is the quantum matrix group (G Ly),(C).
This algebra can be seen as a quantization of GLy(C) by replacing those
“matrices” by the coordenate functions on the matrices.

If we impose ad—q'/?bc = 1, we obtain the quantum matrix group (SLs),)(C).
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