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GLOBAL HYPOELLIPTICITY FOR SUMS OF
SQUARES OF VECTOR FIELDS OF INFINITE TYPE

A. Alexandrou Himonas *@® Gerson Petronilho '®

Abstract

We prove global C'* regularity for a family of sums of squares opera-
tors on the torus, which may not satisfy the bracket condition. Instead,
an independence condition on the coefficients is shown to be necessary
and sufficient for global hypoellipticity.

Resumo

Neste trabalho provamos a regularidade C'*® no toro para uma familia
de operadores na forma de uma soma de quadrados, os quais podem
ndo satisfazer a condi¢do do colchete. Mostramos que uma condi¢do
de independéncia sobre os coeficientes é necessdria e suficiente para a
hipoeliticidade global.

1. Introduction and Results

Let M™ be a C* manifold and X = {X;,...,X,} be a collection of real
vector fields with C* coefficients on M™. The “sum of squares operator”
or sublaplacian associated to the vector fields X is the second order opera-
tor P = Ax = —(X? +---+ X2). P is said (locally) hypoelliptic if for any
open set V. C M" the conditions Pu = f,u € D'(V), and f € C(V) imply
u € C(V). P is said globally hypoelliptic if the above implication holds for
V = M". Observe that hypoellipticity implies global hypoellipticity. A point
o € M™ is said to be of finite type if the dimension of the Lie algebra generated

by X at z¢ is equal to the dimension of the manifold. Otherwise it is said to be
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of infinite type. By the celebrated theorem of Hormander [10] (see also Kohn
[11], Oleinik-Radkevich [13], and Rothschild-Stein [14]) Ax is hypoelliptic if
all points of M"™ are of finite type. However the finite type condition is not
necessary for local or global hypoellipticity (see Bell-Mohammed [2], Fedii [5],
Kusuoka -Strook [12]). For example, the operator P = —0? — a?(¢)0? is hypoel-
liptic if @ is even, nonnegative, nondecreasing on [0,00), and a(t) = 0 only for
x = 0 (see [5]). Notice if 0 is a zero of a of infinite order then ¢ = 0 is of infinite
type. If T? denotes the 2-dimensional torus, then P is globally hypoelliptic on
T? if and only if a(tg) # 0 for some ¢y € T, (see [6]). Observe that a can be
chosen so that most points (except for points in a set of arbitrarily small area)
on T? are of infinite type.

In this work we consider a class of operators Ax on the torus where the finite
type condition and/or the reachability condition (see Sussman [15]) may fail but
global hypoellipticity holds. This paper consists of an extension of theorem 1.2
in [9]. While no satisfactory characterization of global hypoellipticity exists in
the literature, it is hoped that our result provides some insight into this open

problem.

Theorem 1. Let T™2™ be the (n 4+ 2m)-dimensional torus with variables
(t,x,y) = (t1ye e vy bny T1ye ooy Ty Y1y - -+, Ym), and P be the operator defined by

m

P =AY (a(0)0s, +b;(8)3,,)",

7=1
where aj,b; are in C*°(T™) and real valued. Then P is globally hypoelliptic on
T+ if and only if for each fized j, the coefficient b; is not identically equal
to zero and a; # Ab; for any A € Q U L, where () is the rationals and L is the

set of Liouville numbers.

Remark. The conditions b; # 0 and a; # Ab; for any A € Q U L are equivalent
to a; # 0 and b; # pa; for any p € Q U L. This follows from the fact that
A ¢ QUL is equivalent to A™! ¢ Q U L. We recall that an irrational number A

is Liowville if it can be approximated to any order by rational numbers. That
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is, for any C' > 0 and K > 0 there exists (p,q) € Z* — (0,0) such that

For a partial list of results on global hypoellipticity we refer the reader to
Amano [1], Bergamasco, Cordaro and Malagutti [3], Cordaro and Himonas [4],
Gramchev, Popivanov and Yoshino [7], Greenfield and Wallach [8], Taira [16],
and Tartakoff [17].

2. Proof of Theorem 1.

Necessity: Assume that the condition in Theorem 1 does not hold. Then for
some 7, 1 < j < m, either b; = 0 or a; = Ab; for some A € QU L. If b; is
identically zero for some 7, 1 < j < m, then P is not globally hypoelliptic since
any function u = u(y;) which depends only on the variable y; is a solution to
Pu = 0. We now suppose that there exists A € Q U L such that a;(t) = Ab;(1)
for all t € (—m,m)". Then

U 5 2
P=—A =Y (@), + bi(1)D,,)* — 2(t) (M, +0,,) -
z
Since A € QUL there exists u € D'(TZ ) —C>(T3 , ) such that (Ady, +0,,)u €
C’OO(T;ZE]%) (see Greenfield-Wallach [8]). Therefore, P is not globally hypoelliptic

on Tr»+2m,
Sufficiency: Let u € D'(T""?™) be such that
Pu = f, f € C®(T"™). (2.1)

By taking partial Fourier transform with respect to (z,y) € T*™ we obtain

LA w06 b0 anen = FeEn,  (22)

J=1

for all t € T™ and (&, n) € Z*™. Note that by the elliptic theory for each fixed
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(€,m) € Z*™ the solution (-, €, 1) to equation (2.2) is in C°°(T"). If we multiply
(2.2) by @(t, &, n) and integrate by parts with respect to ¢ € T, then we obtain

Zuutk ety + [ Zaj (D)6 + by 0y, (e, &, m)Pde
(2.3)

= [ fa et &

For each j = 1,2,...,m and (&;,n;) € Z* we let

el = X louliam + [, CH6Eomllelat, ¢ € C=(T), (4

where
Ci(t,&,mi) = a;(1)& + bi(t)n;. (2.5)

We shall need the following lemma.

Lemma 1. If for each fized j, b; is not identically equal to zero and a; # \b;
for any X € Q U L, then for each (&;,m;) € Z* — 0 there exist constants K; >
0,L; > 0,0; > 0 independent of (§;,n;), and there exists an n-dimensional
interval 1; = 1;(&;,n;) such that

K;
~ (& ;)IL ’

Before proving Lemma 1 we shall show that inequality (2.6) implies that

C;(tvfjam) t € I;,Vol(;) = ¢;. (2.6)

the operator P is globally hypoelliptic in T"*?™. By using the fundamental
theorem of calculus for s € I; and ¢ € (—m, 7)™ we obtain for any ¢ € C=(T")

0 <€ (1o + 3 [ onlorssimnpatisnseeesta)Pdn ) (21
k=1""T

where C' is a positive constant. Integrating for ¢t € (—m,7)" and for s € I; =

1;(&,m;) gives

(Vol I;)llpliageny < K; (/ () s + (Vol )Y Il ) (23)

k=1
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where K is a positive constant ( in the following K; will represent several

different positive constants). By using (2.6) we have
[ le(@)Pds < KNGl [ CHs &mlels)Pds. (29)
Then (2.8) and (2.9) give

llZarmy < KGl(&sm)l™ Jon C3(s,&5,m5)  (s) P ds

O ) (2.10)
+K; 351 e ll7zcrm-
Since (¢;,m;) € Z* — 0, (2.10) implies that
lelZeem < Kil(&.m) ™ llellz, < KIEn)Fllell,. (2.11)

where K = max{K1,..., K} and L = max{L,..., Ly}

Let (£,n) € Z*™ — 0. Then there exists j € {1,...,m} such that (§,n;) €
Z? — 0. If we apply (2.10) with (t) = a(,&,n) then we obtain

’&('7 67 77)

(-, & mIZ2omy < K& )| & (2.12)

By (2.3), (2.4), and (2.12), we obtain
s & mlitacen < KIEMI® [ F(t,€mit,€ .
This and the Cauchy-Schwarz inequality give
(-, & mllz2ermy < KIE NS 6 m)llzacen.- (2.13)

If we D'(T™?*™), Pu=f, f € C®(T"?™) then by (2.13) we obtain that for
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any positive integer N there exists C'y > 0 such that

||ﬁ(v§a "/)“LZ(T") < ON|(E? 7/)|_N= (67 TI) € Z2m —0.
Since

. 1 -
w(r,€,m) = W/"e “Talt, € n)dt,

by the last inequality and Cauchy-Schwarz inequality we obtain

la(r, &,m)| < Chl(€, )™, (7, €,m) € Z™F>™,  (&,7m) #0.

If (70,&0,m0) € Z™?™, with (&,m0) # 0, then there exist ¢ > 0 such that
(10,€0,m0) € T = {(7,&,m) € Z™?™ ¢ |7| < ¢ |(&,1)|} Then the last inequality

gives
1

(Irl+ 1€, mDN’
By the elliptic theory we obtain similar estimates near directions (7o, &o,70)
with (&o,m0) = 0. Therefore v € C°(T"+*™), which shows that P is globally
hypoelliptic in T™+2™,

la(r, & n)] < Cx (r,&,m) €T. (2.14)

3. Proof of Lemma 2.1

By our hypothesis we know that a; and b; are not identically equal to zero.
Since a; # 0 there exists an interval I; C [—m,7]" and a constant K; > 0 such
that

al(t) > K; >0, for all ¢ € I;.

Thus, if n; = 0 and &; # 0 then
Cjz(t,éj,(]) = (l?(t)f? > avjz(t) = I(j >0,1te [j.

Similarly, if n; # 0 and & = 0 then there exists an interval {; C [—m, 7]" and
K; > 0 such that

Cf(t,o,‘r]j) e bjz,(t)»,];‘,) >K;>0,tel;, n #0.
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Now we assume &; # 0 and n; # 0, and consider several cases. Set

A;j=A{t € [-m,a|":a;(t) # 0}, and B; = {t € [-m,7]" : b;(¢) £ 0}. (3.1)

Therefore, supp a; = A; and supp b; = B;.

Case 1. supp a; # supp b;.

We suppose that there exists to € supp a; such that ¢y ¢ supp b; (the other
case is similar). Since ¢y ¢ supp b; there exists an interval J such that ty € J
and b; = 0 on J. Since {y € supp a; we have J N A; # 0. Let t; € JN Aj, then
there exists an interval [; such that ¢, € I; C JN A; and o ( ) > K; > 0 for all
t € I;. Thus

(t € ;) = aj ( )52 > aj i(t) 2 Kj, t € I

Case 2. supp a; = supp b;.
We consider the function

ri(t) = —: A; — R, (3.2)
and distinguish two cases.

Case 2.1. We assume that there exists ty € A; such that r%(to) # 0. Therefore
there exists an interval J; such that to € J; C Aj, ri(t) # 0 for all ¢ € J;, and
aX(t) > K; > 0 for all t € .J;. Now we let

a; = M; —mj, where M; = max r;(t), m;=min r;(t).
e, e,

Since 1’ # 0 we have a; > 0. Then by the uniform continuity of r; on J; there

exists ¢ > 0 independent of (§;,7;), and a subinterval I; of J; such that
5 n
(& +ri(m)* > p; >0, L€ I Vol(I) > (§> 7

2
where p; = min {1 6—]} For the details of this argument we refer the reader
B

to Lemma 3.2 in [9]. Thus we obtain

i(t)

2
W'/j) 2 p;iKj, t € I;.

(t &ini) = aj ( ) (§J
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Case 2.2. We now assume that
i =0on Aj.
We may write A; = G (i where Gj; are open and connected sets with G, N
Gl = WF Ty 2 il Then
r; = Ay = constant on Gy, [ =1,2,...
Case 2.2.1. We assume that A\;; = A; for all [ = 1,2,.... Then it follows
that b;(t) — Aja;(¢t) = 0 for all ¢ € [—m,7]" and A; must be a non-Liouville

number. Therefore there exists an interval I; C [—m, 7]™ and constants K; > 0

and L; > 0 such that
Cf(tfjﬂ?j) 2 ](j|(§j777j)|_LJ7 te Ij'

Case 2.2.2. We suppose that there are Aj;, # Aj,. For simplicity we write

A, = A1 and Aj;, = X Then we have
bi(t) = Aiaj(t), t € Gy,
and
bi(t) = Aaa;(t), t € G,
with Ay # Ay and G NGy = (. We will analyze only the case where Ay > A; > 0

A+Ao
2

(the other cases are similar). Let ¢ = and consider the region

Ry ={(&:m;) €Z*: m; >0, § > —an;}.
In Ry we have & + Aon; > —enj + Aonj = g@lm > 0. Therefore

Ma—XM)  _ Az—N
-
5 H="T9

|§j + /\zm‘l > = [X”j > 0. (33)

In the region
Ry ={(&m) € 2% :9; <0, < —enj}

we also can prove that

Ag — Ny

|§j + )\2"]]'| > = ](]' > 0. (34)
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In the regions

Ry ={(&,m) €Z*: ¢ <0, 1; >0, & < —enj}
and
Ry={(&,m) €Z*: £ >0, 1; <0, & > —cn}

we can prove that
Ay — N

& + Aums| = = Ky >0 (3.5)

4

We observe that Z? — {(£;,0)} = | R;. Since a; # 0 for all t € G, it follows
=i

from (3.3) and (3.4) that there exists an interval I; C G5 such that

CH(t,&5,mi) = a3(8)(&5 + Aamj)? > K; > 0,6 € I; and (&,7m;) € Ry U Ry.

Similarly it follows from (3.5) that there exist an interval [; C G4 and K; > 0

such that
CH(t, & m) = a3 (t)(& + Mmy)* = K; > 0,4 € I; and (§j,7;) € R3 U Ra.
The proof of Lemma 1 is complete.
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